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Abstract. We show how to produce short proofs of theorems such that a 
distrusting Verifier can be convinced that the theorem is true yet obtains 
no information about the proof itself. The proofs are non-interactive pro- 
vided that the quadratic residuosity bit commitment scheme is available 
to the Prover and Verifier. For typical applications, the proofs are short 
enough to fit on a floppy disk. 

1 Introduction 

The main goal of this work is to  show how to  produce short proofs of theorems 
such that a distrusting Verifier can be convinced that the theorem is true yet 
obtains no information about the proof itself. The paper makes use of what we 
have called “set certification”, which consists of proving that a vector of bit com- 
mitments encodes a vector of bits in a given set without revealing the bit-vector 
itself. We have high hopes for what useful results this technique might eventually 
yield. Since our shortest proofs don’t exactly fit any of the published categories 
of zero-knowledge proofs, we have named them “discreet proofs”. As an example 
of the power of these techniques, we show discreet proofs of knowledge of RSA 
and DES keys which fit on a floppy disk. 

We assume that a bit commitment scheme (blobs scheme) is available as a 
primitive. The blobs scheme used should satisfy certain properties described in 
[6, 4, 51. In  addition, they must allow non-interactive processing of X O R  gates 
(see [5, 31). As a concrete example, we choose the following bit commitment 
scheme, which is based on the “Quadratic Residuosity Assumption” (QRA). 

Definition 1. A “Blum integer” is a composite integer N = P‘Q”, with P and 
Q primes such that P f Q 3 (mod 4) and T and s are odd. 
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DeAnition2. (Brassard-CrCpeau [7]) Let N be a fixed Blum integer produced 
by the Prover. “QR-blobs” are constructed as follows: the Prover selects a ran- 
dom x € 2;. To commit t o  a 0 the Prover sends z2 mod N .  To commit to  a 1 
the Prover sends -x2 mod N .  

Notation: If x = (21,. . . , 2,) is a vector of blobs, then 5 will denote the vector 
in GF,” encoded by x. Sometimes we will use 2 before x has been defined. In 
this case, x will denote any sequence of blobs which encodes 5. 

We start by assuming that the Prover-Verifier pair has access to a com- 
mon source of randomness. Our results here give non-interactive zero-knowledge 
proofs, in the shared random string model proposed by Blum, Feldman and Mi- 
Cali [l], of length O(m log m). for the satisfiability of a circuit of size of size m, 
assuming that the security parameter is l/mo(m). This asymptotic complexity 
has also been obtained by Damgdrd [8], who also assumes the QRA, and impres- 
sively by Kilian and Petrank [ll], who base their results on much more general 
assumptions. The advantage to our non-interactive proofs is in the constant fac- 
tors, which are of course of practical interest, Our system beats Damgbrd’s by 
a factor of about 7.5, and Petrank’s and Kilian’s by a very large factor. 

As a next step towards our efficient discreet proofs, we allow the Prover 
and Verifier to engage in more than one round in which they sequentially query 
the randomness source. That is, during any round they do not have access t o  
the random bits of the following rounds. We later remove these assumptions 
by simulating the randomness source. The resulting proof is efficient and non- 
interactive, but no longer zero-knowledge. 

2 Constructible and Certifiable Sets 

We start by looking at what can be done without recourse to shared randomness. 

Definition3. A subset S of GF,“ is said to be constructible if it is possible 
for the Prover to construct, for any chosen i E S, a vector b = (bl, . . . ,a,) of 
blobs, along with a proof that i belongs to  S. The proof must not reveal any 
information about which element of S is 6. The proof must be non-interactive 
(hence we simply call it a certificate) and must be constructible without using 
the shared random string. 

This is not counting the necessary precomputation for establishing a blob encryption 
system. An efficient interactive protocol for showing that N is a Blum integer can 
be found in [16] A non-interactive zero-knowledge proof that N is a Blum integer 
can be found in [13]. 
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For example, the existence of blob encryption schemes implies that  the set 
S = (0,l)  is (trivially) constructible. If the blob encryption scheme allows non- 
interactive processing of XOR gates then the sets E = (00,l l)  and D = (01,lO) 
are also constructible. Given QR-blobs b = (bl ,  b z ) ,  a proof that E E is simply a 
square root of blb2 mod N .  A proof that h E D is a square root of -blb2 mod N .  
For details and security proofs related to  this scheme see [5]. 

DeAnition4. A subset S of GFF is said to be certifiable if, given any vector 
b = ( b l ,  . . . , b,) of blobs such that b E S, the Prover can construct a proof that b 
belongs to  S. The proof must not reveal any information about which element of 
S is 6.  The proof must be non-interactive and must not use the shared random 
string. 

The difference between certifiable and constructible sets is that, with a certi- 
fiable set, the Prover has not created the blobs herself; this gives her less freedom 
in producing the proof. 

Note that a set which is certifiable is also constructible. Also note that the 
sets E and D are certifiable when QR-blobs are used. Whenever E is certifiable, 
it will follow that any set which is constructible is also certifiable. To see this, 
suppose z = ( 2 1 , .  . . , zn) is given, and that the Prover wants to  certify that 
3 belongs to a constructible set S. To do this, the Prover simply constructs 
y = ( y l , .  . . , y , )  such that 2 = y along with a proof that ij is in S. Then 
the Prover certifies that 6& E E for each i. Thus, if QR blobs are used, then 
cert$able sets and constructible sets are the same. 

Lemma5. If QR blobs are used, then any subspace S of GF,” is certifiable and 
constructible. 

PTOOf. Note that S must be the image of GF,” under multiplication by an n x n 
matrix M over GF2. To certify a vector z = ( z l ,  . . . , z,)  of blobs, the Prover 
constructs blobs y = ( ~ 1 , .  .. ,y,) such that Mjj = 5.  Then the Verifier and 
Prover can non-interactively compute blobs v = (w l  , . . . , v,) such that .ir = M @  
(see [3] for more details). The Prover then gives certificates that 6i& E E for 
each i .  0 

By a linear map from GF,” to GF,” we mean a function f (x) = M z S b ,  where 
M is an n x m matrix over GF2 and b E GF,”. Sets of the form f ( S )  where S is 
a subspace of GF,” will be called cosets (each such set is a coset of the subspace 
{v I v = M z ; z  E S}). The proof of the following lemma is analogous to the 
proof of Lemma 5. The details are left to the reader. 

Lemma6. If Q R  blobs are used, then cosets are certifiable and constructible. 
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If, for example, the set A = {001,011,101,110}, which contains the rows of a 
truth table for a NAND gate, was certifiable, it would follow that a non-interactive 
zero-knowledge proof for circuit satisfiability is possible without using the shared 
random string. Unfortunately we have not been able to  construct certificates for 
A. It may well be that, if we restrict ourselves to QR blobs, then cosets are the 
only certifiable sets. Other blob encryption schemes can be constructed for which 
sets corresponding to  truth tables of various boolean functions are certifiable. 
But we have not been able to  construct a blob encryption scheme such that a 
logically complete set of boolean functions is certifiable. 

The next best thing to  constructible/certifiable sets are sets which can be 
constructed/certified using the shared random string. Then the proofs that the 
vector defined belongs to  the set would be probabilistic. Thus there would be 
some chance that the vector in question does not belong to  the set, but that 
probability would be small compared to some specified security parameter. 

Definition7. A subset S of GF," is said to be probabilistically constructible 
if it is possible for the Prover to construct, for any chosen 6 E S ,  a vector 
b = ( b l , .  . . , b,) of blobs, along with a probabilistic proof that i, belongs to S. 
The proof must not reveal any information about which element of S is 6. 

- 

Definitions. A subset S of GF," is said to be probabilistically certifiable if, 
given any vector b = ( b l , .  .. , b n )  of blobs such that i E S, the Prover can 
construct a probabilistic proof that b belongs to  S. The proof must not reveal 
any information about which element of S is 6. 

Both the previous constructions may use the shared random string, and the 
Verifier must accept an exponentially small probability that 6 S. We will show 
that the set r\ is probabilistically certifiable. This will be used in designing non- 
interactive zero-knowledge proofs for circuit satisfiability, using a shared random 
string. It is convenient to first show that two other sets, T and U ,  defined below, 
are probabilistically certifiable. 

2.1 

Using QR blobs, the shared random string determines, by standard techniques, 
a sequence I = (21,. . . , z,) of randomly distributed blobs. This can be done by 
dividing the bits of the random string into substrings of the appropriate length 
k for the blobs. The substrings are interpreted as integers. The resulting integers 
which have Jacobi symbol +1 are used directly. Those with Jacobi symbol -1 
are multiplied by a fixed number p with Jacobi symbol -1 (if N is constructed 
such that it is congruent to  5 modulo 8 then /3 = 2 will do). This construction 
requires nk shared random bits. 

The Set T = {oi,io, 11) 
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The number of blobs n will be specified later; it will be a function of the size 
of the circuit and a security parameter for the proof. With probability 1-2-* the 
vector j: is not the zero-vector. If the Prover chooses a random $ $Z {O,j:} and lets 
i = 2 @y,  then the set A = {0,2,$, i} is a subspace of GF;. Suppose the Prover 
writes down two randomly chosen non-zero vectors &,6 from the set A. Note 
that these two vectors completely define A ,  since A must equal {O,G, 6, Gee}. 
If the Verifier can be convinced that 2 belongs to A,  then this is a probabilistic 
proof that 2 is one of the three given non-zero bit vectors. 

Note that A must be the kernel of a linear homomorphism f ( t )  = M t  where 
A4 is an (n - 2) x n matrix. The matrix M is easily computable non-interactively 
from u and u. The blob-vector z ,  corresponding to  A45 can be computed non- 
interactively (z;  = n,i,,=l x j  mod N ,  where mi,, is the i , j - th  entry in M ) .  
Now, if A42 = 0, then it follows that  5 E A. Thus, if the Prover opens all the 
blobs in Mx, and they are all zero, then the Verifier is convinced that x encodes 
one of three given non-zero bit vectors { 2 ,  6,;). 

For any vector u E GF,", let di )  denote the ith bit of u. With probability 
larger than 1 - 3(1/2)", there exist i , j  such that { d i ) 5 ( j ) , $ ( * ) $ j ) ,  i ( ' ) i ( j ) }  = 
{01,10,11}. To see this, note that there are 4" - 3.2" + 2 possible 5, $ pairs for 
which i?(i)$(i) takes at least two values from {01,10,11} as i ranges from 1 to n 
(the third value, i(i),  is determined by the equation i = j: @ y). In the unlikely 
event that j: is not the zero-vector yet the do not take at least two values 
from {01,10, ll}, the Prover simply generates another y. 

Since the set { 2 ,  y, 2 )  is known to both Prover and Verifier, both may find 
a pair ( z , j )  with the required property? Then the two blobs zi, zj encode an 
element in T = {01,10,11}. The Verifier has no information about which element 
of T it is. This construction fails only when i = 0. The probability of this is 

Thus we have shown how the Prover can construct two blobs which commit 
to a random element of the set T = {01,10,11}. To actually choose which two 
bits to  commit to, the Prover can use the transformation f ( a , b )  = (a@b,a) .  
Figure 1 shows the effect of this linear transformation. 

1 - (1/2)? 

Figure 1: Going from random commitments 
!(a, b)  = (a@b, to chosen commitments in the set T.  

Since typically many such pairs (i,j) will exist, some way of choosing one must be 
specified, e.g. choose (2, j) which minimizes ni + j .  
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To convert from a random member of T to a chosen member of T ,  the Prover 
sends two bits. The two bits tell the Verifier t o  advance 0, 1, or 2 positions in 
the diagram. i.e. the bits tell the Verifier how many times to  apply the linear 
transformation f. 

Thus we have proven 

Lemma9. If QR blob8 are used, then the set T = {01,10,11} i s  probabilistically 
constructible using n random blobs with probability of failure bounded above by 
(1/2)". The certificate consists of n - 2 numbers modulo N ,  two n-bit vectors, 
and two bits. 

As mentioned before, this also implies that the set T is probabilistically 
certifiable. But we will not make use of this result in this paper. From here on 
we concentrate on the techniques and cost of probabilisticdly constructing sets 
related to boolean functions. Later we also introduce techniques for reducing the 
amortized cost of certifying many pairs of blobs as belonging to  the set T.  

2.2 The Set U = (oiii,ioii, i i o 1 , i i i o )  

If we generate bits ab E T and cd E T ,  then abcd may take any value in 

{0101,0110,0111,1001,1010) 1011,1101,1110) 1111). 

The set U may be formed by considering only the strings with odd parity. Thus 
the set U is probabilistically constructible as follows. Construct blobs 3, y along 
with a proof that 5 i  E T .  Do the same for blobs z,w. Now prove that 2 @ p 6B 
i @ 2ir = 1 by displaying a square root of -xyzw modulo N .  This construction 
guarantees that 2piw E U and, by Lemma 9, fails with probability no more than 
2(1/2)". Thus we have proven 

Lemmalo. If QR blobs are used, then the set U = (0111,1011,1101,1110) is 
probabilistically constructible using 2n random blobs with probability of failure 
bounded above b y  2(1/2)n. The certificate consists of 2n - 3 numbers modulo N ,  
four n-bit vectors, and four bits. 

2.3 
Constructible Using QR Blobs 

There are sixteen two-input boolean functions f ( z ,  y). If NAND is probabilisti- 
cally constructible then all sixteen functions are probabilistically constructible. 
Since it will be more efficient to directly construct gates in a circuit (i.e. without 
simulating the gates using NAND gates), we show how to probabilistically con- 
struct the four most common gates whose truth tables do not form cosets. TO do 

All Two-input Boolean Gates Are Probabilistically 



137 

this, use the technique of the previous section to construct blobs ( a ,  b, c, d )  which 
commit to  a four-bit string in the set U .  The following linear transformations 
map ( a ,  b, c, d )  to sets corresponding to boolean gates: 

- A = (000,010,100,111): ( U  @ C, a @ b, b @ c @ d) ;  
- V = {OOO,Oll,lOl,lll): ( a @ ~ , a @ b , d ) ;  
- A = {001,011,101,110): (a @ C, u @ b, a); 
- V = (001,010,100,110): (U @ C, u @ b, u @ b @ c). 

- 
- 

We leave it to the reader to verify that the image of U under each of these trans- 
formations is precisely the set of rows of the truth tables for the corresponding 
boolean function. 

There are four more functions whose truth tables do not form cosets ( xVY; TV 
y ;  sAY; f A y ) .  We leave it to the reader to verify that appropriate transformations 
exist which map U to  the truth tables of each of these functions. The following 
lemma summarizes these observations: 

Lemrnall .  If QR blobs are used, then each of the subsets of GF: correspond- 
ing to  the TOWS of the truth tables of two-input boolean functions, can be (prob- 
abilistically) constructed. For those functions which f o r m  cosets, the certificate 
is constmctible without using the shared random strings and with zero proba- 
bility of failure. FOT those functions which do not  f o r m  cosets, the certificate is 
constructible using 2n random blobs for  a probability of failure bounded above by 
2(1/2)". The certificate consists of 2n-3 numbers modulo N ,  four  n-bit vectors, 
and four  bits. 

3 
Satisfiability 

A Non-interactive Zero-knowledge Proof of Circuit 

Let C be a circuit with m boolean gates. For simplicity we assume that  all gates 
have 1 or 2 inputs. We assume that QR blobs are available as a primitive. That 
is, we will not be concerned about any precomputation necessary to establish a 
blob encryption system between Prover and Verifier. 

Prover's algorithm. 
0. The Prover commits to the values of all inputs to the circuit. 
1. Use the techniques of section 2.3 to probabilistically construct commitments 

2. Use the techniques of section 6 to compute the values of the outputs of coset 

3. For each blob z which is the output of some gate and corresponds to  an 

t o  the inputs and output of each non-coset gate. 

gates. 

input blob y of a non-coset gate, certify that j. = y. 



138 

4. Open the blob corresponding to the circuit’s output showing it encodes 1. 

VeriAer’s algorithm. 
1. Check each gate certification provided by the Prover in step 1 of the proof. 
2. Perform step 2 of the Prover’s construction just as the Prover does. 
3. Verify each certification of step 3 in the proof. 

The above protocol can be proven to  be non-interactive zero-knowledge in 
the shared random string model. In the proof, the Simulator produces a shared 
random tape with commitments to zeros where it needs to cheat and produce 
something not in T. After doing that, it can get a commitment to  the pair 00, 
claim that the pair is in T, get whatever it wants in U ,  and then whatever it 
wants for the gate for which it is cheating. 

The protocol above can be extended in the obvious way to circuits with 
more than one output bit. In addition, although binary gates are enough to 
build a circuit to compute any boolean function, using gates with more than two 
inputs will usually reduce the number of gates in the circuit. This, in turn, will 
usually make the proof shorter. For example, a three-input MAJORITY gate can be 
simulated by 5 binary gates. However, the cost of probabilistically constructing 
such a gate is the same as that of probabilistically constructing a single AND 

gate. Here is how: 
M = {0000,0010,0100,0111,1000,1011,1101,1111} is the set that must be 

constructed. Recall the set U from section 2.2. The set V = {abcde I abcd E 
U ;  e E GF2} is clearly constructible at the same cost as constructing an element 
from U. Now note that the transformation abcde -+ (a  @ c @ e ,  a @ b @ e ,  e ,  b @ 
c @ d 6B e )  maps I/ onto M. 

Note that step 3 of both the Verifier’s and the Prover’s algorithm is simply 
to  check that %@ij is the zero vector for many pairs z,y. In sections 4 and 5 we 
will introduce techniques that allow the Prover to simply skip step 3 and the 
Verifier to exchange step 3 by a probabilistic constant-cost test. An analogous 
modification to  step 1 will drastically reduce the length of the proof. 

4 A Two-round Discreet Proof of Circuit Satisfiability 

In lemma 11, we show that constructing input-output blobs for any boolean gate 
(with probability of error less than 2(1/2)n) can be done by opening about 2n 
blobs and sending about 4n bits. The purpose of opening the 2n blobs is to  show 
that they are all 0. Step 3 of the Prover’s and Verifier’s algorithm also amounts 
to  showing that a number of blobs are 0. Rather than opening these blobs the 
Prover can probabilistically show that all blobs are 0 as follows: If not all blobs 
are 0, then the exclusive-or of a random subset of the blobs is 1 with probability 
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1/2. Thus the Verifier can be convinced that all blobs are 0, with confidence level 
1 - (1/2)n, by the Prover opening n non-interactively computed blobs. However, 
one more query to the randomness source is needed to  select n random subsets 
of the blobs (alternatively, the Verifier could select the random subsets). Thus, 
if we allow two rounds in our proof, then the Prover need only send about 4n m 
bits plus n blob openings to  prove circuit satisfiability with exponentially small 
probability of getting away with a false proof.5 This is an extremely short zero- 
knowledge proof. In the next section we see how these observations allow us to 
construct practical non-interactive proofs. We also postpone, until section 5.1, 
the discussion of the actual error probability as a function of n and m. 

5 
Simulating the Randomness Source 

How to Construct Non-interactive Discreet Proofs by 

It is a standard technique in cryptographic protocol design to  substitute a ran- 
dom “challenge string” by a string constructed deterministically but in such a 
way that the Prover has no control. For example, Fiat-Shamir’s scheme [lo], 
Schnorr’s scheme [15], and the DSA all use a one-way hash function to construct 
a “challenge” to the Prover, hence eliminating the need for interaction. 

The proofs described in this work consist of rounds where Prover and Ver- 
ifier first obtain a random string from a trusted source and then the Prover 
sends a message to the Verifier. We can replace the random string by the output 
of a cryptographically secure pseudo-random number generator. For the first 
round we seed the generator with the description of the circuit. For the follow- 
ing rounds’ we seed the generator with the Prover’s message in the previous 
round. The generator must be run in the forward direction (so that both the 
Prover and the Verifier can compute the output without interaction). Note that 
the simulation of the randomness source converts the two-round protocol into 
a one-round (i.e. non-interactive) proof. Note also that the random strings are 
not part of the proof. Considering the security parameter a constant (or even 
l/mo(”)), the simulation yields a non-interactive proof of size O(m log m) bits 
(see section 5.1 for the explanation of the log(m) factor). The theoretical jus- 
tification is, of course, not as clean as that for non-interactive zero-knowledge 
proofs as introduced by Blum et. al. (see 12, 91). However, our proofs are short 
enough to be used in practice (e.g. they will typically fit on a floppy disk). A 
more precise analysis of the length and the error probability follows. 

The error probability is slightly more than 1 - (1/2)”. We will be more precise about 
this in section 5. 
We simulate only two rounds in this paper, but the technique is applicable to any 
number of rounds. 
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There is a temptation to apply our methods to  earlier interactive zero- 
knowledge proofs for circuit satisfiability (such as [7] [5],[3]) in order t o  obtain 
even more eficient non-interactive proofs. This fails because in those protocols, 
the Verifier's challenges are too short when the security parameter is l/mo("). 
This means that while producing the non-interactive proof, a cheating Prover 
can simply try random values until it finds one that satisfies all the challenges. 

5.1 Performance 

Until now we have been assuming the worse case scenario: that all gates in the 
circuit are non-coset gates. This is clearly unrealistic. Therefore we introduce a 
new parameter 8 to denote the number of non-coset gates of the circuit (The 
tired reader may choose to think of the circuit as containing only AND, XOR, 
and NOT gates. In this case 8 is just the number of AND gates). 

Recall that k is the size of the Blum integer N .  The length of the proof 
is essentially n(48 + I c )  where n is a security parameter which determines the 
probability that the Prover can get away with a fdse proof. 

There are two events which might allow the Prover to cheat:7 

1. In the process of constructing the commitments to  a gate, a vector 2 derived 

2. In the find step of the proof not all blobs are 0, yet the exclusive-or of the 
from the random source is the zero vector. 

n random subsets of the blobs are all 0. 

A moment's thought will convince the reader that the probability of the first 
of these events dominates for moderately large values of 8. Therefore we concen- 
trate on this event only. There are 48 vectors to worry about. The probability 
that at least one of these vectors is 0 is 1 - (1 - (l/Z)")". Letting n = log,(O) + r ,  
we have that 1 - (1 - (1/2)")48 - 22-'. 

In practice, we can take T = 50. The convergence is fast. Thus the length of 
the proof, in bits, is 

(48 + k)(iog,(8) + 50) = zoo 8 + 48iOg,(8) + klog,(O) + 50 k. (I) 

Recent developments in factorization suggest we best take k = 1024 (two 
succinct and up-to-date discussions on the status of factorization algorithms and 
their implementations are contained in [12, 141). Nevertheless, the term 200 8 
dominates this expression for practical applications. 
' In practice even if one of these events occur, the Prover is unlikely to be able to 

cheat. 



141 

6 Length of Discreet Proofs For RSA and DES 

The aim of this section is to  show that our proofs are short enough to  be used 
in practice for commonly used cryptographic functions. No attempt at circuit 
optimization has been done. That is the subject of work in progress. We note 
that the construction of circuits which minimize the number of non-coset gates 
is a new problem. Until now, circuit designers would have had no reason to 
consider such a problem. 

Suppose we want to  prove to the world that we know a DES key K such that 
DESK(X) = Y for public X and Y. The techniques introduced in this paper 
involve constructing a circuit for DES where the unknown input is the key K. 
The circuit must be constructed so as to  minimize the number of AND gates. 
In DES, AND gates are only needed for indexing into the S-boxes. A straight- 
forward construction, without exploiting any structure in the S-boxes (there 
shouldn't be any Q), yields a circuit with 57 AND gates per S-box. There are 
8 S-boxes and each is used 16 times. Therefore the number of AND gates in our 
circuit is 7296. This is the value of 8 defined in the previous section. Equation 
(I) then yields approximately 240 kilobytes. 

Let us now consider proving to the world that we know and RSA decryption 
key d. Since knowing d is poly-time equivalent to knowing the factorization of N, 
we can prove this fact instead. Therefore all we need is a circuit which multiplies 
two inputs P and Q, verifies that the product is equal to a hard-wired N, and 
verifies that P is not 1 or N. 

Assume N is of length 2 d bits. Standard techniques yield a circuit of size 
about a?.'. For d = 512, equation (I) yields approximately 700 kilobytes. 
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