
Short Discreet Proofs

Joan Boyar’ RenC Peralta *2

Department of Mathematics and Computer Science, Odense University,

Japan Advanced Institute of Science and Technology,
Campusvej 55, 5230 Odense M, Denmark (joan@imada.ou.dk)

School of Information Science, Asahidai 15, Tatsunokuchi, Nomi,
Ishikawa 923-12, Japan (peraltaOcs.uwm.edu)

Abstract. We show how to produce short proofs of theorems such that a
distrusting Verifier can be convinced that the theorem is true yet obtains
no information about the proof itself. The proofs are non-interactive pro-
vided that the quadratic residuosity bit commitment scheme is available
to the Prover and Verifier. For typical applications, the proofs are short
enough to fit on a floppy disk.

1 Introduction

The main goal of this work is to show how to produce short proofs of theorems
such that a distrusting Verifier can be convinced that the theorem is true yet
obtains no information about the proof itself. The paper makes use of what we
have called “set certification”, which consists of proving that a vector of bit com-
mitments encodes a vector of bits in a given set without revealing the bit-vector
itself. We have high hopes for what useful results this technique might eventually
yield. Since our shortest proofs don’t exactly fit any of the published categories
of zero-knowledge proofs, we have named them “discreet proofs”. As an example
of the power of these techniques, we show discreet proofs of knowledge of RSA
and DES keys which fit on a floppy disk.

We assume that a bit commitment scheme (blobs scheme) is available as a
primitive. The blobs scheme used should satisfy certain properties described in
[6, 4, 51. In addition, they must allow non-interactive processing of X O R gates
(see [5, 31). As a concrete example, we choose the following bit commitment
scheme, which is based on the “Quadratic Residuosity Assumption” (QRA).

Definition 1. A “Blum integer” is a composite integer N = P‘Q”, with P and
Q primes such that P f Q 3 (mod 4) and T and s are odd.

* Supported in part by NSF Grant CCR-920’7204. This author is currently on sabbat-
ical leave from the University of Wisconsin at Milwaukee.

U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 131-142, 1996.
0 Spnnger-Verlag Berlin Heidelberg 1996

132

DeAnition2. (Brassard-CrCpeau [7]) Let N be a fixed Blum integer produced
by the Prover. “QR-blobs” are constructed as follows: the Prover selects a ran-
dom x € 2;. To commit t o a 0 the Prover sends z2 mod N . To commit to a 1
the Prover sends -x2 mod N .

Notation: If x = (21,. . . , 2,) is a vector of blobs, then 5 will denote the vector
in GF,” encoded by x. Sometimes we will use 2 before x has been defined. In
this case, x will denote any sequence of blobs which encodes 5.

We start by assuming that the Prover-Verifier pair has access to a com-
mon source of randomness. Our results here give non-interactive zero-knowledge
proofs, in the shared random string model proposed by Blum, Feldman and Mi-
Cali [l], of length O(m log m). for the satisfiability of a circuit of size of size m,
assuming that the security parameter is l/mo(m). This asymptotic complexity
has also been obtained by Damgdrd [8], who also assumes the QRA, and impres-
sively by Kilian and Petrank [ll], who base their results on much more general
assumptions. The advantage to our non-interactive proofs is in the constant fac-
tors, which are of course of practical interest, Our system beats Damgbrd’s by
a factor of about 7.5, and Petrank’s and Kilian’s by a very large factor.

As a next step towards our efficient discreet proofs, we allow the Prover
and Verifier to engage in more than one round in which they sequentially query
the randomness source. That is, during any round they do not have access t o
the random bits of the following rounds. We later remove these assumptions
by simulating the randomness source. The resulting proof is efficient and non-
interactive, but no longer zero-knowledge.

2 Constructible and Certifiable Sets

We start by looking at what can be done without recourse to shared randomness.

Definition3. A subset S of GF,“ is said to be constructible if it is possible
for the Prover to construct, for any chosen i E S, a vector b = (bl, . . . ,a,) of
blobs, along with a proof that i belongs to S. The proof must not reveal any
information about which element of S is 6. The proof must be non-interactive
(hence we simply call it a certificate) and must be constructible without using
the shared random string.

This is not counting the necessary precomputation for establishing a blob encryption
system. An efficient interactive protocol for showing that N is a Blum integer can
be found in [16] A non-interactive zero-knowledge proof that N is a Blum integer
can be found in [13].

133

For example, the existence of blob encryption schemes implies that the set
S = (0,l) is (trivially) constructible. If the blob encryption scheme allows non-
interactive processing of XOR gates then the sets E = (00,l l) and D = (01,lO)
are also constructible. Given QR-blobs b = (bl , b z) , a proof that E E is simply a
square root of blb2 mod N . A proof that h E D is a square root of -blb2 mod N .
For details and security proofs related to this scheme see [5].

DeAnition4. A subset S of GFF is said to be certifiable if, given any vector
b = (b l , . . . , b,) of blobs such that b E S, the Prover can construct a proof that b
belongs to S. The proof must not reveal any information about which element of
S is 6. The proof must be non-interactive and must not use the shared random
string.

The difference between certifiable and constructible sets is that, with a certi-
fiable set, the Prover has not created the blobs herself; this gives her less freedom
in producing the proof.

Note that a set which is certifiable is also constructible. Also note that the
sets E and D are certifiable when QR-blobs are used. Whenever E is certifiable,
it will follow that any set which is constructible is also certifiable. To see this,
suppose z = (2 1 , . . . , zn) is given, and that the Prover wants to certify that
3 belongs to a constructible set S. To do this, the Prover simply constructs
y = (y l , . . . , y ,) such that 2 = y along with a proof that ij is in S. Then
the Prover certifies that 6& E E for each i. Thus, if QR blobs are used, then
cert$able sets and constructible sets are the same.

Lemma5. If QR blobs are used, then any subspace S of GF,” is certifiable and
constructible.

PTOOf. Note that S must be the image of GF,” under multiplication by an n x n
matrix M over GF2. To certify a vector z = (z l , . . . , z,) of blobs, the Prover
constructs blobs y = (~ 1 , . .. ,y,) such that Mjj = 5. Then the Verifier and
Prover can non-interactively compute blobs v = (w l , . . . , v,) such that .ir = M @
(see [3] for more details). The Prover then gives certificates that 6i& E E for
each i . 0

By a linear map from GF,” to GF,” we mean a function f (x) = M z S b , where
M is an n x m matrix over GF2 and b E GF,”. Sets of the form f (S) where S is
a subspace of GF,” will be called cosets (each such set is a coset of the subspace
{v I v = M z ; z E S}). The proof of the following lemma is analogous to the
proof of Lemma 5. The details are left to the reader.

Lemma6. If Q R blobs are used, then cosets are certifiable and constructible.

134

If, for example, the set A = {001,011,101,110}, which contains the rows of a
truth table for a NAND gate, was certifiable, it would follow that a non-interactive
zero-knowledge proof for circuit satisfiability is possible without using the shared
random string. Unfortunately we have not been able to construct certificates for
A. It may well be that, if we restrict ourselves to QR blobs, then cosets are the
only certifiable sets. Other blob encryption schemes can be constructed for which
sets corresponding to truth tables of various boolean functions are certifiable.
But we have not been able to construct a blob encryption scheme such that a
logically complete set of boolean functions is certifiable.

The next best thing to constructible/certifiable sets are sets which can be
constructed/certified using the shared random string. Then the proofs that the
vector defined belongs to the set would be probabilistic. Thus there would be
some chance that the vector in question does not belong to the set, but that
probability would be small compared to some specified security parameter.

Definition7. A subset S of GF," is said to be probabilistically constructible
if it is possible for the Prover to construct, for any chosen 6 E S , a vector
b = (b l , . . . , b,) of blobs, along with a probabilistic proof that i, belongs to S.
The proof must not reveal any information about which element of S is 6.

-

Definitions. A subset S of GF," is said to be probabilistically certifiable if,
given any vector b = (b l , . .. , b n) of blobs such that i E S, the Prover can
construct a probabilistic proof that b belongs to S. The proof must not reveal
any information about which element of S is 6.

Both the previous constructions may use the shared random string, and the
Verifier must accept an exponentially small probability that 6 S. We will show
that the set r\ is probabilistically certifiable. This will be used in designing non-
interactive zero-knowledge proofs for circuit satisfiability, using a shared random
string. It is convenient to first show that two other sets, T and U , defined below,
are probabilistically certifiable.

2.1

Using QR blobs, the shared random string determines, by standard techniques,
a sequence I = (21,. . . , z,) of randomly distributed blobs. This can be done by
dividing the bits of the random string into substrings of the appropriate length
k for the blobs. The substrings are interpreted as integers. The resulting integers
which have Jacobi symbol +1 are used directly. Those with Jacobi symbol -1
are multiplied by a fixed number p with Jacobi symbol -1 (if N is constructed
such that it is congruent to 5 modulo 8 then /3 = 2 will do). This construction
requires nk shared random bits.

The Set T = {oi,io, 11)

135

The number of blobs n will be specified later; it will be a function of the size
of the circuit and a security parameter for the proof. With probability 1-2-* the
vector j: is not the zero-vector. If the Prover chooses a random $ $Z {O,j:} and lets
i = 2 @y, then the set A = {0,2,$, i} is a subspace of GF;. Suppose the Prover
writes down two randomly chosen non-zero vectors &,6 from the set A. Note
that these two vectors completely define A , since A must equal {O,G, 6, Gee}.
If the Verifier can be convinced that 2 belongs to A, then this is a probabilistic
proof that 2 is one of the three given non-zero bit vectors.

Note that A must be the kernel of a linear homomorphism f (t) = M t where
A4 is an (n - 2) x n matrix. The matrix M is easily computable non-interactively
from u and u. The blob-vector z , corresponding to A45 can be computed non-
interactively (z; = n,i,,=l x j mod N , where mi,, is the i , j - th entry in M) .
Now, if A42 = 0, then it follows that 5 E A. Thus, if the Prover opens all the
blobs in Mx, and they are all zero, then the Verifier is convinced that x encodes
one of three given non-zero bit vectors { 2 , 6,;).

For any vector u E GF,", let di) denote the ith bit of u. With probability
larger than 1 - 3(1/2)", there exist i , j such that { d i) 5 (j) , $ (*) $ j) , i (') i (j) } =
{01,10,11}. To see this, note that there are 4" - 3.2" + 2 possible 5, $ pairs for
which i?(i)$(i) takes at least two values from {01,10,11} as i ranges from 1 to n
(the third value, i(i), is determined by the equation i = j: @ y). In the unlikely
event that j: is not the zero-vector yet the do not take at least two values
from {01,10, ll}, the Prover simply generates another y.

Since the set { 2 , y, 2) is known to both Prover and Verifier, both may find
a pair (z , j) with the required property? Then the two blobs zi, zj encode an
element in T = {01,10,11}. The Verifier has no information about which element
of T it is. This construction fails only when i = 0. The probability of this is

Thus we have shown how the Prover can construct two blobs which commit
to a random element of the set T = {01,10,11}. To actually choose which two
bits to commit to, the Prover can use the transformation f (a , b) = (a@b,a) .
Figure 1 shows the effect of this linear transformation.

1 - (1/2)?

Figure 1: Going from random commitments
!(a, b) = (a@b, to chosen commitments in the set T.

Since typically many such pairs (i,j) will exist, some way of choosing one must be
specified, e.g. choose (2, j) which minimizes ni + j .

136

To convert from a random member of T to a chosen member of T , the Prover
sends two bits. The two bits tell the Verifier t o advance 0, 1, or 2 positions in
the diagram. i.e. the bits tell the Verifier how many times to apply the linear
transformation f.

Thus we have proven

Lemma9. If QR blob8 are used, then the set T = {01,10,11} i s probabilistically
constructible using n random blobs with probability of failure bounded above by
(1/2)". The certificate consists of n - 2 numbers modulo N , two n-bit vectors,
and two bits.

As mentioned before, this also implies that the set T is probabilistically
certifiable. But we will not make use of this result in this paper. From here on
we concentrate on the techniques and cost of probabilisticdly constructing sets
related to boolean functions. Later we also introduce techniques for reducing the
amortized cost of certifying many pairs of blobs as belonging to the set T.

2.2 The Set U = (oiii,ioii, i i o 1 , i i i o)

If we generate bits ab E T and cd E T , then abcd may take any value in

{0101,0110,0111,1001,1010) 1011,1101,1110) 1111).

The set U may be formed by considering only the strings with odd parity. Thus
the set U is probabilistically constructible as follows. Construct blobs 3, y along
with a proof that 5 i E T . Do the same for blobs z,w. Now prove that 2 @ p 6B
i @ 2ir = 1 by displaying a square root of -xyzw modulo N . This construction
guarantees that 2piw E U and, by Lemma 9, fails with probability no more than
2(1/2)". Thus we have proven

Lemmalo. If QR blobs are used, then the set U = (0111,1011,1101,1110) is
probabilistically constructible using 2n random blobs with probability of failure
bounded above b y 2(1/2)n. The certificate consists of 2n - 3 numbers modulo N ,
four n-bit vectors, and four bits.

2.3
Constructible Using QR Blobs

There are sixteen two-input boolean functions f (z , y). If NAND is probabilisti-
cally constructible then all sixteen functions are probabilistically constructible.
Since it will be more efficient to directly construct gates in a circuit (i.e. without
simulating the gates using NAND gates), we show how to probabilistically con-
struct the four most common gates whose truth tables do not form cosets. TO do

All Two-input Boolean Gates Are Probabilistically

137

this, use the technique of the previous section to construct blobs (a , b, c, d) which
commit to a four-bit string in the set U . The following linear transformations
map (a , b, c, d) to sets corresponding to boolean gates:

- A = (000,010,100,111): (U @ C, a @ b, b @ c @ d) ;
- V = {OOO,Oll,lOl,lll): (a @ ~ , a @ b , d) ;
- A = {001,011,101,110): (a @ C, u @ b, a);
- V = (001,010,100,110): (U @ C, u @ b, u @ b @ c).

-
-

We leave it to the reader to verify that the image of U under each of these trans-
formations is precisely the set of rows of the truth tables for the corresponding
boolean function.

There are four more functions whose truth tables do not form cosets (xVY; TV
y ; sAY; f A y) . We leave it to the reader to verify that appropriate transformations
exist which map U to the truth tables of each of these functions. The following
lemma summarizes these observations:

Lemrnall . If QR blobs are used, then each of the subsets of GF: correspond-
ing to the TOWS of the truth tables of two-input boolean functions, can be (prob-
abilistically) constructed. For those functions which f o r m cosets, the certificate
is constmctible without using the shared random strings and with zero proba-
bility of failure. FOT those functions which do not f o r m cosets, the certificate is
constructible using 2n random blobs for a probability of failure bounded above by
2(1/2)". The certificate consists of 2n-3 numbers modulo N , four n-bit vectors,
and four bits.

3
Satisfiability

A Non-interactive Zero-knowledge Proof of Circuit

Let C be a circuit with m boolean gates. For simplicity we assume that all gates
have 1 or 2 inputs. We assume that QR blobs are available as a primitive. That
is, we will not be concerned about any precomputation necessary to establish a
blob encryption system between Prover and Verifier.

Prover's algorithm.
0. The Prover commits to the values of all inputs to the circuit.
1. Use the techniques of section 2.3 to probabilistically construct commitments

2. Use the techniques of section 6 to compute the values of the outputs of coset

3. For each blob z which is the output of some gate and corresponds to an

t o the inputs and output of each non-coset gate.

gates.

input blob y of a non-coset gate, certify that j. = y.

138

4. Open the blob corresponding to the circuit’s output showing it encodes 1.

VeriAer’s algorithm.
1. Check each gate certification provided by the Prover in step 1 of the proof.
2. Perform step 2 of the Prover’s construction just as the Prover does.
3. Verify each certification of step 3 in the proof.

The above protocol can be proven to be non-interactive zero-knowledge in
the shared random string model. In the proof, the Simulator produces a shared
random tape with commitments to zeros where it needs to cheat and produce
something not in T. After doing that, it can get a commitment to the pair 00,
claim that the pair is in T, get whatever it wants in U , and then whatever it
wants for the gate for which it is cheating.

The protocol above can be extended in the obvious way to circuits with
more than one output bit. In addition, although binary gates are enough to
build a circuit to compute any boolean function, using gates with more than two
inputs will usually reduce the number of gates in the circuit. This, in turn, will
usually make the proof shorter. For example, a three-input MAJORITY gate can be
simulated by 5 binary gates. However, the cost of probabilistically constructing
such a gate is the same as that of probabilistically constructing a single AND

gate. Here is how:
M = {0000,0010,0100,0111,1000,1011,1101,1111} is the set that must be

constructed. Recall the set U from section 2.2. The set V = {abcde I abcd E
U ; e E GF2} is clearly constructible at the same cost as constructing an element
from U. Now note that the transformation abcde -+ (a @ c @ e , a @ b @ e , e , b @
c @ d 6B e) maps I/ onto M.

Note that step 3 of both the Verifier’s and the Prover’s algorithm is simply
to check that %@ij is the zero vector for many pairs z,y. In sections 4 and 5 we
will introduce techniques that allow the Prover to simply skip step 3 and the
Verifier to exchange step 3 by a probabilistic constant-cost test. An analogous
modification to step 1 will drastically reduce the length of the proof.

4 A Two-round Discreet Proof of Circuit Satisfiability

In lemma 11, we show that constructing input-output blobs for any boolean gate
(with probability of error less than 2(1/2)n) can be done by opening about 2n
blobs and sending about 4n bits. The purpose of opening the 2n blobs is to show
that they are all 0. Step 3 of the Prover’s and Verifier’s algorithm also amounts
to showing that a number of blobs are 0. Rather than opening these blobs the
Prover can probabilistically show that all blobs are 0 as follows: If not all blobs
are 0, then the exclusive-or of a random subset of the blobs is 1 with probability

139

1/2. Thus the Verifier can be convinced that all blobs are 0, with confidence level
1 - (1/2)n, by the Prover opening n non-interactively computed blobs. However,
one more query to the randomness source is needed to select n random subsets
of the blobs (alternatively, the Verifier could select the random subsets). Thus,
if we allow two rounds in our proof, then the Prover need only send about 4n m
bits plus n blob openings to prove circuit satisfiability with exponentially small
probability of getting away with a false proof.5 This is an extremely short zero-
knowledge proof. In the next section we see how these observations allow us to
construct practical non-interactive proofs. We also postpone, until section 5.1,
the discussion of the actual error probability as a function of n and m.

5
Simulating the Randomness Source

How to Construct Non-interactive Discreet Proofs by

It is a standard technique in cryptographic protocol design to substitute a ran-
dom “challenge string” by a string constructed deterministically but in such a
way that the Prover has no control. For example, Fiat-Shamir’s scheme [lo],
Schnorr’s scheme [15], and the DSA all use a one-way hash function to construct
a “challenge” to the Prover, hence eliminating the need for interaction.

The proofs described in this work consist of rounds where Prover and Ver-
ifier first obtain a random string from a trusted source and then the Prover
sends a message to the Verifier. We can replace the random string by the output
of a cryptographically secure pseudo-random number generator. For the first
round we seed the generator with the description of the circuit. For the follow-
ing rounds’ we seed the generator with the Prover’s message in the previous
round. The generator must be run in the forward direction (so that both the
Prover and the Verifier can compute the output without interaction). Note that
the simulation of the randomness source converts the two-round protocol into
a one-round (i.e. non-interactive) proof. Note also that the random strings are
not part of the proof. Considering the security parameter a constant (or even
l/mo(”)), the simulation yields a non-interactive proof of size O(m log m) bits
(see section 5.1 for the explanation of the log(m) factor). The theoretical jus-
tification is, of course, not as clean as that for non-interactive zero-knowledge
proofs as introduced by Blum et. al. (see 12, 91). However, our proofs are short
enough to be used in practice (e.g. they will typically fit on a floppy disk). A
more precise analysis of the length and the error probability follows.

The error probability is slightly more than 1 - (1/2)”. We will be more precise about
this in section 5.
We simulate only two rounds in this paper, but the technique is applicable to any
number of rounds.

140

There is a temptation to apply our methods to earlier interactive zero-
knowledge proofs for circuit satisfiability (such as [7] [5],[3]) in order t o obtain
even more eficient non-interactive proofs. This fails because in those protocols,
the Verifier's challenges are too short when the security parameter is l/mo(").
This means that while producing the non-interactive proof, a cheating Prover
can simply try random values until it finds one that satisfies all the challenges.

5.1 Performance

Until now we have been assuming the worse case scenario: that all gates in the
circuit are non-coset gates. This is clearly unrealistic. Therefore we introduce a
new parameter 8 to denote the number of non-coset gates of the circuit (The
tired reader may choose to think of the circuit as containing only AND, XOR,
and NOT gates. In this case 8 is just the number of AND gates).

Recall that k is the size of the Blum integer N . The length of the proof
is essentially n(48 + I c) where n is a security parameter which determines the
probability that the Prover can get away with a fdse proof.

There are two events which might allow the Prover to cheat:7

1. In the process of constructing the commitments to a gate, a vector 2 derived

2. In the find step of the proof not all blobs are 0, yet the exclusive-or of the
from the random source is the zero vector.

n random subsets of the blobs are all 0.

A moment's thought will convince the reader that the probability of the first
of these events dominates for moderately large values of 8. Therefore we concen-
trate on this event only. There are 48 vectors to worry about. The probability
that at least one of these vectors is 0 is 1 - (1 - (l/Z)")". Letting n = log,(O) + r ,
we have that 1 - (1 - (1/2)")48 - 22-'.

In practice, we can take T = 50. The convergence is fast. Thus the length of
the proof, in bits, is

(48 + k)(iog,(8) + 50) = zoo 8 + 48iOg,(8) + klog,(O) + 50 k. (I)

Recent developments in factorization suggest we best take k = 1024 (two
succinct and up-to-date discussions on the status of factorization algorithms and
their implementations are contained in [12, 141). Nevertheless, the term 200 8
dominates this expression for practical applications.
' In practice even if one of these events occur, the Prover is unlikely to be able to

cheat.

141

6 Length of Discreet Proofs For RSA and DES

The aim of this section is to show that our proofs are short enough to be used
in practice for commonly used cryptographic functions. No attempt at circuit
optimization has been done. That is the subject of work in progress. We note
that the construction of circuits which minimize the number of non-coset gates
is a new problem. Until now, circuit designers would have had no reason to
consider such a problem.

Suppose we want to prove to the world that we know a DES key K such that
DESK(X) = Y for public X and Y. The techniques introduced in this paper
involve constructing a circuit for DES where the unknown input is the key K.
The circuit must be constructed so as to minimize the number of AND gates.
In DES, AND gates are only needed for indexing into the S-boxes. A straight-
forward construction, without exploiting any structure in the S-boxes (there
shouldn't be any Q), yields a circuit with 57 AND gates per S-box. There are
8 S-boxes and each is used 16 times. Therefore the number of AND gates in our
circuit is 7296. This is the value of 8 defined in the previous section. Equation
(I) then yields approximately 240 kilobytes.

Let us now consider proving to the world that we know and RSA decryption
key d. Since knowing d is poly-time equivalent to knowing the factorization of N,
we can prove this fact instead. Therefore all we need is a circuit which multiplies
two inputs P and Q, verifies that the product is equal to a hard-wired N, and
verifies that P is not 1 or N.

Assume N is of length 2 d bits. Standard techniques yield a circuit of size
about a?.'. For d = 512, equation (I) yields approximately 700 kilobytes.

References

1. Blum, M., Feldman, P., Micali, S.: Non-interactive zero-knowledge and its appli-
cations. In Proceedings of the 20th ACM Symposium on Theory of Computing
(1988) pp. 103-112.

2. Blum, De Santis, Micali, Persiano: Non-interactive zero-knowledge. SIAM Journal
on Computing 20 (1991) 1084-1118.

3. Boyar, J., Brassard, G., Peralta, R.: Subquadratic zero-knowledge. In Proceedings
of the 32th IEEE Symposium on Foundations of Computer Science (1991) pp. 69-
78 (to appear in JACM).

4. Boyar, J., Krentel, M., Kurtz, S.: A discrete logarithm implementation of zero-
knowledge blobs. Journal of Cryptology 2 (1990) 63-76.

5. Boyar, J., Lund, C., Peralta, R.: On the communication complexity of zero-
knowledge proofs. Journal of Cryptology 6 (1993) 65-85.

142

6. Brassard, G., Chaum, D., Crkpeau, C.: Minimum disclosure proofs of knowledge.
Journal of Computer and System Sciences 37 (1988) 156-189.

7. Brassard, G., Crhpeau, C.: Zero-knowledge simulation of boolean circuits. In Ad-
vances in Cryptology - Proceedings of CRYPTO 86 (1987) vol. 263 of Lecture
Notes in Computer Science, Springer-Verlag pp. 223-233.

8. Damgkd, I.: Non-interactive circuit based proofs and non-interactive perfect zero-
knowledge with preprocessing. In Advances in Cryptology - Proceedings of EURO-
CRYPT 92 (1993) vol. 658 of Lecture Notes in Computer Science, Springer-Verlag

9. Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero-knowledge proofs
based on a single random string. In Proceedings of the 31th IEEE Symposium on
Foundations of Computer Science (1990) pp. 308-317.

10. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification
and signature problems. In Advances in Cryptology - Proceedings of CRYPTO 86
(1987) vol. 263 of Lecture Notes in Computer Science, Springer-Verlag pp. 186-
194.

11. Kilian, J., Petrank, E.: An efficient non-interactive zero-knowledge proof ystem
for N P with general assumptions. Technical Report No. TR95-038, Electronic
Colloquium in Computational Complexity (ECCC), July 1995.

12. Lenstra, A. K.: Factoring integers using the web and number field sieve. In Pro-
ceedings of JAIST International Forum on Multimedia and Information Security
(1995) Japan Advanced Institute of Science and Technology pp. 93-113.

13. De Santis, A., Di Crescenzo, G., Persiano, G.: Secret sharing and perfect zero
knowledge. In Advances in Cryptology - Proceedings of CRYPTO 93 (1993)
vol. 773 of Lecture Notes in Computer Science, Springer-Verlag pp. 73-84.

14. Odlyzko, A,: The future of integer factorization. In Proceedings of JAIST Inter-
national Forum on Multimedia and Information Security (1995) Japan Advanced
Institute of Science and Technology pp. 139-151.

15. Schnorr, C.: Efficient signature generation for smart cards. Journal of Cryptology

16. van de Graaf, J., Peralta, R.: A simple and secure way to show the validity of
your public key, In Advances in Cryptology - Proceedings of CRYPTO 87 (1988)
vol. 293 of Lecture Notes in Computer Science, Springer-Verlag pp. 128-134.

pp. 341-355.

4 (1991) 161-174.

	Short Discreet Proofs
	1 Introduction
	2 Constructible and Certifiable Sets
	2.1 The Set T = {01, 10, 11}
	2.2 The Set U = {0111, 1011, 1101, 11110}
	2.3 All Two-input Boolean Gates Are Probabilistically Constructible Using QR Blobs

	3 A Non-interactive Zero-knowledge Proof of Circuit Satisfiability
	4 A Two-round Discreet Proof of Circuit Satisfiability
	5Simulating the Randomness SourceHow to Construct Non-interactive Discreet Proofs by
	5.1 Performance

	6 Length of Discreet Proofs For RSA and DES
	References

