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Abstract. For many cryptographic primitives, e.g., hashing and pseu-
dorandom functions & generators, doubling the output length is useful
even if the doubling transformation is not reversible. For these cases, we
present a non-reversible construction based on a Benes network, as an
alternative to the traditional Feistel construction (which is the basis of
DES).

Assuming that a given primitive behaves like an »-bit to n-bit random
function, we present a length-doubling scheme that yields a 2#»-bit to
27n-bit function that provably requires £2(2") queries to distinguish with
©(1) probability from a truly random function of that length. This is true
even if the adversary is of unlimited computing power and is allowed to
query the function adaptively. Qur construction is minimal in the sense
that omitting any operation makes the resulting network susceptible to
birthday attacks using 0(2”/2) queries.

Feistel networks also use truly random n-bit functions to achieve 2n-
bit functions. Luby and Rackoff [16] showed that 3 and 4 round Feistel
networks require 9(2"/2) queries to distinguish with @(1) probability
from truly random. We show that these bounds are tight by showing
that these networks are susceptible various types of birthday attacks
using O(2™/?) queries.

1 Introduction

Many cryptographic primitives in practice are believed to behave like “random
functions” or at least this turms out be a good empirical approximation. Using
the random function model, several works have made a rigorous analysis of some
standard and new cryptographic schemes [1, 2, 20, 22].

In fact, most designs of primitives (e.g., MD5,5HA) involve rounds of “mixing”
the input, creating an “avalanche effect,” and making the result look “random.”
In the case of DES, one starts with a 32-bit valued primitive which is iterated 16
rounds to get a 64-bit valued “random permutation.” In the case of, say, 128-bit
cryptographic hash function constructions based on 64-bit block cyphers, metic-
ulous care must be exerted to ensure that the resultant function behaves like a
128 bit random function. Otherwise, it may yield (o 232 step birthday attacks
as a 64-bit random function would. In fact our work originated in the process of
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looking for a practical scheme that avoids these problems and admits an analy-
sis in a random function model. Recent attacks on some of these cryptographic
primitives are practical [10] or bordering on feasibility [21]. Hence constructions
using old smaller-length primitives to get new longer-length primitives—with a
provable increase in security—would be desirable.

The Feistel transformation (See Fig. 1) is an obvious candidate for such a
construction, and indeed, its security properties have been well studied. Luby
and Rackoff [16] study three and four rounds of the Feistel transformation. They
show that using pseudo-random functions (introduced in [11]) as n-bit primitives
yields a 2n-bit pseudo-random permutation. In a crucial step in their proof,
they analyze the case when the primitives are n-bit truly random functions.
They show that the threeround Feistel network requires 9(2“/ %) queries to
distinguish with @(1) probability from a truly random 2n bit function. (Later,
Maurer [17] simplified their proof.) However, they show that the same network
can be distinguished in a constant number of queries if the adversary is allowed to
ask for inverses of points chosen in the range. They then show that the four-round
Feistel network requires §2(2%/?) queries to distinguish with ©(1) probability
from a truly random 2n bit function even when inverse queries are allowed.

Luby and Rackoff were concerned with the polynomial time invariant model
where the difference between the security of 2” and 2°/2 is not important. How-
ever, in practice this difference can be crucial. For exaniple, using a construc-
tion with security 2"/? to design a 64-bit function from 32-bit random primi-
tives would yield a function which could be distinguished in approximately 216
queries whereas using a construction with 2”7 security would require approxi-
mately 232 queries. Hence, an important goal is to resolve the query security of
the three-and-four-round Feistel constructions. In this paper we show that the
Luby-Rackoff bounds are tight by showing that these networks are susceptible
to various types of birthday attacks using O(2%/?) queries.

Given the limited security provided by using just a few rounds of Feistel
it is natural to ask if there is an alternative construction which admits analy-
sis and provides greater security. In this paper we provide such an alternative
which we call the Benes network construction (two back-to-back butterflies, see
Fig. 1). The Benes construction has the following properties. First, it is formally
provable that our functions cannot be distinguished with ©@(1) probability, in an
information theroretic sense, from truly random ones, unless it is queried §2(2™)
times. Second, it is minimal in the sense that deleting any one of the opera-
tions reduces the security. Third, it yields constructions and variations that are
efficient.

We introduce a formal notion of (query) security in Section 2. Generalizing
birthday and other statistical attacks, we introduce the notion of a dependency
graph on a (query) sample of size ¢. The nodes of this graph are pairs of strings
which are internal variables of the construction that are not directly observable
from the input output relations. Two types of dependencies are identified for
these variables which are signified by edges of two colors between corresponding
nodes. We show that the output random variables are k-wise independent if and
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only if there are no alternatingly colored [-cycles in the graph, for { < k < ¢. We
then show that with very high probability the dependency graph has no such ¢
cycles.

Our construction has many applications including authentication, random
number generation, stream or packet encypherment, and reducing correlations
in key exchange protocols. We also suggest a way to double hash code lengths
which admits some parallelism and eludes atiacks like [21, 10]. (See Section 3.)

2 Definitions and Main Results

Let Fj, be the set of all functions f : {0,1}" — {0, 1}". We would like to construct
a family of functions from 2n bits to 2n bits using functions from F,, such that the
functions drawn randomly from this new family behave very much like randomly
chosen functions from Fs,. To formalize this we make the following definitions.

Adaptive Adversaries: Let A be an information theoretic adversary (i.e., of
unbounded computing power) which can make queries to a function as an oracle.
We limit our adversaries (only) by the number of query points. A can edaptively
make queries and obtain function values at the query points. Then, over this
sample he could perform any test. We say A distinguishes G, C F, from
H, C F,, with advantage

[Pr[Af(1")=1|g €r Gn] — Pr[A7(1")=1]g €r H,]|-

When G,, and H,, are understood from context let g4(n) be the number of
queries made by A(1").

Definition 1 (Query Security) A function family G,, C F,, has query securily
ot least s(n) if there is an constant o > 0 such that all informalion theoretic ad-
versaries A can distinguish G,, from F,, with advantage at most (ga(n)/s(n))".
For the purposes of this paper o will always be 2.

For example, suppose that G, can be distinguished from F, in ¢ queries
with advantage at most ¢°/2". Then the query security of G, is at least 27°/2.
When it is clear from context that we are using the information theoretic model
we will simply denote query security by security.

The Feistel transformation is a well-known function family from 2n bits ta
2n bits and it is natural to ask whether it achieves sufficient security. Let us first
review the construction.

For any f € F, define the 2n bit to 2n bit Feistel transformation G as
Gr(l,r) = (r,{ @ f(r)). Given a collection of k functions A = (f1, f2,..-, fx)
from n bit to n bit define G4 € F3, as the composition of Gy, Gy,,..., G-
More explicity, if the input to G4 1s denoted g, 7o then the output Iz, r; can be
computed by the recurrence {; = r;_;, ri = fi(ric1) @61, We say that [, r;
are the output of the ith round. DES may bhe described by G4 where there are
k = 16 functions (rounds) and the functions f; are given by the DES key and the
s-boxes. For now we will consider functions which are truly random functions.
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Denote the set of all G4 (where each of the k functions in A range over all the
functions in Fj,) as G%

As is well known, the Teistel transformation is a permutation. For permu-
tations the definition of security must be modified since a random permutation
on n bits can be distiguished from a random function from n bits to n bits in
0(2"/2) queries (a random function will repeat with constant probability whereas
a permutation obviously will not). When discussing a permutation family we
implicitly assume that the adversary is trying to distinguish it from a random
permutation, and the definition of security is adjusted accordingly.

Not only is the Feistel transformation a permutation, it is also invertible (even
without inverting the underlying n bit to n bit random functions). Following [16],
define super query security, or super security, identically to query security except
that the adversary is allowed to query both the function and its inverse.

Luby and Rackoff [16] studied the security and super security of Feistel trans-
formations (with random functions) with a small number of rounds. They broke
two round Feistel in a constant number of function queries, and they broke
three round Feistel in a constant number of function and inverse queries. To
complement these results they derived lower bounds, summarized below, for the
security and super-security of the three and four round Feistel transformations,
respectively.

THEOREM 1 (Luby, Rackoff) The sccurity of G3, is £2(27/?) and the super
security of G, is also £2(27/?).

The proof of this theorem, and the others cited in this section, will be given
in subsequent sections.

For DES n = 32 and so the above suggests that three (four) rounds of DES
may have (super) query security of 2'® or more. In practice, this is very little
security and so a natural question is whether the lower bound of Luby and
Rackoff can be improved. We show that it cannot by providing the following
matching upper bound.

THEOREM 2 The sccurily of G3,, and G3,, is O(2"/?). Moreover, the adver-

2n

sary need not make any inverse quertes.

In [27] three generalizations of the Feistel transformation are described. These
transformations map kn bit to kn bits using functions from F,. Zheng, et. al.
show that if they are run for sufficiently many rounds (i.e., 2k — 1, 2k, and k£ +1
depending on the variation) then they have security §2(2"/2). Using arguments
similar to those for the Feistel transformation, we can show that this is tight.
We omit the details for now.

Given the limited security of the three and four round Feistel transforma-
tions, a natural problem Is to construct a 2n-to-2n bit transformation which
achieves security £2{2") using n-to-n bit random functions and just a few rounds.
The emphasis here is on security and not on invertibility so that non-invertible
transformations are acceptable.
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Fig.1. Benes and Feistel (2-round) transformations from 2r-bits to 2n-bits. Edge labels
denote random functions fram n-bits to n-bits. Unlabelled edges are identities . Node values
are bitwise xor of values of incoming edges.

In this paper we describe one solution to this problem. (See Fig. 1) Given
four functions e, f, ¢/, f' from n bits to n bits, we use them to define the butterfly
transformation from 2n bits to 2n bits. On input /, r, the output w, w’ is given
by

w=e() @ f(r); w =D ().
I.et B3, be the set of all buttlerfly transformations where e, f, ¢/, f’ range over
F,. Given eight functions from n bits to n bits, e, f, ¢/, f’, g, ¢’, h, #’, define the
Benes transformation (back-to-back butterfly) as the composition of two butterfly
transformations. The first stage is as above. Then, the second transformation
maps w, w’ into s, ¢ as follows:

s=gw)@d (w'); t=h(w)sh(w).

Let BZ, be the set of all Benes transformations where each of the eight functions
range over F,,.

Clearly, functions drawn randomly from B3, are information theoretically
distinguishable from functions drawn randomly from F,,,. However, as we state
formally below, even an information theoretic adversary requires a large number
of queries to the randomly drawn functions in order to distinguish B2, from Fz,

with noticeable advantage.
THEOREM 3 The Benes family B3 has security ©(2").

Corollary 1 The Benes transformation using n-bit pseudo-random functions in
place of n-bil random functlions yields a 2n-bil pseudo-randem function.

The proof of this corollary follows the proof in [16] and is omitted.
In a natural sense the Benes construction is optimal. In [act, we next show
that its security drops to Q(2*/?) queries, if any edge is deleted.
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THEOREM 4 (Edge Optimality) The Benes and modified Benes trensforma-
tions are minimal: i.e., deletion of any of ils edges results in a function which
has security O(27/?).

Simplifications: Depending on the application, some of the random functions
can be replaced by simpler hash functions as described below.

THEOREM 5 The Benes lransformation using k-universal hash functions in
the top butierfly produces outpuls which cannot be distinguished from k-wise
independent outputs in ¢ queries with advantage better than ¢*/2°".

If the two cross edges in the first butterfly, ¢/, and f, are replaced by the
identity function we call the resulting transformation the modified Benes trans-
formation. All of the results above hold for the modified Benes transformation
as well.

Finally, we would like to mention another candidate method for producing
a 2n bit to 2n function family from a n bit to n bit function family. Suppose
that the functions in the function family H,, C F, can be indexed by a key of
length n. Then a function family from 2n to 2n bits with a key of length 2n
can be constructed as follows. Given ki, ko as the 2n bit key and w,z as the
2n-bit input, compute the output y,z as follows. First compute k¥ = fi, (w)
and k3 = fi,(w). Then compute y = frr(x) and z = f; (). This construction
is similar to the construction of Goldwasser, Goldreich, and Micali [11]. Using
analysis similar to that in [11] it can be shown that if H,, is pseudo-random (as
defined in [11}) then the new family is pseudo-random [24, 1]; however, a simple
birthday attack on &} or k% upper bounds the query security by O(2"/?) [24].

3 Applications to Hashing

Our construction gives a hueristic for doubling the output length of keyed hash
functions (See for example [23]). Let H be a one-way hash function that be-
haves as a random function to n bits when keyed by a random string K. Define
Hi(z) = H(K,z). MD5 1s a candidate for such a hash function with n = 128.
Let ¥ = Ky,..., Kgand let BZ be the modified Benes transformation where the
random functions are instantiated by the keyed hash functions Hg,,i:=1,...,8.
Now to hash a document D, devide the text in some well-defined way into two
equal parts Do and Dy, and compute By (Do, Dp). ‘The output length of B is
twice that of H(K, D). Surprisingly, the running times have approximately the
same ratio. This is because the four hash functions computed in the top butterfly
of the Benes transformation each operate on only half the document. The hash
computations in the bottom butterfly are all on inputs of size n independent of
the length of the document. Note that the Benes transformation admits some
parallelism: two independent processes would run in approximately half the time
of one sequential process.

To avoid attacks such as those in [5, 7, 10, 21], K may itself need to be seeded
in such a way as to not allow the adversary to vary one of the eight keys while
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leaving the others fixed. In practice this can be instantiated by letting K, ..., Ks
be the output of a cryptographically secure random generator on a random seed
[6, 26]. Such a transformation is one-way and almost surely one-to-one.

4 Security of Feistel Transformations

Proof of theorem 2

3-round case: The adversary evalua.tes the given function on g + 2 inputs. The

first ¢ distinct inputs are (lo,r ), (Lo, (‘“ . For notational simplicity let
(m) = ay,, and 1(m) = Bm, and r = ¥m, m:=1,...,¢. Using this notation,
the couespondlng outputs are labelled by (B1,71), -, (By,7,)- (See Fig. 2)
1 ™ (m) )
° 0 =1..q 10 IO
Iy f1
{m) o
0 m I %
f, f2
P o B
fa fa

Fig. 2. Distinguishing Three Round Feistel Tranformations from Random Ones:Attacks
matching the lower bounds on Luby-Rackoff pseudo-random functions

The adversary computes /3,,,, o) ré)m), m:=1,...,q, and checks for collisions.
If he finds a collision at rn = ¢ and m = j he queries at {j,7 (m'), and obtains
outputs 3,7, for m =14 j. If now P r} = B @ r}, the adversary rejects
the function as non-random.

Now let us analyze how Gy, ¢, s, fares under this adversary. With p]Obal)llltV
2g?/2m), (for ¢2/2™ < & < 1) there exist an i and a j such that f1( ) =
fi(r UJ) Since Iy is held constant and o,y = lo @ f1( (n)) we have a; = o5 and
falai) = fola;). Since 3, = rom B fa(am) one gets the collision f; @7(“ =
B @7‘gj). It is easy to check that /5’_{@7(2) i @1(()]) as well. Hence with
probability §£2(¢2/2") the adversary will reject GA It is easy to show that the
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adversary will reject truly random permutation with probability O(g?/2%"). We
omit the details here.

We have a second attack on 3-round Feistel but due to lack of space we omit it.
We can also upper bound the security of the generalized Feistel transformations
described by Zheng, et. al. [27]. The two k+ 1 round transformations are broken
using attacks similar to the attack above and the 2k — 1 round transformation
is broken using an attack similar to our second attack on the three rounds. The

complete description of these attacks will be given in the full paper.

4-round Case: In addition to the notation above let rElm) = 6,, Adversary

evaluates the function on ¢ distinct inputs (l(()m), ro) and gets outputs Y, , 6,
and checks whether there exists 7, j so that [; @ v = ; @ 7;. It can be checked
that the probability this occurs for the 4-round Feistel is approximately twice
the probability this occurs for a truly random permutation.

5  Analysis of Benes Transformation

Recall that we do not insist on invertible transformations. As a starting point
for understanding the implications of this assumption we [irst analyze the A
transformation which we now define. As we will see, the Benes transformation
is simply the bitwise xor of two independent K transformations. While the X
transformation has the same security as 3-round Feistel transformations, it is
easier to analyze.

Givene, f, g, and hin F,, and input [, r, K, ¢ 4 1(l,7) is computed as follows.
Let w = e({) @ f(r). Then the output s,t is simply g(w), h{w). To visualize the
K transformation simply delete all the edges incident to the intermediate node
w’ in the Benes transformation (See Figure 3).

1 r 1
e f
w
g h
A t
K

Fig.3. The K and Dual-K transformations, which jointly yield a 2x2 double butterfly

Lemma 1 Ife, f, g, and h are truly random functions then K. ;5 has security
e27/?).
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Proof: To show that the security is £2(2"/%) note that if the wy, .. ., W, are
all distinct then all the bits of the output s;,¢;, 1 = 1,...,¢, are uniform and
independent. Hence, following [16] and [17], the distinguishing advantage is at
most the probability that the w; are not all distinct. For any two distinct inputs,
l;,r; and [;, r;, the probability that w; = w; is 1/2”, since e and f are truly
random. It follows that the distinguishing advantage is at most g2/27+1.

This security bound is tight. In @(2"/?) queries of K there exists i, j such
that w; = w;, and hence s;,t; = s;,1;, with constant probability, . But the
probability that the entire output collides for a random function in this many
queries is @(27").

Stmplifications: If e is a 2-universal hash function and f is the identity func-
tion (or visa versa) one gets the same security. Call this the modified K transfor
mation. To achieve a lower bound on security the analysis 1s the same as above
except that there are two cases when analyzing the probability that w; = w;. If
l; = {; then r; must be distinct from 7; (since queries are distinct), hence w; is
distinct from w; and the probability is zero. If l; # {; then the probability that
w; = wj 18 27" since the hash function is 2-universal. We omit the simple upper
bound of the security.

Having analyzed KX, we define B*(I, r) as the bitwise exclusive-or of the out-
puts of K ¢, n(l,r) and Ko g g e (L, 7). We will show that this exclusive-or at
least squares the security. For a quick review of our notation, see Figure 1. We
will now prove Theorem 3.

Proof of Theorem 3:

Before analyzing the double butterfly transformation we will first show that
a single butterfly produces random and independent output except when the
inputs have a special form. Given a set of ¢ pairs (wy,w)),. .., (wg, wy), the
dependency graph on these pairs is defined as follows. Consider the pairs as
nodes in a graph. If any two nodes in the graph are equal in the left-hand
coordinate put an edge between them and color it with the label “left.” Edges
so colored will be called “left edges.” If any two nodes in the graph are equal in
the right-hand coordinate put a “right edge” between them.

Note that the edge relation is transitive. For example, if there is a right edge
between node u and v and another right edge between v and w, then there is a
right edge between u and w.

Define a bichromatic path or cycle to be a path or cycle, respectively, which
contains both left and right edges if it is of length greater than one. (For nota-
tional convenience we will consider every path of length one to be bichromatic).
Define an alternating path or cycle to be a path or cycle, respectively, in which
the edges stricly alternate color as the path or cycle is traversed. Clearly, an
alternating path (cycle) is a bichromatic path (cycle). The following is also true.

Claim 1 If there is a bichromatic cycle then there is an alternaling cycle.

Proof: Omitted.
We can now state our main lemma.
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Lemma 2 The outpuls of a butierfly transformation are random and indepen-
dent off the dependency graph of the inpuis has no alternating cycles.

Proof:

For reasons that will be clear below we will use the notation of the second
butterfly in the double butterfly transformation. That is, the inputs and outputs
are denoted (wy,w}), ..., (wq,wy) and (s1,%1),...,(8y,g), vespectively, where
5; = g(w;) @ ¢'(w]) and t; = h{w;) @ ' (w)).

To start let us describe a simple relationship for alternating paths. Without
loss of generality let (wi, w}), (wa, wh), ..., (w1, wiy ;) be an alternating p;}th
with ! edges. Let (s1,21), ..., (8141, ti+1) be the associated outputs. The following
claim can be easily verified by induction.

Claim 2 [f an alternating path begins with a right-edge and ends with a left-edge,

then
f+1

@ Sm — g(wl) @g/(w;—{»l)
m=1

If the path begins with a lefi-cdge Tather than a right-edge, g'(w!) 1s substituted
for glw1) in the above. If the path ends wilh a right-edge rather than a lefi-edge,
g(wiy1) ts substituted for g'(wy, ) in the above.

. 7 .
The expressions for @11, 1, in terms of h and B’ are analogous.

Demonstrating the correlation due to an alternating cycle is easy. An alter-
nating cycle is simply an alternating path with an even number of edges where
the node 1 and node { + 1 are identified. (i.e., w41 = wy and wj , = wj).
Using the expression above for even length paths, the sum of the output val-

ues around the cycle is given by (EB;L:l sm) P 5141 = g(w,) D ¢’ (wiy ). Since

srer = 9(wip1) D ¢’ (wiy ) and g(wiyr) = g(wy), it follows that @in:l sm =0
for an alternating cycle.

Now suppose that there is no alternating cycle. We will show that all of
the outputs are random and independent. We will first show that s1,...,5,
are uniform and independent. A similar argument shows that the #;,...,{, are
uniform and independent. That the two sequences are independent of each other
follows from the fact that ¢ and ¢’ are indpendent of h and A’.

We will use the following claim which follows from the transitivity of the
edges and the lack of alternating cycles.

Claim 3 If there is a bichromalic path between two nodes, then there is o unigue
alternating path between those {wo nodes which is also the shoriest path.

Assume that the dependency graph is connected. (If not, repeat the analysis
below on each component.) We start by finding a node which has only right
edges or only left edges incident. Tt is casy to check that such a node must exist
since the dependency graph has no alternating cycles. Without loss of generality,
assume that this node has only right edges. Relabel this node to {(w;,w)).
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Now create a breadth-first search tree with (11, w}) as the root and label the
nodes according to the breadth-first order. As is well known, the tree paths are
the shortest paths between the root and the other nodes. By Claim 3 all shortest
paths are alternating paths. Hence, the color of the edges of the tree alternate
with the level. For example, the first level edges (between the root and the depth
1 nodes) are colored “right,” and the second level edges are colored “left,” etc.
We will use the following claim about this tree.

Claim 4 (i) Suppose a node v has breadth-first order i and depth d > 0 which 1s
even. Let the right coordinate of v be wi. No other node with breadth-first order
less than i has Tight coordinate equal to wi. In fact, oll other nodes with right
coordinate w) are children of v.

(i1) Suppose a node v has breadth-first order i and depth d > 1 which is odd.
Let the left coordinate of v be w;. No other node with breadth-first order less
than i hes left coordinate equal to w;. In fact, all other nodes with left coordinate
equal to w; are children of v.

Proof: (i) Due to the fact that the levels of the trec alternate color, v is connected
to its parent by a left edge and connected to all of its children by right edges. If v
were connected by a right edge to another node in the discrepancy graph besides
its children in the breadth-first search tree, then there would be a bichromatic
cycle in the discrepancy graph. (ii) Similar. il

For fixed but arbitrary values of o1, ...,0,, define £(i) for i > 0 to be the
event that (s; = o1) A -+ A (s = a;) and E(0) to be the null event where, as
before, 5; = g(w;) @ ¢'(wh). We must show that Pr[E(g)] = 279" We start as
follows:

Pr[E(q)] = Zpr[g(wo = g1] Pr[E(q) | g(w1) = @l

Since Prlg(wy) = g1] = 27" for all g3 € {0, 1}, it is enough to show that
Pr[F(q) | g(w1) = g1]) = 279" for all g;. Fix an arbitrary value of §;. As can be
easily verified, it is enough to show that Pr[s; — o; | F(i—1)Ag(wy) = g1] = 27"
foralli:=1,...,q.

First consider i := 1. In this case, Pr[g(wi) @ ¢’ (w]) = o1 | g{w1) = g1] which
is clearly equal to 277,

Now consider the case when ¢ > 1. Let 1 < oo < # < 7 < --- < ¢ he the
breadth-first order of the nodes on the path from the root to (w;,w;). That is,
this path is given by (wy, w}), (wa, w},), (wg,wy), . . -, (Wi, wy). Suppose (w;, w;)
has odd depth. Using the path formula in Claim 2 the following holds,

Prig(w;) ® ¢'(w)) = o; | E(G — 1) A g(wr) = g1]
=Prlg(w) ®g1 =1 B o Dap® - Doy | L(i—1)Aglw) = 1]

By Claim 4, w; is not a left coordinate for any node with breadth-first order less
than 7. Hence, the event g(w;) ® g) = 01 ® 0, & --- P 0; is independent of the
event K(i — 1) A g(w) = g1 and thus the above probability is 277.

The analysis is similar in the case that (w;, w}) has even depth.

|
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Before completing the main theorem, let us state the following corollary of
Lemma 2.

Corollary 2 The outpuis of a butterfly transformalion are k-wise independent
iff the dependency graph of the inputs contains no alternating cycles of length k.

Proof: If there is an alternating cycle of length & in the inputs then the corre-
sponding outputs sum to zero as before. To show the converse consider any k
outputs and their corresponding inputs. Apply Lemma 2 to dependency graph
induced by these input nodes. There is no alternating cycle in this dependency
graph by hypothesis, and hence all £ outputs are independent. Il

Let us now return to the proof of the main theorem. By Lemma 2, if the
dependency graph of the outputs of the first butterfly (w1, ), ..., (wq, wj) does
not contain an alternating cycle, then the outputs of the second buttelﬂy are
uniform and independent. Hence, the advantage of an adversary is bounded from
above by the probability that the dependency graph of (wy,w}),.. ., (wg,w})
contains an alternating cycle.

The number of possible alternating cycles of length 25 on ¢ nodes is ¢!/(¢ —
27)17. Hence the probability that there is an alternating cycle is

2 \/J 2
<X S < () <o

assuming ¢2/2%" < 1.
This concludes the proof that the security of the Benes transformation is

§2(2™). The proof that the security is O(2") is easy and omitted due to lack of
space.

Lemma 3 The modified Benes transformation has security £2(2").

Proof Sketch: It can be shown that the probability that the top butterfly
produces an alternating cycle of length 2j is < 272" But we omit the details.
|

Finally, let us sketich the proof of the minimality of the modified Benes
transformation.

Proof Sketch of Theorem 4. When one of the edges of the top butterfly is
deleted it is easy to create a sequence of g inputs which yields an alternating
cycle of length two in the intermediate variables with probability @(q®/27).

When one of the edges of the bottom butterfly is deleted it is easy to show
that either the left or right hand output repeats with probability approximately
twice as large as for a random function. Ml
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6 Open Questions

A natural open problem is bounding the query security for the five-round Feistel
transformation. A related problem is determining the number of rounds needed
to achieve query security 2.

Unfortunately, n-bit truly random primitives are not available for values of n
of interest. In such a case the actual security of the Benes or Feistel construction
depends a great deal on the quality of the underlying primitive. For example,
with n = 32, the four-round Feistel transformation with truly random functions
requires approximately 21° queries to distinguish from a truly random 64-bit
function. However, when the truly random functions are instantiated by S-boxes,
differential cryptanalysis [4] needs only 16 chosen plaintext queries {or 223 known
plaintext queries) for the independent key case. (See also, [13, 18].) However,
additional rounds appear to add increasing amounts of security. Shedding light
on how additional rounds of the Feistel or Benes transformation may improve
security in the complexity-theoretlic setting is an important open problem.
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