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Abstract. For many cryptographic primitives, e.g., hashing and psen- 
dorandom functions & generators, doubling the output length is useful 
even if the doubling transformation is n o t  reversible. For these cases, we 
present a non-reversible construction based on a Belies network, as an 
alternative to  the traditional Feistel construction (which is tlie basis of 
DES). 
Assuming that a given primitive behaves likc an m-bit to n-bit random 
function, we present a length-doubling scheme that  yields a ’2wbit to 
2n-bit function that  provably requires O( 2”)  queries to distinguish with 
O(1) probability from a truly random function of that  length. This is true 
even if the adversary is of unlimited computing power arid is allowed to  
query the function adaptively. Oiir construction is minimal in the sense 
that  omitting any operation makes the resulting network susceptible to 
birthday attacks using 0 ( 2 ’ ” ’ 2 )  queries. 
Feistel networks also use trul~7 random n-bit functions to achieve 2n- 
bit functions. Luby and Rackoff [16] showed that 3 and 4 round Feistel 
networks require L?E(2n/2) queries to distinguish with O( 1) probability 
from truly random. We show that  these bounds are tight by showing 
that  these networks are susceptible various types of birthday attacks 
using 0(2”/’) queries. 

1 Introduction 

Many cryptographic priiiiit,ives in pract,ice are believed to behave like “raiidom 
fiinct,ions” or a.t, least, t,liis t,ilrns out, bc a. good mipi r ics l  a,pproximat.ioii. llsiiig 
the raiidoiii function model, several worlts ha.ve iiiade a rigorous aiialysis of soiiie 
st,andard and new cryptogra.pliic schemes [I, 2, 20, 221. 

hi fact, most designs of primitives (e.g., MD5,SHA)  involve .rounds of “mixing” 
the input, creating an “avalanche effect,” and malting the result look “random.” 
In tlie case of DES, one start,s wit,li a 32-bit valued priniit,ive which is iterat,ed 16 
rounds to get a. 64-bit valued “raiidoiii periiiut,atioii.” In t,he case of, say, 128-bit~ 
cryptographic hash function coiist,ructioiis based on 64-bit bloclt cypliers, metic- 
ulous care must be exert,ed to ensure that, the result,aiit function behaves like a 
128-bit raildoill fuiiclioii. Olherwise, il ~ i i a y  yield l o  2“2 step birlliday attacks 
as a 64-bit random function would. In fact our work originated in the process of 
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looking for a practical scheme that a.voids these problems and admits an analy- 
sis in a random function model. Recent attacks on some of these cryptographic 
primitives are practical [lo] or bordering on feasibility [ Z l ] .  Hence const,ructions 
using old smaller-length primitives to get new longer-Iengtli primitives-with a 
provable increase in security-would be desirable. 

The  Feistel traiisforiiiatioii (See Fig. 1) is an obvious cmididate for such a. 
construction, and indeed, its security properties have been well studied. Luby 
and Rackoff [16] study three and four rounds of tlie Feistel transformation. They 
show t1ia.t using pseudo-random functions (introduced in [ll]) as n-bit primitives 
yields a 2n- bit pseudo-randoiii pcrmutatioii. In a crucial step in t,lieir proof, 
they aiialyze tlie case when the primitives are iz-bit truly ra.ndom functions. 
They show that the three-round Feist,el iiet.worlt requires L?( 2"/') queries t'o 
distinguish with O( I) probability from a truly raiidoiii 212 bit function. (Lat'er, 
Maurer [li] simplified tlieir proof.) However, they show that tlie same network 
can be distinguished in a constant number of queries if the adversary is allowed to  
ask for inverses of points clioseii in  tlie range. They then show tha,t the four-round 
Feistel network requires f2(2'"/") queries t80 distiiiguisli with O( 1) probability 
from a truly random 211 bit, fuiictioii even when inverse queries are allowed. 

Luby and Rackoff were concerned with the polyiioniial time illvariant model 
where the difference between tlie security of 2" and 2"/' is iiot important. How- 
ever, in practice this difference ca.n he crucial. For example, using a construc- 
tioii with securit,y 2"12 to design a 64-bit function from 32-bit random pr im-  
tives would yield a function which could he distiiiguislied in approximately 2'' 
queries whereas using a construction with 2" security would require approxi- 
mately z3' queries. Hence, an important goal is to resolve the query security of 
tlie three-and-four-rouiid Feistel coiistriictioiis. In this paper we show tlmt the 
Luby-Rackoff boutids are tight by showing that these networks we suscept'ible 
t o  various types of birthday attacks using 0 ( 2 " / ' )  queries. 

Given the limited securit,y provided by using just, a few rounds of Feist'el 
it is natural l o  ask if there is a.n alternative construction which admits aiialy- 
sis and provides greater security. In t,liis pa.per we provide such an alternative 
which we call the Belies iietrvork construct,ion (two ba.cl<-to-ba.ck butt,erflies, see 
Fig. 1). The Belies const,ruct,ion 1ia.s t,lie following properties. First,, i t  is formally 
provable that, our fuiictioiis cannot be dist,iiiguislied with O( 1) probability, in an 
iiiforiiia.tmioii t,lieroretic sense, from truly random oiies, unless it is queried L'( 2") 
times. Second, it, is iiiiiiiiiial in tlie seiise t81iat deleting ally one of the opera- 
t,ioiis reduces Ihe securit,y. Third, it yields construct,ions aiid variat,ioiis t'liat, are 
efficient. 

We introduce a f o r i d  iiotion of (query) securit,y in Section 2. Geiieraliziiig 
birthday and other statistical attacks, we introduce the notion of a d e p e n d e n c y  
g.ru.ph, on a (query) sample of size g .  'I'he nodes of tliis graph axe pairs of strings 
which are internal va.ria.bles of t,he coiist,ructioii that are iiot directly ohservxble 
from the input output. relations. 'Two types of dependencies are idedified for 
these varia.bles wliich are signified by edges of two colors between corresponding 
nodes. We show t>liat the output raiidoiii variables are k-wise independent if aiid 
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only if there are no alteriiatiiigly colored l-cycles in tlie graph, for 1 5 k 5 y. We 
llieii sliow llial with vwy high probability the d q m i d m r y  graph lias 1 1 0  such q 
cycles. 

Our coiistruction hits inany applicatioiis including authentication, random 
number generation, stream or packet eiicypheriiieiih, aiid reducing correlations 
in key excliaiige protocols. We also suggest a way to  double hash code lengths 
which admits some parallelisiii and eludes altacks like [ 2 l ,  101. (See Section 3 . )  

2 Definitions and Main Results 

Let F, be the set of all fuiictioiis f : (0, l}', - (0 ,  l}". We would like t o  coiist,ruct 
a faiiiily of fuiictioiis from 217 bits t.o 212 bits using functions from F ,  such t1ia.t t'lie 
functions drawn ra.iidoiiily from this new family behave very much like randomly 
chosen fuiictions from F'n. To foriiialiee lliis we iiialce blie following definitions. 

Adaptive Adversaries: Let, A be an information thxmt,ic adversary (i.e., of 
unbounded computing power) wliicli call iiialte queries l o  a funchion as an oracle. 
We limit our adversaries (only) by the number of query points. A can adaptrvely 
1-iide queries aiid obtain function values a,t, the query points. Then, over t'liis 
sample he could perform a n y  t,est. We sa,y A distinguishes G, C F, from 
H ,  c F,, with advantage 

IPr[Ag(l")=llg E R  G,] - !?r[Ag(1")=1Ig ER Hrl,]l 

Wheii G ,  aiid H, are understood from context let, ~ ~ ( 1 7 )  be the number of 
queries made by A(1"). 

Definition 1 (Query Security) A fznctzon f a m z l g  G, c F,, has  query securztq 
at least s ( n )  zf there zs an constant a > 0 b u c h  that  t i l l  anfurmalion theoretic nd- 
versarzes A ran dzs2mguzsh G, from F, wzth aduantaqe a t  most ( q A ( i z ) / s ( n ) ) a  

For the p u v o s e s  of Ihzs paper a wdl always be 2 

For example, suppose that G, can be distinguished from F,, in q queries 
with advantage a.t most, q 2 / 2 " .  Then tlie query security of G, is a.t least 2"". 
When it is c1ea.r froiii context. that we are usiiig blie iiiforiiiat,iori theoretic model 
we will siniply deiiot3e query security by security. 

The Feistel transformation is a well-kiiorvii fuiict,ioii faiiiily from 212 bit,s t,o 
2 n  bits aiid it is natural to ask whet,her it achieves sufficient security. Let. u s  firsl 
review t,he construction. 

G,f as 
G j ( l ,  r )  = ( r ,  6 @ { ( r ) ) .  Given a collection of k funct,ions A = (fl, fz, . . . , j k )  
from n bit, to n bit define GA E FSra as llle coiiipositioii of G.fl, G j 2 ,  . . . , G,fk .  
More explicity, if the input to GA is deiioted l o ,  ro blieii blie output l k ,  r k  can be 
computed by the recurrence li 1 ri-1, ri 1 fj(ri-1)Blj-I. We say that, l i ,  rj 

are the output, of the ilh round. DES 1iia.y he described by G'd where there a.re 
k = 16 functions (rounds) aiid tlie fuiictioiis f; are giveii by tlie DES key mid t'lie 
s-boxes. For now we will consider fuiictioiis wliicli are truly random functioiis. 

For any f E F, define the 217 bit to 271 bit Feistel transformation 
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Denote tlie set of all G'A (where each of the k fuiict,ioiis in s\ range over all t'lie 
fuiictioiis in F,) as Gin 

As is well known, t,he Feistel tra.nsformatioii is a. periiiuta.tion. For periiiu- 
tations tlie definition of security must, be modified since a random permutation 
on n bits can be distiguished from a, random funct,ion from n bits to n bits in 
8(2"/2) queries (a ra.ndoiii function will repeat with constant probability whereas 
a periiiutatioii obviously will not,). When discussing a permutation family we 
implicitly assuiiie that, the adversary is trying to distinguish it froiii a random 
permutation, aiid tlie definition of securit,y is adjusted a.ccordingly. 

Not olily is the Feistel haiisforiiiatioii a permutation, it, is also invertible (even 
without. inverting the underlying 72 bit to n bit random functions). Following [16], 
define super query security, or super security, identically to query security except' 
t1ia.t the a.dversary is allowed t o  query bot,li Ilie funct,ioii and its inverse. 

Luby and Rackoff [I61 studied tho securit.y aiid super security of Feistel tra.ns- 
formations (with random functions) with a small iiutnber of rounds. They broke 
two round Feist,el i n  a constant, number of function queries, and they broke 
three round Feistel in a constant iiuiiiber of function and inverse queries. To 
coiiipleiiient these results they derived lower bounds, suiiiiriarized below, for t'he 
security and super-securit,y of thc t h e e  aiid four round Feistel transformatioiis, 
respectively. 

THEOREM 1 (Luby, R a c k q f )  7 7 i e  secu r i ty  us G;?% 1s f2(2"/2) nnd t h e  super 
securaty of G!, as also ~ ( 2 n / ~ ) .  

Thc proof of this t ho re in ,  aiid blie others cited in t,liis section, will be given 
in subsequent sections. 

For DES n 1 32 and so tlie above suggests t1ia.t three (four) rounds of DES 
may have (super) query security of 21G or more. In practice, this is very little 
security aiid so a imtural question i s  whether the lower hound of Luby and 
Rackoff ca.n be improved. We slioa; t1ia.t it. cannot, by providing the following 
matching upper bouiid. 

THEOREM 2 'I 'he s e c u ~ z l y  of Gz,L n n d  G:n t s  0 ( 2 " f ? )  M o r p o i w ,  t h e  adver- 
sary need not ninke a n y  anwrse queries 

In [27]  t,liree geiieralizahioiis of tlie Feist.el traiisforiiiatioii are described. 'I'hese 
t'ransforinations map k n  bit to  k n  bits using fuiictioiis from F,. Zheng, et. al. 
show that, if they are run for sufficiently many rounds (i.e., 2k - 1, 2 k ,  and k + 1 
depending 011 the variation) then they Iiwe securit,y f 2 ( Z r A / / " ) .  Using arguiiieiit8s 
similar to those for t,he Feistel transforniat,ion, we can show that  this is tight. 
We omit the details for now. 

Given tlie liiiiited security of the t,hree and four round Feist,el transforma- 
tions, a natural problem is to construct, a 2n-t,o-2n hit transformation which 
achieves security R(2") using n-to-n bit, raiidoin fuiict,ioiis and just a few rounds. 
'The emphasis here is on security and not on iiivertibilit,y so that noii-invertible 
transformations itre acceptable. 
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Benes 2-Round Feistel 

Fig. 1. Benes and Feistel (2-round) transformations from Ln-bits to  2n-bits. Edge labels 
denote random functionsfrom n-bits t o  n-bits. Unlabelled edges are identities. Node values 
are bitwise xor of values of incoming edges. 

In this paper we describe oiie solution to t81iis problem. (See Fig. 1) Given 
four functions e, f ,  e’, f’ from n bit,s to n bits, we use blieni to define the butterfly 
transformation from 2.17 bits t,o 211 bits. On input I ,  v ,  the out#put, w, w’ is given 

u; = e ( l )  j ( r ) ;  W’ = e’(I) $1 f ’ ( r ) .  

I,et Bzn be the set of all butlerfly traiisforiiiatioiis where e ,  f, e’, f’ raiige over 
F,. Given eight functions from n bits to 12 bits, e ,  j ,  e’, f’, 3 ,  3’, h,  h’, define the 
Benes transformation (hack-to-hack butterfly) a.s the coiiiposit,ioii of two but.lerfly 
transformations. The first stage is as above. Then, the second transformation 
maps w, w’ into s, t as follows: 

by 

s = g(w) @g’(w‘);  t - h ( w )  @h’(w’). 

Let B;,> be t.he set of all Belies t,ransforiiiatioiis where each of bhe eight fuiictioiis 
raiige over F,. 

Clearly, functions drawl raiidoiiily from B;n a.re iiiforiiia.t,ioii t,heoretically 
distinguishable from functions drawn randomly from F2?,, . Hornever, as we sta.te 
forinally below, even an iiiforma.t,ion t,heoret,ic a,dversa.ry requires a large number 
of queries to the raiidoiiily drawn functions in  order to dist,inguish B:,z from Fz,). 
w i tJi not ice able advaiit age. 

THEOREM 3 Thc B m e s  fumilg B;n has sec.urliy @(2n,). 

Corollary 1 The Benes transformation using n-bzt pseudo-random junctions in 
place  of n - b t t  random, functzons yzelds a. 2 n - b d  pseudo-m, i idom f u n c t i o n .  

The proof of this corolla.ry follows t,he proof in [l  61 ;tiid is omit,ted. 
111 a natural sense the Henes const,ruct~ion is opbiinal. Iii E d ,  we next show 

that its security drops to 0 ( 2 ” / ? )  queries, if any edge is d e l e t e d .  
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THEOREM 4 (Edge Optirnality) '1'11.e Benes and .nl.odzJicd B e n e s  transforl-ria- 
ttons are m.inima.1: i .e . ,  de le t ion  of u n y  V J  rls edgas results in a function u h i c h  
1i.as securziy 0 ( 2 " 1 2 ) .  

Simplifications: Depending on thc a.pplication, soiiie of the random fuiictioiis 
can be replaced by siiiipler liasli functions as described below. 

THEOREM 5 Th Renes lransformatian usziig k-unrversal  ha.sh functzons in 
th.e t o p  butterfly produces outputs .cl:h.ach cannot  be distznguished jronz k -wi se  
endependent outputs  an y queries uuth. adaa'ntage better th.an q2/2". 

If the two cross edges in the first, tiut.lerfly, e', and f, are repla.ced by t'lie 
identity function we call the resulting transforiiialioii t,he modified Belies t'rans 
foriiia.t,ioii. All of the resiil t,s a.bove liold for the modified Belies t,ra.iisforiiiat'io~l 
as well. 

Finally, we would like to iiieiitmioii aiiother candidatme iiiethod for producing 
a 271 bit, t o  2 n  function family from a n hit t,o 11 bit, fuiict8ion family. Suppose 
t,liat t,he functions in t,he function fa.mily H,, c F,, ca.n be indexed by a key of 
length 17. Then a fuiict,ion faiiiily lroin 21-1 to 212 liit,s with a key of leiigt'li 211 

can he constructed as follows. Given ki, k? as t,he 'Ln hit key and W ,  2 as I h e  
271-bit input,  coiiipute t,he out,put y, z a.s follows. First compute k i  = fk l (w)  

aiid kk = f k 2 ( z u ) .  Theii compute y = jk:;(z)  and 2 - fk;(x). This  ~onst~ruct~ioii  
is siiiii1a.r to t,he coiist,ructivii of Goldmaser, Goldreicli, aiid Micali 1111. Using 
aiialysis similar to t.1ia.t in [ll] it can be shown that if H,, is pseudo-random (as 
defined in [ll]) then tlie new family is pseudo-raildoin [24, I] ;  however, a simple 
birthday a.ttack on ?ti or k i  upper bounds the query security by O(2"") [24]. 

3 Applications to Hashing 

Our coiistruclioii gives a, hueristic for doubling t,he output length of keyed hash 
hiunctions (See for example [23]). Let. N lie a orie-vvay hash function LIiaL be- 
h v e s  as a. ra.iidoiii fuiict,ion to n bits wlieii lceyed by a random string I<. Define 
fii<-(z) H ( I < ,  x). MD5 is a candida.te for such a liash function with 72 = 128. 
Let l? = 1<1, . . . , li8 and let, B;? be the modified Belies traiisforiiiation where t'he 
random functions are inst.antiated by tlie keyed hash fuiictioiis H1cZ, i := 1, . . . ,8.  
Now to hash a, docullleiit, D ,  devide t.he text i n  some well-defined wa.y into t'nw 
equal pa.rt,s DO and D ~ ,  and coi1iput.e B ; - ( D ~ ,  D ~ ) .  'Llie output length of B;? is 
twice tha t  of H (  I<, D ) .  Surprisingly, t~he running times have a.pproxiinately t'lie 
same ratio. This is because t,lie four 1ia.sli fuiictioiis computed in the t,op but,t'erfly 
of tlie Helies transfonnat8ioii ea.ch opera,te 011 only half the documeiit,. 'The lmsh 
coiiiputat,ioiis in the bot,toiii butt,erfly w e  a,ll 011 inputs of size n iiidepeiideiit8 of 
t8he length of the documeiit. Note t1ia.t t,he Belies traiisforiiia.tioii a.dniits some 
parallelisin: two independent8 processes \could 1'1111 in approxiinat,ely half the time 
of one sequeiit,ial process. 

limy ilself need to be seeded 
in such a. way as to not, allow tlie adversa.ry t,o vary one of tlie eight, keys while 

To avoid attacks such as those i n  15, 7,  10, 211, 
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leaving the others fixed. I n  practice this can he  instantiated by letting K l , .  . . , 118 

he  the output  of a cryptographically secure random generator on a raiidom seed 
[6, 261. Such a trailsformation is oiie way and aliiiosl surely one-to-one. 

4 Security of Feistel Transforinations 

Proof of theorem 2 

%round case: The adversary eva.luates tlie given fuiict,ioii on y + 2 iiipiits. The  
first q distinct inputs a.re ( I D ,  T:'), . . . ( l o ,  r f ) ) .  For notational simplicity let' 
rim' = arn, and 1.1"' = /Irn, and rim' = y,,, ~n := 1, .  . . , y. Using this notation, 
the corresponding out,puts are labelled by (pl, 71 . . . , (p4,  yy) .  (See Fig. 2) 

m:=l ..q 

f 1 

f 2  

f 3  

a m  

Pm 

ym 

1- 
0 

I 
0 

f 1 

f 2  

k 

% 

f 3  

Fig. 2. Distinguishing Three Round Feistel Tranformations from Random 0nes:Attacks 
matching t h e  lower bounds on Luby-Rackoff pseudo-random functions 

The adversa.ry coiiiput,es /3r,1. @ r r ' ,  ~ 7 7  := 1 , . . . , q ,  and checks for collisions. 
I[ lie finds a collisioit at, 711 = i arid I T )  = j lie queries at l b ,  I-" , and obt'aiiis 
out>puts pm,,yA,  for in := i , j .  If now /I! @ rb = ,8; @ I { ,  t,he adversary rejects 
t,lie fiinctioii as noii-random. 

Now let us analyze how Gfl,f2, ,f3 fares under t,his a,dversasy. Wi th  proha.bilit,y 
f2(yz/2"),  (for q2 /2 "  < 15 < 1 )  diere exist, a n  i and a j such that f i ( ro  ) = 
J l ( r g ' ) .  Since lo is held coiistaiit, atid cvm = l o  @fL(rY1), we have aa = aj atld 
fz(ai) = f2(aj). Since /I,,, = rr)$f2(a,,1) oiie gets tlie collision p.j el.!' = 
/ . j  @ $ I .  I t  is easy to  check t,Iiat, /?: @ T ! )  = 19; @ r!) a.s well. Hence wit,li 
probability R(q'/2") the adversa.ry will reject GA. It, is easy t80 show t1ia.t t'lie 

( 111 ) 

i a )  
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adversary will reject truly random permutalion with probability O(4’/227r). We 
omit the details here. 

We have asecoiid attack on 8-rOUlld Feistel but due to lack of space we omit it,. 
We can also upper bound the security of tlie generalized Feist,el trausformations 
described by Zheng, et,. al. [27]. The t8wo k +  1 round traiisforina.tions are brolteii 
using attacks similar to the attack a.bove and tshe 2k  - 1 round t,ransforin;lt,ion 
is brolteii using an at,tack similar to our second attack 011 t,he three rounds. The 
complete description of these atta.cks will  be given in the full paper. 

4-round Case: In addition to t,he nobation above let rLmi = 6,. Adversary 
evalua.tes the function on q distinct input,s ((jm”, yo)  a.nd gets outputs ^inl,  &,, , 
and checks whether there exists i, j so t,liat li @ 71: = l j  @ -yj. I t  can be clieclted 
t1ia.t the probability this occurs for Llie $-round Feistel is approxima.t-ely twice 
the probability this occurs for a, trruly random periiiutat.ioii. 

5 Analysis of Belies Transfori-nation 

Recall that we do not iiisist, on invertible transformations. As a. st,a,rt#iiig point’ 
for understanding the iiiiplicatioiis of t81iis assuiiiptioii we firsl analyze t’lie I\: 
transformatioil which we now define. As we will see, the Belies t,ransforination 
is simply the bit,wise xor of t,wo independent K traiisforiiia.tions. While the 1; 
transformation has the same security a.s 3-round li’eistel transformations, it. is 
easier to analyze. 

Given e ,  f, g, and h, in F ,  and input 1, I’, l<e,~,g,h(l, r )  is computed as follows. 
Let w = e ( l )  @ f(r). Then the output s 7 t  is simply g(w),  h(w). To visunlixe the 
Ii? traiisforina.tion simply delete all the edges incident to tlie iiiteriiiediate node 
w’ in the Belies transformation (See Figure 3 ) .  

I 1 r 1 

K Dual-K 

Fig. 3. The K and Dual-K transformations. which joint ly yield a 2x2 double butterfly 

Lemma 1 If P .  f, g ,  and h are frady random functions then I<, f h hos  securzty 
8(2 ” / ” ) .  
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Proof: To show that, tthe securit,y is f2(2n/2) note t1ia.t if t#he w l ,  . . . , wq a.re 
all distinct then all the bits of t8he output si , t i ,  1: - 1, .  . . , y, are uniform and 
independent. Hence, following [16] and [li], t.he distinguishing advantage is at, 
most the probability that the wi are not, all d ishict .  For any two distixicl inputs, 
l i ,  ri and l j ,  r j ,  the probability that U J ~  = wj is l/2", since e and f are truly 
random. It follows that the distiiiguishing a.dvantage is at most q 2 / 2 " + ' .  

This security bound is tight,. I n  O( 2n/2)  queries of 11' t,liere exists i, j such 
that wi = wj, and hence s ; , t ;  = sj , t j l  with const,ant probability, . But t,he 
probability that  the entire out,put collides for a. random function in this many 
queries is @(2-"). 

Simplificatio.ns: If e is a 2-universal liash function and f is the identity fuiic- 
tion (or visa versa.) one gets the same security. C h l l  this the modified K transfor 
ma.tioii. To achieve a lower bound 011 security tlie arialysis is the same as above 
except t81iat8 t,liere axe taro cases when ana.lyzing t,he proba.bilit,y t,liat wi = w j .  If 
Zi = l j  then ri must be distinct from rj (since queries a.re distinct), hence U I ~  is 
distinct from wJ a.nd the proba.bility is zero. If 1, f Zl then t.he proba.bilit,y t,liat. 
wd = wj is 2-" since t,lie hash function is 2-universal. We omit. the simple upper 
bound of tlie security. 

Having analyzed I<, we defiiie D2(1, I') as the bit,wise exclusive-or of the out- 
puts of I<e,j,g,h(l, r)  and I<e,,jt:gj,h((l, r ) .  We will show that, this exclusive-or at 
least sp.ua.res tlie security. For a quick review of our nota.tion, see Figure 1. We 
will now prove Theorem 3. 

Proof of Theorem 3: 
Before analyzing the double but terfly traiisforiiiation we will first show t,li at 

a single butterfly produces random and independent output except when the 
inputs have a special form. Given a set, of q pairs (wl, w;), . . . , (wq, ..I;), tlie 
dependency graph on these pairs is defined as follows. Consider the pairs as 
nodes in a graph. If any two nodes in the gra.pli a.re equa.1 in t.he left-hand 
coordimte put an edge between them and color i t  witli the label "left." Edges 
so colored will be called "left edges." If any t8wo nodes in the graph are equal in 
the right-hand coordinate put, a "right, edge" between them. 

Note that the edge relation is t,ransitive. For example, if t,liere i s  a right' edge 
between node u and ZI and another right edge between 21 and w,  theii there is a 
right, edge between ti and U J .  

Define a bichroinatic p a t h  or cycle to be a path or cycle, respectively, which 
contains both left, and right edges if it is of length greater t8han one. (For iiota- 
tional convenience we will consider every pa.th of lengt<li one to be hichromat~ic) . 

Define ail alternating path, or  cycle to he a pa.th or cycle, respect,ively, in which 
the edges stricly alt,erna.te color as t,he pa.th or cycle is t,raversed. Clearly, an 
alternating pa.111 (cycle) is a hichromatic p t l i  (cycle). The following is also true. 

Claim 1 If  there zs a bachroinatzc cycle then lherc 15 a 7 2  allernalang cycle 

Proof: Oinitled. 
We Cali now state our main lemma 
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Lemma 2 The outputs of a. butterfly trmsfonntitron are r a n d o m  a n d  m d e p e n -  
d e n t  zff th.c dependency  gr-aph of t h e  rnpu t s  h,as i io a l t e rna t ing  cycles. 

Proof: 
For remoiis t81iat will be clear below MY will use the iiot,a.tioii of the second 

butterfly iii tlie double butterfly tra.iisforiiiatioi1. ‘ l l iat  is, the iiiputs and output’s 
are denoted (wl, wi), . . . , (q, 14) and (sl, t l ) ,  . . , , ( s 4 , f 4 ) ,  respectively, where 
si : g(wi)  @ g’(w:) aiid ti = h(wi)  @ h’(u.$). 

To start  let us describe a siiiiple relationship for alterna.tiiig pailis. Without, 
loss of generality let (wl, w;), (wz, wi), . . . , ( w ~ + ~ ,  wf+,) be an a.lteriiatilig pat>li 
with 1 edges. Let (sl? t l ) ,  . . . , (sl+l , t l + l )  be the a.ssociated outputs. The following 
claiiii can be easily verified by induction. 

Claim 2 If an dterna.t i i ig p a t h  begaizs udh. N rzgl i l -edge t m d  ends i r i th .  a le f t -edge,  
i%en 

I f  th.e. p t h .  begins tlizth. a l e f l - e d g e  T f l t h E T  ihan u rzght-cage, g‘( wi) ZS s.lLbstit.lLifd 
f o r  g (wl)  i n  t h e  a.bove. If -the p a t h  ends .u;zlh a rtghi-edge ra.ther h i 2  a l e f l - e d g e ,  
g(wlt l )  zs snbstit,uted fo r  3’(wftl) in t h e  ~ b o v e .  

( + I  The ezpresseons fo r  

Demonstrahng the correlat,ioii due t,o aii aIt>eriia.tiiig cycle is easy. An  alter^ 
na.t,iiig cycle is siiriply an alterriating path with an even number of edges where 
the node 1 aiid node d + 1 are identified. (i.e., ‘u11+1 = w1 a.nd wf+, = UJ:). 

Using the expression atjove for eveii length paths, the sum of the output val- 
ues arouiid the cycle is given by @ sl+l = g ( w L )  @ g’(wf+l), Since 

s/+1 = g(wr+l)$g’(20;+1) and 3(wr+l) = g(wl ) ,  it follows t1ia.t @nt=l  srn = 0 
for aii alt,eriia.tiiig cycle. 

Now suppose t,liat there is no aJternnting cycle. We will show that all of 
tlie outputs are random and independent. We will first show that s1, . . . , .qy 

are uniform and independent. A siiiii1a.r argument shows t81ia.t t,he f l ,  . . . , 1 ,  are 
uiiiforiii mid iiidependeiit~. T11a.t~ the two sequences are iiidependeiit, of ca.ch other 
follows froiii the fa.ct# t,liat, 3 and 3’ a.re indpeiident, of h, and h’. 

We will use the followiiig claim which follows from tlie ttransitivity of t’he 
edges a*nd the la.ck of altmeriiating cycles. 

1 ,  z n  lerni.s 4/ h a.nd h’ are ana.logous. 

err,=, s,, r 1 1 

Claim 3 If there zs a bichroniulec p a t h  b e t u e e n  t iuo  nodes,  lhen there zs a unique 
alternating pn th  between those two nodes whzch zs nlso t h e  shorlest pnfh. 

Assuiiie that  the dependency graph IS coiiiiected. (If not, repent the analysis 
below 011 each coinpoiieiit.) Wc start  by finding a node ‘ilrliich lias only right 
edges or only left edges incideiit It is cas) to check that sucli a node must exist 
since the dependeiicy graph has iio alteriistiiig cycles Withoul loss of generality, 
assume that this node has only riglil edges Relabel this node to ( w l ,  w;) 
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Now create a. brea.dth-first sea.rcli tree with ( i u l ,  wi)  a.s the rool and label tjhe 
nodes accordiiig bo t81ie breadlli-first order. As is well k i io~ i i ,  t,he tree paths are 
the shortest’ paths between t,he root and the ot,her nodes. By Claiiii 3 all shortest 
paths are alternating pal.lis. Hence, the color of the edges of the tree alteriiat,e 
with the level. For example, the first level edges (between the root and the depth 
1 nodes) are colored “right,” and t,he second level edges are colored “left,” etc. 
We will use the followiiig claiiii a.bout, this t,ree. 

Claim 4 (i) Suppose a node v h.as breadth-first order i and depth. d > 0 tvhtch 1s 

etien. Le t  t he  right coordinate of v be ui:. N u  o ther  n o d e  with breadth.-first order 
less th,nn i has  raght coordinate equal l o  wi. I n  f n c i ,  all other nodes wzth. reght 
coordinate w: are ch.ildren of v. 

(zi) Suppose a ,node v has brea.dth-firsi order i and depth d 2 1 tuhich .is o d d .  
Let  t he  left  coordanaic of v be wi. N o  other  node with brendlh.-jirsl order less 
t h a n  1: has left coordi.n,a.te equal t o  uii. In fact ,  nll other  nodes ruelh left coordina.te 
e p a l  l o  wi (ire chaldren o j v .  

Proof: (i) Due to  the fact t1ia.t the levels of tlie tree alt,eriiat#e color, v is coiiiiected 
to its pa.rent by a. left. edge a.iid connect,ed t,o all of it,s childreii by right edges. If 21 

were coiiiiected by a right edge t80 another node in t,lie discrepancy gmph besides 
its children in tlie breadtli-first, search tree, then t,liere would be a bichroma.tic 
cycle in t,he discrepancy graph. ( i i )  Siiiii1a.r. m 

,u9,  define P;(i) for i > 0 bo be the 
event that (5-1 = u1) A . .  . A ( s i  = u;) and E ( 0 )  to be the iiull event where, as 
before, si = g(wi) @ g’(w:). We must show that Pr[E(g)] = 2-qn. We start as 
folloms: 

For fixed but wbitrary values of L T ~ ,  

W f i 4 P ) I  = C P r l g ( w )  = Sll W”) I g(w1) = Sl l .  
~ 

91 

Since Pr[g(wl) = i j l ]  = 2-” for al l  g1 E (0 ,  I}, i t  i s  enough to  show tlmt 
Pr[E(q) 1 g ( W l )  = $11 = 2-9”  for all g1. Fix an a,rbit,rary value of i j l .  As can be 
easily verified, it is enough to show that, Pr[s; - o; 1 E ( i -  l ) r \g(wl)  911 = 2-“ 

First consider 2: := 1. In this case, h [ g ( W l ) 5 ~ ~ g ’ ( K J ~ )  = u1 I g(w1) - gl] which 
is clearly equal to T7’. 

Now consider tlie case wlien i 2 1. Let 1 < Q < /3 < 7 < . . < i he t’lie 
breadth-first order of t,he nodes on t,he path from the root, to (wi, wi). That is, 
this path is given by (q,  ,w{), (wo1  w ; ) ,  (wp, u$) ,  . . . , (wi? w:). Suppose (wi, u()  
has odd depth. Using the path formula in  Cla.im 2 the following holds, 

for a.11 i := 1,.  . . ,y .  

Pr[g(w;) @ S ’ ( W ~ )  = ‘ ~ i  I E ( f  ~ I )  A g(7~1)  = g ; ]  
= P r [ g ( w a ) @ g 1  - u 1 @ u , e i o p @ ~ ~ ~ @ 3 u t  1 E ( i - l ) A g ( w 1 )  =s11 

By Chiin 4, u), is not, a left coordinate for any node wit,li breadt,li-first order less 
than i .  Hence, the everit g ( w ; )  @ gl = u1 @ ua @ . . . @ 0, is independent of t’he 
event E ( i  - 1 )  A g(w1) = i j l and t,lius t,he above probability is 2-”. 

The analysis is similar in  t,he case t1ia.t (u)i, w:) has eveii dept,li. 
m 
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Before coiiipletiiig tlie ma.in theorein, let us state tlie following corolla.ry of 
Leiiiina 2. 

Corollary 2 The outputs of a butterfly Iransformaiaon are k-uuse Independent 
a# the dependency graph of the znputs raiitaans n o  aliernatang cycles of length k .  

Proof: Tf there is aii alternating cycle of length k in tlie inputs then tlie corre- 
sponding outputs sum to zero as before. To show t,he converse coiisider any k 
outputs and their corresponding inputs. Apply Lemma 2 to dependency graph 
induced by these input nodes. There is no alteriiatiiig cycle in  this dependency 
graph by hypothesis, and hence all k outputs are independent. I 

Let us now return t80 the proof of the main theorem. By Lemma 2, if t’lie 
dependency graph of the outputs of the first butterfly ( wl, wi), . . . , (wq, ‘1~;) does 
not contain an alternating cycle, then the outputs of the second butterfly are 
uniform aiid independent,. Hence, the a,dvaiitage of an a.dversary is houiided from 
above by the probability thak the dependency gra.pli of (wl, to:), . . . ,(wP, uii) 
contains an alternating cycle. 

The  number of possible alternating cycles of length 2 j  on q nodes is q ! / ( y  - 
2 j ) ! j .  Hence the probabilit,y that  there is an alteriiat,iiig cycle is 

assumiiig y 2 / P n  < 1. 
This concludes t,he proof that the security of t8he Beaes t,ra.iisforma.tioii is 

O(an). The proof t,lia.t. the security is O(an) is easy and omitted due to lack of 
space. 

Lemma 3 Thp modzjied Renes tralzsforntatzoii h a s  securzty O(2.) 

Proof Sketch: I t  can be shown that the probability t81iat the lop hut.terfly 
produces an alternating cycle of length 2 j  is 5 2-2-1”. But we omit the details. 
I 

Finally, let us slcetirh the proof of the iiiiniiiiality of the modified Belies 
transformation. 

Proof Sketch of Theorem 4. When one of the edges of the top butterfly is 
deleted it is easy to creat#e a sequence or q inputs which yields an alterna.ting 
cycle of length two in the interiiiedia,t,e variables wit81i probabilit,y 0 ( y 2 / 2 ” ) .  

When one of the edges of the bott,oni butkrfly is deleted i t  is easy to show 
that  either the left or right hand output repeats wit,li probability a.pproxima.tely 
twice as 1a.rge as for a raildoill function. I 
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6 Open Questions 

A natural open problem is bounding the query securit.y for the  five-round Feistel 
transformation. A related problem is determining the number of rounds needed 
to achieve query security 2n. 

Unfortunately, n-bit, truly raiidoin primitives are not available for values of 11 

of interest. In such a case the actual security or the Belies or Feistel coiistriictmion 
depends a great deal on the quality of t,he underlying primitive. For exaiiiple, 
with n = 32, the  four-round Feistel traiisforinatioii with truly random fuiictioris 
requires approximately 21G queries to distiiiguish from a truly random 64-bit 
function. However, when t,lie truly randoiii fuiictioiis are instantiated by S-boxes, 
differeiit,ial cryptaiialysis [4] needs only 16 chosen plaintext, queries (or 233 known 
plaintext queries) for the independent key case. (See also, [13, 181.) However, 
additional rounds appear to add iiicreasiiig amounts of security. Shedding light 
on how additional rounds of the Feistel or Renes traiisformatioii may improve 
security i r i  the coiiiplexity~tlieorelic settiiig is ail important open problem. 
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