
New Convertible Undeniable Signature
Schemes

Ivan Damgkd
Aarhus University, Computer Science Department, BRICS,

Ny Munkegade, DK-8000 Arhus C
and

Torben Pedersen
Cryptomathic,

Arhus Science Park, Gustav Wieds Vej 10, DK-8000 Arhus C

Abstract. Undeniable signatures are like ordinary digital signatures,
except that testing validity of a signature requires interaction with the
signer. This gives the signer additional control over who will benefit kom
being convinced by a signature, and is particularly relevant when signing
sensitive, non-public data. Convertible undeniable signatures offer addi-
tional flexibility in that there is a separate verification key that can be
used to verify a signature (without interaction). This allows the signer
to delegate the ability to verify signatures to one or more participants,
and ultimately to convert all signatures to ordinary ones by making the
verification key public. While provably secure theoretical solutions exist
for convertible schemes, earlier practical schemes proposed have either
been broken or their status as far &s security is concerned is very un-
clear. In this paper, we present two new convertible schemes, in which
forging signatures is provably equivalent to forging El Gamal signatures.
The difficulty of verifying signatures without interacting with the signer
is based on the factoring problem for one of the schemes and on the
Diffie-Hellman problem for the other scheme.

1 Introduction and Related Work

Undeniable signatures are like ordinary digital signatures, except that testing
validity of a signature requires interaction with the signer. There must be an
interactive protocol, both for verifying and disavowing a signature. This gives
the signer additional control over who will benefit from being convinced by a
signature, and is particularly relevant when signing sensitive, non-public data:
Two parties entering into a confidential business agreement will of course want
each other to be committed to the deal, but will certainly not want the contents
of the agreement to become public, together with a signature anyone can verify.
Undeniable signatures are clearly more suitable for this situation than classical
ones, since the signer then has the option of saying "no comments" if the data
and signature is published e.g. by the press. But note that in case of a legal
dispute, he can still be required to confirm or deny the signature and could be
considered bound to the signature if he refuses to cooperate.
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 372-386, 1996.
0 Springer-Verlag Berlin Heidelberg 1996

373

Undeniable signatures were first introduced by Chaum and van Antwerpen
[CvASO], who proposed a scheme based on discrete logarithms. The existence
of undeniable signatures was proved to be equivalent to existence of one-way
functions by Micali [MicSO].

In [DY91], Desmedt and Yung point out that a group of mutually distrusting
verifiers could all get convinced about a signature while only executing one
verification protocol with the signer. In general this requires that the verifiers
do a multiparty computation. Since such computations are often feasibly only in
theory, this may not be a very realistic attack. Nevertheless, it can be prevented
completely using a technique known as designated verifier protocols suggested by
Jakobson et al.[JKR96] (based partly on ideas by Chaum). In such a protocol,
only the verfier whose public key is used in the proof will be convinced. The
protocols we present in this paper can all be turned into designated verifier
protocols.

Convertible undeniable signatures offer additional flexibility in that there is a
separate verification key that can be used to verify a signature (without interac-
tion). This allows the signer to delegate the ability to verify signatures to one or
more participants, and ultimately to convert all signatures to ordinary ones by
making the verification key public. As an application of this, consider the prob-
lem of keeping digital records of confidential political decisions. Authenticating
such records with standard signatures is hardly acceptable: if the data leak to
the press, anyone can verify the signatures. Undeniable signatures are clearly
more suitable in this respect. However, such records usually become publicly
accessible after some years, and should therefore also become publicly verifiable.
However, the signer who generated the undeniable signatures may at this point
be unable to handle the verification requests that may now be submitted to him:
it may be infeasible because of the number of requests to handle, or the signer
may not even be present. This can be solved using a convertible scheme: the
signer could make the verification key public after a certain period, or give it
initially to a trusted third party, who would release it later.

Even if signatures are never converted in the above sense, convertible schemes
can still be useful: in many applications, signatures are generated once, but
verified many times. If there is a separate verification key, it can be distributed to
a large number of locations. This facilitates handling many verifications without
compromising security of the secret key needed to generate signatures.

Convertible undeniable signatures were introduced by Boyar, Chaum, Dam-
gBrd and Pedersen [BCDPSl], who proved that such schemes exist if and only
if one-way functions exist. They also proposed a practical scheme based on the
discrete logarithm problem. This scheme, however, has recently been broken
by Markus Michels [Mic95]. He also proposed a modification that seems secure
against this attack, but the modified scheme does not seem to have a provable
relation to any well established intractability assumption.

In this paper, we present two new convertible schemes, in which forging sig-
natures is provably equivalent to forging El Gamal signatures. The difficulty of
verifying signatures without interacting with the signer is based on the factor-

374

ing problem for one of the schemes and on the Diffie-Hellman problem for the
other scheme. The schemes are provably secure under appropriate intractability
assumptions for the underlying signature and encryption schemes.

2 Definitions and Notation

In this section we define the concept of a (convertible) undeniable signature
scheme. We use the standard concepts of interactive Turing machines, interactive
proof systems and zero-knowledge without further explanation. The reader is
referred to [GMR89] for details.

An undeniable signature scheme consists of the following 6 components:

- A Key generator algorithm GEN. This is a probabilistic polynomial time al-
gorithm, which receives lk as input, where k is a security parameter, and
generates as output a triple of keys (Ks, Kv, Kp), called the secret, verifi-
cation and public key, respectively. The secret key Ks is used by the signer
to create undeniable signatures, while the keys KV and K p are used by the
signer and verifier, respectively, in the confirmation and disavowal protocols.
The scheme defines a set of legal public keys called L. Any K p generated by
GEN must be in C.
For some schemes, it will be the case that Kv = Ks. For others, including
the convertible ones, they will be different. To apply the scheme, the signer
will run GEN and publish Kp, while keeping KS and KV €or himself. For
convertible schemes, he may publish KV at some later time, or distribute it
to a limited set of parties.

- A Signature algorithm SIGN. This is a probabilistic polynomial time algo-
rithm, which receives a secret key K s and a message m, and outputs a
signature s. The message, resp. the signature are in M resp. S, which are
sets of binary strings called the message space resp. the signature space. We
note that since SIGN is allowed to be probabilistic, 8 may not be uniquely
determined from m and Ks.

- A mapping VALID which given a public key K p E C and a message m E M
uniquely identifies a subset of the possible signatures. The intuition is that
V A L I D (~ , K ~) is the set of signatures valid w.r.t. a given public key and
message.

- A Verification protocol (C, VC). This is a pair of interactive polynomial time
Turing machines called the Confirmer and the Verifier, The common input
consists of a message m E M , a string z E S, and a public key K p . The
confirmer receives as private input a verification key Kv. Intuitively, x is a
signature, which the confirmer claims is valid w.r.t. m and K p . The protocol
is designed to convince V, about this.

- A Disavowal protocol (0, Vo). This is a pair of interactive polynomial time
Turing machines called the Denier and the Verifier. The common input
consists of a message m E M , a string z E 2 and public key Kp. The denier
receives as private input a verification key Kv. Intuitively, z is a signature,

375

which the denier claims is invalid w.r.t. m and K p . The protocol is designed
to convince VD about this.

- A Signature simulator SIGN^^,. This is a probabilistic polynomial time al-
gorithm which receives a message m and a public key K p as input and
outputs an element in S called a simulated signature. The intuition is that
a simulated signature should look like a real signature to anyone who knows
only public information. Therefore someone who receives a message and a
purported signature from an untrusted source cannot tell on his own if the
signature is valid, since it might as well be a simulated one.

In order for the scheme to make sense, the following basic properties are required
from its components:

- The signature algorithm always produces valid signatures. More formally:
Let the triple (Ks , Kv, K p) be a possible output from GEN. Then, on input
(m, Ks), SIGN always produces an output in VALID(^, Kp).

- The signer can always confirm a correct signature without revealing any side
information, but cannot convince the verifier that an incorrect signature is
valid. As a part of this proof, he may need to also convince the verifier that
the public key was correctly generated. More formally:
The confirmation protocol is a zero-knowledge interactive proof system for
the language { (m, z, Kp)l Kp E C and z E VALID(^, Kp)}, where we require
completeness with probability 1.

- The signer can always disavow an invalid signature (no matter how it was
produced) without revealing any side information, but cannot convince the
verifier that a valid signature is incorrect. As a part of this proof, he may
need to also convince the verifier that the public key was correctly generated.
More formally:
The disavowal protocol is a zero-knowledge interactive proof system for the
language {(m, z , Kp)l K p E L and z # VALID(^, Kp)) , where we require
completeness with probability 1.

We have required that both protocols, in addition to the statement on z , convince
the verifier that K p E C. Formally, this is necessary since V A L I D (~ , K ~) is
undefined if K p # C. There may be a very real problem behind this, since for
some schemes the signer could cheat in the verification or disavowal if K p # C.

For some schemes, including the ones we present here, C is polynomial time
recognisable, in which caSe there is nothing extra to prove, the verifier can check
himself that K p E C.

In the following, an undeniable signature scheme should be taken to mean a 6-
tuple (GEN, SIGN, (C, VC), (D, VD), VALID, SIGNSim) with the above description
and properties. So far, we have only covered part of the security we want (by
requiring (C, VC) and (0, VD) to be zero-knowledge interactive proofs). The rest
of the security comw in two parts, one dealing with security against verifying
signatures without knowing, KV , and one dealing with security against forgeries.

For the first part we need to introduce a distinguisher enemy which is trying
to verify a signature.

376

Definition 1. A distiaguisher enemy ED is a probabilistic polynomial time al-
gorithm, which can be used in the following type of experiment:

1. GEN is executed on input lk, let the output be Ks, Kv, K p . As input, ED

2. ED may now make any number of status requests and signature requests.
gets Kp and lk.

In a status request, ED produces a pair (m, z), and receives a 1-bit answer
which is 1, iff E E VALID(m, K p) .
In a signature request, ED produces a message m and receives the result of
running SIGN on input m, Ks.

3. Let M be the set of messages occurring in status or signature requests done
in step 2. Now ED outputs a message rno # M, and receives a string ZO,

which is either the result of running SIGN on m, Ks, or the result of running
 SIGN^^,,, on m, Kp. We refer to these two cases as the real Case and the
Simulated case, resp.

4. ED may now make any number of status or signature requests, provided
that mo does not occur as the message in any request, and zo does not occur
in any status request.

5. Finally ED outputs 1 bit.

We must now define what it means that ED is capable of distinguishing the
simulated and the real case:

Definition2. Let preal(k), resp. psim(k) be the probability that ED outputs
1 in the real, r ap . the simulated case above. These probabilities are taken over
the random choices made by ED, GEN and SIGN.

ED is successful against the scheme defined by the 6-tuple

(GEN, SIGN, (C, VC), (D, VD), VALID, SIGN^^^),

if there is a polynomial P such that for infinitely many k,

The reader may notice that the verify and disavowal protocols do not enter
explicitly into the definition of a distinguisher enemy. We could have included
them by saying that the enemy at each status request, in addition to the status
of z , also gets to execute the appropriate protocol playing the role of Vc or V,.
However, the success of such an enemy would imply the success of an enemy of
our kind: we have demanded that the protocols be zero-knowledge, and SO the
executions could be replaced by simulations without affecting significantly the
final output.

We also remark that we have not considered parallel executions of the verify
and/or disavowal protocols. In theory, this can always be justified, if the signer
simply refuses to execute more than one protocol at a time. Even if this is not
done in practice, it does not seem to lead to problems for the concrete schemes
we present: although zero-knowledge is generally not closed under parallel com-
position, the concrete protocols involved here can reasonably be conjectured to
be secure, even when executed in parallel.

377

We can now finally state:

Definition 3. An undeniable signature scheme is said to be signature indistin-
guishable if no distinguisher enemy has success against it.

We now come to the other part of security. For this, we need a new kind of
enemy:

Definition4. A signature enemy Es is a probabilistic polynomial time algo-
rithm, which can be used in the following type of experiment:

1. GEN is executed on input lk, let the output be Ks , Kv, Kp. As input, Es

2. Es may now make any number of status requests and signature requests (see

3. Let M be the set of messages occurring in status or signature requests done

gets K p and lk.

Definition 1).

in step 2. Now Es outputs a message mo g! M , and a string zo.

We must now define what it means that Es has success:

Definition 5. Let psig(k) be the probability that ES outputs (mo, ZO) such that
zo E VALID(m0, Kp). This probability is taken over the random choices made
by ED, GEN and SIGN.

Es is successful against the scheme

(GEN, SIGN, (C, VC), (I), VD), VALID, S I G N S ~ ~) ,

if there is a polynomial P such that for infinitely many k,

Definition6. An undeniable signature scheme is said to be unforgeable if no
signature enemy has success against it.

Finally, we need to define the additional property that a convertible scheme
should have. From an undeniable signature scheme S described by the 6-tuple
(GEN, SIGN, (C, VC), (D, VD), VALID, S I G N S ~ ~) , we can always build an ordinary
signature scheme with secret key K s and public key (Kv, K p) . Signatures are
generated by running SIGN and can be verified by simulating the verification
protocol. This requires no interaction, when Kv is known (although for practical
schemes there may be more efficient ways to verify). We call this the derived
signatzlre scheme of S . In cases where Kv = Ks , the derived scheme is of course
totally insecure. But for convertible schemes, we would like it to be secure in the
standard sense of Goldwasser, Micali and Rivest (refer to [GMR88] for details):

Definition7. An undeniable signature scheme is said to be convertibze, if its
derived signature scheme is not existentially forgeable under an adaptive chosen
message attack.

378

To build a convertible scheme, it seem like a natural idea to generate an or-
dinary signature and encrypt it under some public-key probabilistic encryption
scheme. Indeed, this idea can be quite easily proved to work, if the signature and
encryption schemes are secure in a strong enough sense. However, even if those
schemes were practical, the combined result will not be practical in general. This
is because the only general way to build verification and disavowal protocols is
by secure circuit evaluation, which will be polynomial time, but usually horrible
in practice. Thus, to preserve efficiency in a practical sense a more careful way of
doing the combination is needed. We show two examples of this in the following
sections.

3 Two Schemes

This section presents two convertible undeniable signature schemes obtained
from the El Gamal signature scheme [EG85]. In El Gamd signatures the public
key is a triple (p , t;g, h), where p is a prime, t divides p - 1 and g generates the
subgroup, G, of Z, o f order t . Finally, h = gT mod p , where 2 E {0,1,. . . , t - 1)
is the secret key. The signature on a message m E {0,1,. . . , t - 1) is a pair
(r, s) E G x Z t satisfying gm = hrr8 mod p (when T is in the exponent, the
binary representation of T is interpreted as a number in Z t) . A signature is
made by choosing b E Z 2; at random, computing r = gb mod p and finding s as
the solution to the equation m = T Z + bs mod t .

For security and efficiency reasons, a hash value of the message and not the
message itself is usually signed. In the following it will therefore implicitly be
assumed that m is the result of hashing the actual message using an agreed hash
function. This also means that the message space of the two schemes presented
below is (0, l}*.

Both convertible undeniable signature schemes below are obtained by en-
crypting the second part of the signature (.). One scheme uses Rabin encryption
[Rab79] and the other uses Diffie-Hellman encryption [DH76, EG85].

Some common notation will be used in addition to that already introduced.
If a is an element of a well defined group, ord(a) denotes the order of a, <a>
denotes the subgroup generated by a, and log, b denotes the discrete logarithm
of b €<a> with respect to a.

Both schemes require that p = w t + 1, where t is of a special form and w E N .
One way to achieve this is to first generate t as required and then p = wt + 1
as small as possible. In [Wag791 it is argued that given a random t , p can be
expected to be less than t log; t .

3.1 -bin Encryption of 8

This scheme assumes that t is selected as a product of two large primes q1 and q2.

Knowing the factorisation o f t allows verification of signatures. Thus the scheme
can be described as follows:

379

- The key generator, generates p and t , where t is the product of two k-
bits primes q1 and 92. Next, using the factorisation of p - 1, g of order t
and z E Z are chosen, and h = gT mod p is computed. The public key
is K P = (p, t , g, h), the secret key is KS = z and the verification key is

The language, C, of legal public keys depends on a parameter kmin and is
defined as the set of tuples (p, t , g, h) such that gt = h* = 1 mod p and all
divisors of t have binary length at least kmi,,.
Remark Membership of C can be verified in polynomial time, whenever
kmin is logarithmic in k. C allows keys for which g and h have order less
than t , and t is the product of several small primes.

- A signature on a message m is pair (r ,E(s)) computed by making an El
Gamal signature (T, s) on m and computing E(s) = s2 mod t .

- Given a signature (T, E) on m, let u denote gmh+ mod p . Then the set of
valid signatures on m is defined as follows:

Kv = (Q1, Q Z) .

VALID(m, K p) = {(T, E) E G X z t 13s E Z i : u = T' A rE = us} I

Remark Clearly, SIGN(^, z) E VALID(m, Kp). On the other hand, if (T, E) E
V A L ~ D (~ , K p) , then E = s2mod ord(r) for some s such that (T, s) is a sig-
nature on m. If the signature is constructed using SIGN then ord(r) equals
t , but in general they may be different. This will, however, not cause any
security problems.

- The signature simulator selects T E G at random and E(s) as a random
quadratic residue modulo t .

To complete the description of the schemes, protocols for verifying and disavow-
ing signatures must be given. The definition of VALID(m, K p) shows that these
can be based on zero-knowledge proofs of equality and inequality of discrete
logarithms.

For verification, the variant of Schnorr [SchSl] presented in [CP93] can be
used to obtain a zero-knowledge proof for V A L I D (~ , K ~) . If the challenge is
selected from a suitable set (e.g. among 2% possibilities) only two or three it-
erations are needed making the verification protocol practical, and the protocol
can still be simulated efficiently. Another possibility is the cut-and-choose prote
col of [CEG87]. However, the zero-knowledge protocol of [ChaSl] does not work
immediately, since the signer may cheat if u and T are in different subgroups.

The protocol for disavowal can be obtained by techniques similar to those
used for denying signatures in [BCDPSl].

3.2 Diffie-Hellman Encryption of 8

This scheme assumes that t is a prime. The number s is then encrypted using
Diffie-Hellman encryption modulo t . The scheme is defined as follows:

- The key generator, generates a k-bits prime t and a prime p of the form
p = w t + 1. Next, Q of order t and 2 E Zy are chosen and h = g5 mod

380

p is computed. Furthermore, a generator o of Z and w E {0,1,. . . , t -
1) are selected and P is computed as ow mod t . The public key is K p =
(p, t,g, h,a,B), the secret key is Ks = x and the verification key is Kv = w.
The language, C, of legal public keys, is defined as the following set of tuples
(p, t , g, h, a, such that t is a prime, gt = ht = 1 mod p and both (Y and
/3 generate Z t . The owner must publish the factorisation of t - 1 allowing
other parties to verify that Q and p generate Z l .
Remark Unlike the previous scheme, this one allows several persons to use
the same p , t , g and a. If these numbers are published a priori as system
parameters, the key generator just has to select x and v and compute h and
P*

- A signature on a message rn is a pair (r, E (s , p)) computed by making an El
Gamal signature (T, s) on m, selecting p E Z t - l at random and computing
E(s ,p) = (o p , spp) modulo t .

- Given a signature (T, E) on rn, let u denote gmh-P mod p and let E =
(E l , E2). Then the set of valid signatures on m is defined as follows:

 VALID(^, K P) =

{ (r , E) E G x Z i x 2; 13s E Z t : logap = log,,(Ezs-') A u = r " } .

Clearly, SIGN(^, x) E VALID(^, Kp).

elements of z r. - The signature simulator selects T E G at random and E as a pair of random

Next protocols for verifying and disavowing signatures are described. Given a
possibly false signature (r, E) on m, let E = (nl, n2) and let u = gmh-' mod p
as above. For verification the verifier must show that (zl, 22) encrypts a number,
s such that u = rs mod p and for disavowal the denier must show that (21, 22)
encrypts a number s such that u # r8 mod p. An interactive bi-proof for this is
depicted in Figure 1. A bi-proof system uses the same protocol for verification
and disavowal. The verifier will accept the verification or the disavowal depending
on the outcome of the protocol (see FOOSl]) for details).

This protocol requires a proof that E' is an encryption of ss' (see Figure 1
for the notation). Such a proof can €or example be obtained using the efficient
zero-knowledge proof in [ChaSl]. However, in the case of verification the prover
can do even better, by sending p + p' mod t . This is possible if the prover knows
p (e.g., as a consequence of choosing p using a function from a family of pseudo
random functions [GGMM]). In both cases the following holds:

Proposition8. If the protocol in Figure 1 is repeated 1 = O(k) tames it is a
perfectly zero-knowledge proof system for VALID(m, Kp) . I n general a cheating
prover can convince a verifier with probability at most 2-'.

Proof
Completeness and Soundness
Completeness is clear by inspection of the protocol.

The verifier first checks that (r, E) E G x Z : x Z i. In particular this implies that r
must have order t . If this fails the verifier will reject in case of verification and accept
in case of disavowal.
Using v, the prover next computes s such that (11, 22) is an encryption of s. Then the
following is repeated 1 times:

1. The prover chooses p’ E Z t - l and 8’ E 2: at random and sends E’ =
(adf , zps’pp‘) and w = a” mod p to the verifier.

2. The verifier chooses b E (0,l) at random and sends b to the prover.
3. If b = 0 the prover sends back the pair (d , p’). Otherwise, if b = 1 the prover sends

back 8s’ mod t and proves (possibly interactively) that E’ is an encryption of 8d.
4. If b = 0 the verifier checks that E‘ and w are computed ae in Step 1. If b = 1 the

verifier checks the proof of the decryption of E‘. If this fails the verifier rejects the
proof. Otherwise, if the prover is verifying a signature, the verifier accepts if

p’ =wmodp

and if the prover is disavowing a signature the verifier accepts if rssf # w mod p

Fig. 1. Bi-proof system for V A L I D (~ , K ~) (if 1 = I c) . The common input is
(K p , T , U , 21, %a) and the private input of the prover is v such that p = a” mod t.

For soundness first observe that we may assume that r has order t , since
otherwise the verifier would immediately reject. We now show that if for a t least
one of the iterations, the prover is capable of satisfying the verifier for both b = 0
and b = 1, then the input signature is valid. This immediately implies that the
prover can cheat with probability a t most 2-[. In the initial message of the round
the prover sends an encryption (E; , E i) and a number w. A correct answer to
b = 0 is a pair of numbers s‘, p’ such that

A correct answer to b = 1 is a number d for which rd = w for verification and
rd # w for disavowal. Moreover we know that (E;, Ei) encrypts d (since the
prover decrypts it directly in the verification case), i.e. that for some 7

By putting the two equations on (E l , Ez) together, we can obtain that (a, zz) =
(aY--P‘, s’-’dP-P’) where s’-l denotes the multiplicative inyerse modulo t . Since
t is also the order of T , the fact that for verification u@ = w = rd implies
that u = raf-ld. Thus we have shown that for verification, (zl, z2) encrypts the
discrete log base T of u, which is the condition specified in the definition of
 VALID(^, Kp).
Zero- Know ledge
We exhibit a simulator for one round of the verification case:

382

1. Choose c to be 0 or 1 at random.
2. If c = 0, follow the prover’s algorithm for computing E‘ and w = 21“ and

send them to the verifier.
If c = 1, choose d E 2; at random and compute E’ as an encryption of d.
Compute w = rd and send E’ and w to the verifier.

3. Receive b from the verifier.
4. If c # b, rewind the verifier and go to step 1.

If c = b = 0, send s‘, p‘ to the verifier.
If c = b = 1, send d to the verifier and convince him that E’ encrypts d
(following the prover’s procedure for doing this).

To simulate I rounds, just repeat this simulation.
Observe that the prover’s first message is always an encryption of a random

number d , and a w such that w = rd. Hence the simulators first message has the
same distribution as the prover’s and is in particular independent of c. Hence the
expected number of rewinds is 2 and the complete simulation runs in expected
linear time. It is easy to check that the answers generated by the simulator in
step 4 have the same distribution as the prover’s responses. Thus the simulation

When the protocol is used to deny signatures, it is only computationally zerc-
knowledge. The problem is that the for the case b = 1 it does not seem possible
to come up with both the product ss‘ and us‘ since u1/8 is not known. Instead,
this ease is simulated by choosing ss‘ at random, making a random encryption
of ss’ and instead of us‘ a random number in <g> is selected. To show that this
simulation works, the following assumption is necessary:

Assumption EDL If p , t , Q and p are selected as described by GEN, then given
a pair (a , b) of elements of Z it is not feasible to say if (a, b) is chosen at random
or as a random pair satisfying log, p = log, b.

This assumption has previously been used in [CvASO, BCDPSl].

PropositionB. Under Assumption EDL, the protocol in Figure 1 is a compu-
tationally zero-knowledge proof system for t h e compEement of V A L X D (~ , KP).
Proof
Completeness and soundness
Again completeness is clear. For soundness first observe that we may assume
that r has order t , since otherwise the verifier would immediately accept. As
in the proof of Proposition 8 correct answers to both b = 0 and b = 1 allows
us to write (q, z2) = (a r -p ’ , s’-ldp--P’) where sr-l denotes the multiplicative
inverse modulo t . We know that us’ = w # rd , whence u # r8’-ld. Since we still
have that s’-ld is the number encrypted in (zl, z2), the condition for being in
 VALID(^, K p) is not satisfied.

This shows that given that the prover cannot cheat in any of the proofs that
(E i , E$> encrypts d, his chance of cheating is at most 2-I. Let t be the probability
with which the prover can cheat in one such proof. Then the probability that
he can cheat in any of the 1 proofs is at most 16. We may assume that E is
exponentially small in k - it may even be 0, if the prover can decrypt the pair

is perfect. I7

383

directly. Therefore also Zc is exponentially small. This clearly implies that his
overall chance is exponentially small in Ic (if we use 1 = I c) , and is in fact 2-’ if
c = 0.
Zero- knowledge
The simulation works as follows:

1. Choose c to be 0 or 1 at random.
2. If c = 0, follow the prover’s algorithm for computing E‘ and w = us’ and

send them to the verifier.
If c = 1, choose d E 2: at random and compute E’ as an encryption of d.
Choose w at random and send E’ and w to the verifier.

3. Receive b from the verifier.
4. If c # b, rewind the verifier and go to step 1.

If c = b = 0, send s’, p’ to the verifier.
If c = b = 1, send d to the verifier and convince him that E‘ encrypts d
(following the prover’s procedure for doing this).

Let the simulators first message be the encryption Ei, Ei and the number

w = us‘ while if c = 1, w is independent of s’. Distinguishing the two cases
is at least as hard as deciding if log,(Ejz,’) = loga(s’-lE.$zgl). Hence if the
probability that b = c is significantly different from 1/2, the verifier could be
used to construct an algorithm contradicting assumption EDL. Hence, under
EDL, the simulation runs in expected polynomial time.

This also shows that the cases b = 1 and b = 0 occur in the simulation
with probabilities as in the real conversation except for a superpolynomially
small error. Now note that the distribution of the simulation given that b = 0
is the same as for the conversation, whereas the distribution given that b = 1 is
different from the conversation. However, by the same ,argument as before the
two cannot be distinguished in polynomial time under assumption EDL. 0

To simulate 1 rounds, just repeat this simulation.

w. Let s’ be the number encrypted by the pair (EjZi I ’ , E’z,’). Now, if c = 0,

Remark The verification protocol is not as efficient aa the one for the scheme
based on Rabin encryption, however this scheme offers additional flexibility, such
as

- The signer can convert single signatures (selective conversion as described
in [BCDPSl]) by releasing p.

- If the signer chooses a list of 8-values, different P’s can be used for different
classes of signatures. All signatures in one class can then be converted by
publishing the corresponding log, 8.

4 Security of the Schemes

This section analyses the security of the two schemes, with respect to forgeries
and recognising signatures.

384

4.1 Forging Signaturas

For both schemes it is sufficient (and necessary, if the signatures are converted)
to show that the they are secure if the verification key is published.

Proposition 10. The schemes using Rabin respectively Difie-Hellman encryp-
tion are unforgeable, i f the El Gamal scheme combined with the chosen hash
function is secuw against adaptively chosen message attacks for primes of the
form wt + 1 where t is the product of two large known primes respectively t is a
large known prime.

Proof sketch
Given a method for forging signatures in one of the two schemes, signatures can
be forged in the corresponding El Gamal scheme using the following adaptively
chosen message attack:

1.

2.

3.

Generate the verification key, and the corresponding part of the public key
in the undeniable signature scheme.
Execute the attack against the undeniable scheme with the resulting pub-
lic key. Whenever, an undeniable signature on a message, rn, is requested
in this attack, ask for an El Gamal signature on m and encrypt s to ob-
tain the required undeniable signature. Whenever, the attacker asks if z E
V A L I D (~ , K ~) for some message m, this is answered by decrypting I and
verifying the signature.
Finally, the attack outputs an undeniable signature on a new message, mo.
This signature can be made into an ordinary El Gamal signature by decrypt-
ing s.

0

Corollary 11. Both schemes are convertible i f the El GamaE schemes they are
based on are secure against adaptively chosen message attacks.

5 Signature Indistinguishability

Recall the definition of signature indistinguishability from Section 2. First, note
that for both schemes, it is enough to argue indistinguishability in the case
where the enemy knows Ks, as this can only make his task easier. In this case,
being able to get signatures on chosen messages is of no additional help. In the
following, an active, resp. passive attack is one where the enemy uses, resp. does
not use the oracle for testing validity of signatures of his choice,

5.1

When the enemy is given a purported signature (r, E) on m, all he knows is that
if the signature is valid then the s determined by the equation m-xr = bs mod t
(where b is the discrete log of r base g) equals the s’ determined by the equation

The Scheme using Rabin Encryption

385

sr2 = E mod t . If the enemy neither knows b nor the fadorisation of t this seems
to be difficult to decide.

In an active attack, the enemy may try to manipulate the equations in order
t o get the oraclel to solve his problem. For example, if rn' satisfies that rn -
xr = rn' - xrp- for some p, then (rp-', Ep2) E V A L I D (~ ' , K ~) iff (r , E) E
V A L I D (~ , K ~) . Recall, however, that m is actually a hash value, so that this
attack is useless, unless the hash function can be inverted on m'.

We therefore conjecture that if discrete log mod p , factorisation of t , and
inversion of the hash function are hard problems, then this scheme is signature
indistinguishable.

5.2

In this scheme, the enemy must decide, given m, T , (El, E2) whether the s deter-
mined by the equation m - x r = bs mod t (where b is the discrete log of r base g),
is also the value encrypted by the pair (El , Ez). Even if the enemy knows b, and
hence s, he is left with the problem of deciding whether log, p = logEl (E~s-').
Hence, in a passive attack, the enemy's problem is a t least as hard as deciding
equality of discrete logs (assumption EDL).

In an active attack, the enemy may try as above to exploit the multiplicative
properties of the encryption. Indeed, manipulations similar to the example above
are possible. Once again, however, this seems useless, unless the hash function
can be inverted. We therefore conjecture that if assumption EDL holds, and
the hash function used is oneway, this scheme is signature indistinguishable.
We remark that exactly the same assumptions were used for the scheme from
[CvASO] , the oldest surviving undeniable signature scheme.

The Scheme using DifReHellman Encryption

References

[BCDPSl] J. Boyar, D. Chaum, I. Damgkd, and T. Pedersen. Convertible Undeni-
able Signatures. In Advances in Cryptology - proceedings of CRYPTO 90,

[CEG87]

[ChaS 11

[CPQ3]

[CvASO]

[DH76]

Lecture Notes in Computer Science, pages 189 - 205. Springer-Verlag, 1991.
D. Chaurn, J.-H. Evertse, and J. van de Graaf. An Improved Protocol for
Demonstrating Possession of a Discrete Logarithm and some Generaliza-
tions. In Advances in Cryptology - proceedings of EUROCRYPT 87, Lecture
Notes in Computer Science, pages 127-141, 1987.
D. Chaum. Zero-Knowledge Undeniable Signatures. In Advances in Cryp-
tology - proceedings of EUROCRYPT 90, Lecture Notes in Computer Sci-
ence, pages 458 - 464. Springer Verlag, 1991.
D. Chaum and T.P. Pedersen. Wallet Databases with Observers. In Ad-
vances in Cvyptologp - pmceedings of CRYPTO 92, Lecture Notes in Com-
puter Science, pages 89-105. Springer-Verlag, 1993.
D. Chaum and H. van Antwerpen. Undeniable Signatures. In Advances
in Cryptology - proceedings of CRYPTO 89, Lecture Notes in Computer
Science, pages 212-216. Springer Verlag, 1990.
W. Diffie and M. E. Hellman. IEEE
Trans. Inform. Theory, IT-22(6):644-654, November 1976.

New Directions in Cryptography.

[DY91] Y. Desmedt and M. Yung. Weaknesses of Undeniable Signature Schemes.
In Advances in Cryptology - procedinys of EUROCRYPT 91, volume 547 of
Lecture Notes in Computer Science, pages 205-220. Springer-Verlag, 1991.
T. El Gamal. A Public Key Cryptosystem and a Signature Scheme Based on
Discrete Logarithms. In Advances in Cryptology - proceedings of CRYPT0
84, Lecture Notes in Computer Science, pages 10 -18. Springer-Verlag, 1985.
A. Fujioka, T. Okamoto and K. Ohta. Interactive Bi-Proof System and
Undeniable Signature Schemes. In Advances in Cwptology - proceedings of
EUROCRYPT 91, volume 547 of Lecture Notes in Computer Science, pages
243-256. Springer-Verlag, 1991,

How to Construct Random
kbctions. In Pmceedings of the 25th IEEE Symposium on the Foundations
of Computer Science, 1984.

[GMR88] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme
Secure against Adaptive Chosen Message Attack. SIAM JoumE on Corn-

[EG85]

F00911

[GGM84] 0. Goldreich, S. Goldwwfier, and S. Micali.

[GMR89]

[JKR96]

[MicSO]
[Mic95]

[Rab79]

[Schgl]

wag791

puting, 17(2):281 - 308, April 1988.
S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of
Interactive Proof-Systems. S U M Journal of Computation, 18(1):186-208,
1989.
M. Jakobsson, K. Sako and R. Impagliazzo: Designated Verifier Prooh and
Their Applications, 1996. These proceedings.
S. Micdi, August 1990. Personal communication.
M. Michels. Breaking and Repairing a Convertible Undeniable Signa-
ture Scheme. Technical Report TR-95-10-D, University of Technologj',
Chemnitz-Zwickau, June 1995. To appear at ACM Security, March 1996.
M. 0. Rabin. Digitalized Signatures and Public-Key Functions as In-
tractable as factorization. Technical Report MIT/LCS/TRSlS, Laboratory
for Computer Science, MIT, January 1979.
C. P. Schnorr. Efficient Signature Generation by Smart Cards. Journal of

S. S. Wagstaff Jr. Greatest of the Least Primes in Arithmetic Progression
Having a Given Modulus. Mathematics of Computation, 33(147):1073 -
1080, July 1979.

CqptoZogy, 4(3): 16 1-174 , 199 1.

	New Convertible Undeniable SignatureSchemes
	1 Introduction and Related Work
	2 Definitions and Notation
	3 Two Schemes
	3.1 Rabin Encryption of s
	3.2 Diffie-Hellman Encryption of 8

	4 Security of the Schemes
	5 Signature Indistinguishability
	5.1 The Scheme using Rabin Encryption
	5.2 The Scheme using Diffio-Hellman Encryption

	References

