
New Convertible Undeniable Signature 
Schemes 

Ivan Damgkd 
Aarhus University, Computer Science Department, BRICS, 

Ny Munkegade, DK-8000 Arhus C 
and 

Torben Pedersen 
Cryptomathic, 

Arhus Science Park, Gustav Wieds Vej 10, DK-8000 Arhus C 

Abstract. Undeniable signatures are like ordinary digital signatures, 
except that testing validity of a signature requires interaction with the 
signer. This gives the signer additional control over who will benefit kom 
being convinced by a signature, and is particularly relevant when signing 
sensitive, non-public data. Convertible undeniable signatures offer addi- 
tional flexibility in that there is a separate verification key that can be 
used to verify a signature (without interaction). This allows the signer 
to delegate the ability to verify signatures to one or more participants, 
and ultimately to convert all signatures to ordinary ones by making the 
verification key public. While provably secure theoretical solutions exist 
for convertible schemes, earlier practical schemes proposed have either 
been broken or their status as far &s security is concerned is very un- 
clear. In this paper, we present two new convertible schemes, in which 
forging signatures is provably equivalent to forging El Gamal signatures. 
The difficulty of verifying signatures without interacting with the signer 
is based on the factoring problem for one of the schemes and on the 
Diffie-Hellman problem for the other scheme. 

1 Introduction and Related Work 

Undeniable signatures are like ordinary digital signatures, except that testing 
validity of a signature requires interaction with the signer. There must be an 
interactive protocol, both for verifying and disavowing a signature. This gives 
the signer additional control over who will benefit from being convinced by a 
signature, and is particularly relevant when signing sensitive, non-public data: 
Two parties entering into a confidential business agreement will of course want 
each other to be committed to the deal, but will certainly not want the contents 
of the agreement to become public, together with a signature anyone can verify. 
Undeniable signatures are clearly more suitable for this situation than classical 
ones, since the signer then has the option of saying "no comments" if the data 
and signature is published e.g. by the press. But note that in case of a legal 
dispute, he can still be required to confirm or deny the signature and could be 
considered bound to the signature if he refuses to cooperate. 
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT '96, LNCS 1070, pp. 372-386, 1996. 
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Undeniable signatures were first introduced by Chaum and van Antwerpen 
[CvASO], who proposed a scheme based on discrete logarithms. The existence 
of undeniable signatures was proved to be equivalent to existence of one-way 
functions by Micali [MicSO]. 

In [DY91], Desmedt and Yung point out that a group of mutually distrusting 
verifiers could all get convinced about a signature while only executing one 
verification protocol with the signer. In general this requires that the verifiers 
do a multiparty computation. Since such computations are often feasibly only in 
theory, this may not be a very realistic attack. Nevertheless, it can be prevented 
completely using a technique known as designated verifier protocols suggested by 
Jakobson et al.[JKR96] (based partly on ideas by Chaum). In such a protocol, 
only the verfier whose public key is used in the proof will be convinced. The 
protocols we present in this paper can all be turned into designated verifier 
protocols. 

Convertible undeniable signatures offer additional flexibility in that there is a 
separate verification key that can be used to verify a signature (without interac- 
tion). This allows the signer to delegate the ability to verify signatures to one or 
more participants, and ultimately to convert all signatures to ordinary ones by 
making the verification key public. As an application of this, consider the prob- 
lem of keeping digital records of confidential political decisions. Authenticating 
such records with standard signatures is hardly acceptable: if the data leak to  
the press, anyone can verify the signatures. Undeniable signatures are clearly 
more suitable in this respect. However, such records usually become publicly 
accessible after some years, and should therefore also become publicly verifiable. 
However, the signer who generated the undeniable signatures may at this point 
be unable to handle the verification requests that may now be submitted to him: 
it may be infeasible because of the number of requests to handle, or the signer 
may not even be present. This can be solved using a convertible scheme: the 
signer could make the verification key public after a certain period, or give it 
initially to a trusted third party, who would release it later. 

Even if signatures are never converted in the above sense, convertible schemes 
can still be useful: in many applications, signatures are generated once, but 
verified many times. If there is a separate verification key, it can be distributed to 
a large number of locations. This facilitates handling many verifications without 
compromising security of the secret key needed to generate signatures. 

Convertible undeniable signatures were introduced by Boyar, Chaum, Dam- 
gBrd and Pedersen [BCDPSl], who proved that such schemes exist if and only 
if one-way functions exist. They also proposed a practical scheme based on the 
discrete logarithm problem. This scheme, however, has recently been broken 
by Markus Michels [Mic95]. He also proposed a modification that seems secure 
against this attack, but the modified scheme does not seem to have a provable 
relation to any well established intractability assumption. 

In this paper, we present two new convertible schemes, in which forging sig- 
natures is provably equivalent to forging El Gamal signatures. The difficulty of 
verifying signatures without interacting with the signer is based on the factor- 
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ing problem for one of the schemes and on the Diffie-Hellman problem for the 
other scheme. The schemes are provably secure under appropriate intractability 
assumptions for the underlying signature and encryption schemes. 

2 Definitions and Notation 

In this section we define the concept of a (convertible) undeniable signature 
scheme. We use the standard concepts of interactive Turing machines, interactive 
proof systems and zero-knowledge without further explanation. The reader is 
referred to [GMR89] for details. 

An undeniable signature scheme consists of the following 6 components: 

- A Key generator algorithm GEN. This is a probabilistic polynomial time al- 
gorithm, which receives lk as input, where k is a security parameter, and 
generates as output a triple of keys (Ks, Kv,  Kp), called the secret, verifi- 
cation and public key, respectively. The secret key Ks is used by the signer 
to create undeniable signatures, while the keys KV and K p  are used by the 
signer and verifier, respectively, in the confirmation and disavowal protocols. 
The scheme defines a set of legal public keys called L. Any K p  generated by 
GEN must be in C. 
For some schemes, it will be the case that Kv = Ks. For others, including 
the convertible ones, they will be different. To apply the scheme, the signer 
will run GEN and publish Kp, while keeping KS and KV €or himself. For 
convertible schemes, he may publish KV at some later time, or distribute it 
to a limited set of parties. 

- A Signature algorithm SIGN. This is a probabilistic polynomial time algo- 
rithm, which receives a secret key K s  and a message m, and outputs a 
signature s. The message, resp. the signature are in M resp. S, which are 
sets of binary strings called the message space resp. the signature space. We 
note that since SIGN is allowed to be probabilistic, 8 may not be uniquely 
determined from m and Ks. 

- A mapping VALID which given a public key K p  E C and a message m E M 
uniquely identifies a subset of the possible signatures. The intuition is that 
V A L I D ( ~ , K ~ )  is the set of signatures valid w.r.t. a given public key and 
message. 

- A Verification protocol (C, VC). This is a pair of interactive polynomial time 
Turing machines called the Confirmer and the Verifier, The common input 
consists of a message m E M ,  a string z E S, and a public key K p .  The 
confirmer receives as private input a verification key Kv. Intuitively, x is a 
signature, which the confirmer claims is valid w.r.t. m and K p .  The protocol 
is designed to convince V, about this. 

- A Disavowal protocol (0, Vo). This is a pair of interactive polynomial time 
Turing machines called the Denier and the Verifier. The common input 
consists of a message m E M ,  a string z E 2 and public key Kp. The denier 
receives as private input a verification key Kv. Intuitively, z is a signature, 
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which the denier claims is invalid w.r.t. m and K p .  The protocol is designed 
to convince VD about this. 

- A Signature simulator  SIGN^^,. This is a probabilistic polynomial time al- 
gorithm which receives a message m and a public key K p  as input and 
outputs an element in S called a simulated signature. The intuition is that 
a simulated signature should look like a real signature to anyone who knows 
only public information. Therefore someone who receives a message and a 
purported signature from an untrusted source cannot tell on his own if the 
signature is valid, since it might as well be a simulated one. 

In order for the scheme to make sense, the following basic properties are required 
from its components: 

- The signature algorithm always produces valid signatures. More formally: 
Let the triple (Ks ,  Kv, K p )  be a possible output from GEN. Then, on input 
(m, Ks), SIGN always produces an output in  VALID(^, Kp).  

- The signer can always confirm a correct signature without revealing any side 
information, but cannot convince the verifier that an incorrect signature is 
valid. As a part of this proof, he may need to also convince the verifier that 
the public key was correctly generated. More formally: 
The confirmation protocol is a zero-knowledge interactive proof system for 
the language { (m,  z, Kp)l Kp E C and z E  VALID(^, Kp)}, where we require 
completeness with probability 1. 

- The signer can always disavow an invalid signature (no matter how it was 
produced) without revealing any side information, but cannot convince the 
verifier that a valid signature is incorrect. As a part of this proof, he may 
need to also convince the verifier that the public key was correctly generated. 
More formally: 
The disavowal protocol is a zero-knowledge interactive proof system for the 
language {(m, z ,  Kp)l K p  E L and z #  VALID(^, Kp) ) ,  where we require 
completeness with probability 1.  

We have required that both protocols, in addition to the statement on z ,  convince 
the verifier that K p  E C. Formally, this is necessary since V A L I D ( ~ , K ~ )  is 
undefined if K p  # C. There may be a very real problem behind this, since for 
some schemes the signer could cheat in the verification or disavowal if K p  # C. 

For some schemes, including the ones we present here, C is polynomial time 
recognisable, in which caSe there is nothing extra to prove, the verifier can check 
himself that K p  E C. 

In the following, an undeniable signature scheme should be taken to mean a 6- 
tuple (GEN, SIGN, (C, VC), (D, VD),  VALID, SIGNSim) with the above description 
and properties. So far, we have only covered part of the security we want (by 
requiring (C, VC) and (0, VD) to be zero-knowledge interactive proofs). The rest 
of the security comw in two parts, one dealing with security against verifying 
signatures without knowing, KV , and one dealing with security against forgeries. 

For the first part we need to introduce a distinguisher enemy which is trying 
to verify a signature. 
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Definition 1. A distiaguisher enemy ED is a probabilistic polynomial time al- 
gorithm, which can be used in the following type of experiment: 

1. GEN is executed on input lk, let the output be Ks, Kv, K p .  As input, ED 

2. ED may now make any number of status requests and signature requests. 
gets Kp and lk. 

In a status request, ED produces a pair (m, z), and receives a 1-bit answer 
which is 1, iff E E VALID(m, K p ) .  
In a signature request, ED produces a message m and receives the result of 
running SIGN on input m, Ks. 

3. Let M be the set of messages occurring in status or signature requests done 
in step 2. Now ED outputs a message rno # M, and receives a string ZO, 

which is either the result of running SIGN on m, Ks, or the result of running 
 SIGN^^,,, on m, Kp. We refer to these two cases as the real Case and the 
Simulated case, resp. 

4. ED may now make any number of status or signature requests, provided 
that mo does not occur as the message in any request, and zo does not occur 
in any status request. 

5.  Finally ED outputs 1 bit. 

We must now define what it means that ED is capable of distinguishing the 
simulated and the real case: 

Definition2. Let preal(k), resp. psim(k) be the probability that ED outputs 
1 in the real, r ap .  the simulated case above. These probabilities are taken over 
the random choices made by ED, GEN and SIGN. 

ED is successful against the scheme defined by the 6-tuple 

(GEN, SIGN, (C, VC), (D, VD),  VALID,  SIGN^^^), 

if there is a polynomial P such that for infinitely many k, 

The reader may notice that the verify and disavowal protocols do not enter 
explicitly into the definition of a distinguisher enemy. We could have included 
them by saying that the enemy at each status request, in addition to the status 
of z ,  also gets to  execute the appropriate protocol playing the role of Vc or V,. 
However, the success of such an enemy would imply the success of an enemy of 
our kind: we have demanded that the protocols be zero-knowledge, and SO the 
executions could be replaced by simulations without affecting significantly the 
final output. 

We also remark that we have not considered parallel executions of the verify 
and/or disavowal protocols. In theory, this can always be justified, if the signer 
simply refuses to execute more than one protocol at a time. Even if this is not 
done in practice, it does not seem to lead to problems for the concrete schemes 
we present: although zero-knowledge is generally not closed under parallel com- 
position, the concrete protocols involved here can reasonably be conjectured to 
be secure, even when executed in parallel. 
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We can now finally state: 

Definition 3. An undeniable signature scheme is said to be signature indistin- 
guishable if no distinguisher enemy has success against it. 

We now come to the other part of security. For this, we need a new kind of 
enemy: 

Definition4. A signature enemy Es is a probabilistic polynomial time algo- 
rithm, which can be used in the following type of experiment: 

1. GEN is executed on input lk, let the output be Ks ,  Kv, Kp. As input, Es 

2. Es  may now make any number of status requests and signature requests (see 

3. Let M be the set of messages occurring in status or signature requests done 

gets K p  and lk. 

Definition 1). 

in step 2. Now Es outputs a message mo g! M ,  and a string zo. 

We must now define what it means that Es  has success: 

Definition 5. Let psig(k) be the probability that ES outputs (mo, ZO)  such that 
zo E VALID(m0, Kp). This probability is taken over the random choices made 
by ED, GEN and SIGN. 

Es is successful against the scheme 

(GEN, SIGN, (C, VC), (I), VD), VALID, S I G N S ~ ~ ) ,  

if there is a polynomial P such that for infinitely many k, 

Definition6. An undeniable signature scheme is said to be unforgeable if no 
signature enemy has success against it. 

Finally, we need to  define the additional property that a convertible scheme 
should have. From an undeniable signature scheme S described by the 6-tuple 
(GEN, SIGN, (C, VC), (D, VD),  VALID, S I G N S ~ ~ ) ,  we can always build an ordinary 
signature scheme with secret key K s  and public key (Kv, K p ) .  Signatures are 
generated by running SIGN and can be verified by simulating the verification 
protocol. This requires no interaction, when Kv is known (although for practical 
schemes there may be more efficient ways to verify). We call this the derived 
signatzlre scheme of S .  In cases where Kv = Ks ,  the derived scheme is of course 
totally insecure. But for convertible schemes, we would like it to be secure in the 
standard sense of Goldwasser, Micali and Rivest (refer to [GMR88] for details): 

Definition7. An undeniable signature scheme is said to be convertibze, if its 
derived signature scheme is not existentially forgeable under an adaptive chosen 
message attack. 
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To build a convertible scheme, it seem like a natural idea to generate an or- 
dinary signature and encrypt it under some public-key probabilistic encryption 
scheme. Indeed, this idea can be quite easily proved to work, if the signature and 
encryption schemes are secure in a strong enough sense. However, even if those 
schemes were practical, the combined result will not be practical in general. This 
is because the only general way to build verification and disavowal protocols is 
by secure circuit evaluation, which will be polynomial time, but usually horrible 
in practice. Thus, to preserve efficiency in a practical sense a more careful way of 
doing the combination is needed. We show two examples of this in the following 
sections. 

3 Two Schemes 

This section presents two convertible undeniable signature schemes obtained 
from the El Gamal signature scheme [EG85]. In El Gamd signatures the public 
key is a triple ( p ,  t;g, h),  where p is a prime, t divides p - 1 and g generates the 
subgroup, G, of Z, o f  order t .  Finally, h = gT mod p ,  where 2 E {0,1,. . . , t - 1) 
is the secret key. The signature on a message m E {0,1,. . . , t - 1) is a pair 
(r,  s) E G x Z t  satisfying gm = hrr8 mod p (when T is in the exponent, the 
binary representation of T is interpreted as a number in Z t ) .  A signature is 
made by choosing b E Z 2; at random, computing r = gb  mod p and finding s as 
the solution to the equation m = T Z  + bs mod t .  

For security and efficiency reasons, a hash value of the message and not the 
message itself is usually signed. In the following it will therefore implicitly be 
assumed that m is the result of hashing the actual message using an agreed hash 
function. This also means that the message space of the two schemes presented 
below is (0, l}*. 

Both convertible undeniable signature schemes below are obtained by en- 
crypting the second part of the signature (.). One scheme uses Rabin encryption 
[Rab79] and the other uses Diffie-Hellman encryption [DH76, EG85]. 

Some common notation will be used in addition to that already introduced. 
If a is an element of a well defined group, ord(a) denotes the order of  a, <a> 
denotes the subgroup generated by a, and log, b denotes the discrete logarithm 
of b €<a> with respect to a. 

Both schemes require that p = w t  + 1, where t is of a special form and w E N . 
One way to achieve this is to first generate t as required and then p = wt + 1 
as small as possible. In [Wag791 it is argued that given a random t ,  p can be 
expected to be less than t log; t .  

3.1 -bin Encryption of 8 

This scheme assumes that t is selected as a product of two large primes q1 and q2.  

Knowing the factorisation o f t  allows verification of signatures. Thus the scheme 
can be described as follows: 
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- The key generator, generates p and t ,  where t is the product of two k- 
bits primes q1 and 92. Next, using the factorisation of p - 1, g of order t 
and z E Z are chosen, and h = gT mod p is computed. The public key 
is K P  = (p, t ,  g, h),  the secret key is KS = z and the verification key is 

The language, C, of legal public keys depends on a parameter kmin and is 
defined as the set of tuples (p, t ,  g,  h) such that gt = h* = 1 mod p and all 
divisors of t have binary length at least kmi,,. 
Remark Membership of C can be verified in polynomial time, whenever 
kmin is logarithmic in k. C allows keys for which g and h have order less 
than t ,  and t is the product of several small primes. 

- A signature on a message m is pair ( r ,E(s ) )  computed by making an El 
Gamal signature (T, s) on m and computing E(s)  = s2 mod t .  

- Given a signature (T,  E )  on m, let u denote gmh+ mod p .  Then the set of 
valid signatures on m is defined as follows: 

Kv = (Q1, Q Z ) .  

VALID(m, K p )  = {(T, E )  E G X z t  13s E Z i  : u = T' A rE = us}  I 

Remark Clearly,  SIGN(^, z) E VALID(m, Kp). On the other hand, if (T, E )  E 
V A L ~ D ( ~ ,  K p ) ,  then E = s2mod ord(r) for some s such that (T, s) is a sig- 
nature on m. If the signature is constructed using SIGN then ord(r) equals 
t ,  but in general they may be different. This will, however, not cause any 
security problems. 

- The signature simulator selects T E G at random and E(s)  as a random 
quadratic residue modulo t .  

To complete the description of the schemes, protocols for verifying and disavow- 
ing signatures must be given. The definition of VALID(m, K p )  shows that these 
can be based on zero-knowledge proofs of equality and inequality of discrete 
logarithms. 

For verification, the variant of Schnorr [SchSl] presented in [CP93] can be 
used to obtain a zero-knowledge proof for V A L I D ( ~ , K ~ ) .  If the challenge is 
selected from a suitable set (e.g. among 2% possibilities) only two or three it- 
erations are needed making the verification protocol practical, and the protocol 
can still be simulated efficiently. Another possibility is the cut-and-choose prote 
col of [CEG87]. However, the zero-knowledge protocol of [ChaSl] does not work 
immediately, since the signer may cheat if u and T are in different subgroups. 

The protocol for disavowal can be obtained by techniques similar to those 
used for denying signatures in [BCDPSl]. 

3.2 Diffie-Hellman Encryption of 8 

This scheme assumes that t is a prime. The number s is then encrypted using 
Diffie-Hellman encryption modulo t .  The scheme is defined as follows: 

- The key generator, generates a k-bits prime t and a prime p of the form 
p = w t  + 1. Next, Q of order t and 2 E Zy are chosen and h = g5 mod 
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p is computed. Furthermore, a generator o of Z and w E {0,1,. . . , t - 
1) are selected and P is computed as ow mod t .  The public key is K p  = 
(p, t,g, h,a,B), the secret key is Ks = x and the verification key is Kv = w. 
The language, C, of legal public keys, is defined as the following set of tuples 
(p, t ,  g, h, a, such that t is a prime, gt = ht = 1 mod p and both (Y and 
/3 generate Z t .  The owner must publish the factorisation of t - 1 allowing 
other parties to verify that Q and p generate Z l .  
Remark Unlike the previous scheme, this one allows several persons to use 
the same p ,  t ,  g and a. If these numbers are published a priori as system 
parameters, the key generator just has to select x and v and compute h and 
P* 

- A signature on a message rn is a pair (r, E ( s ,  p ) )  computed by making an El 
Gamal signature (T, s) on m, selecting p E Z t - l  at random and computing 
E(s ,p )  = ( o p ,  spp)  modulo t .  

- Given a signature (T, E )  on rn, let u denote gmh-P mod p and let E = 
( E l ,  E2). Then the set of valid signatures on m is defined as follows: 

 VALID(^, K P )  = 

{ ( r , E )  E G x Z i  x 2; 13s E Z t  : logap = log,,(Ezs-') A u =  r " } .  

Clearly,  SIGN(^, x) E  VALID(^, Kp). 

elements of z r. - The signature simulator selects T E G at random and E as a pair of random 

Next protocols for verifying and disavowing signatures are described. Given a 
possibly false signature (r, E )  on m, let E = (nl, n2) and let u = gmh-' mod p 
as above. For verification the verifier must show that (zl, 22) encrypts a number, 
s such that u = rs mod p and for disavowal the denier must show that (21, 22)  
encrypts a number s such that u # r8 mod p.  An interactive bi-proof for this is 
depicted in Figure 1. A bi-proof system uses the same protocol for verification 
and disavowal. The verifier will accept the verification or the disavowal depending 
on the outcome of the protocol (see FOOSl]) for details). 

This protocol requires a proof that E' is an encryption of ss' (see Figure 1 
for the notation). Such a proof can €or example be obtained using the efficient 
zero-knowledge proof in [ChaSl]. However, in the case of verification the prover 
can do even better, by sending p + p' mod t .  This is possible if the prover knows 
p (e.g., as a consequence of choosing p using a function from a family of pseudo 
random functions [GGMM]). In both cases the following holds: 

Proposition8. If the protocol in Figure 1 is  repeated 1 = O(k) tames it is a 
perfectly zero-knowledge proof system for VALID(m, Kp) .  I n  general a cheating 
prover can convince a verifier with probability at most 2-'. 

Proof 
Completeness and Soundness 
Completeness is clear by inspection of the protocol. 



The verifier first checks that (r, E )  E G x Z : x Z i. In particular this implies that r 
must have order t .  If this fails the verifier will reject in case of verification and accept 
in case of disavowal. 
Using v, the prover next computes s such that (11, 22)  is an encryption of s. Then the 
following is repeated 1 times: 

1. The prover chooses p’ E Z t - l  and 8’ E 2: at random and sends E’ = 
(adf , zps’pp‘)  and w = a” mod p to the verifier. 

2. The verifier chooses b E (0,l)  at random and sends b to the prover. 
3. If b = 0 the prover sends back the pair ( d ,  p’). Otherwise, if b = 1 the prover sends 

back 8s’ mod t and proves (possibly interactively) that E’ is an encryption of 8d. 
4. If b = 0 the verifier checks that E‘ and w are computed ae in Step 1. If b = 1 the 

verifier checks the proof of the decryption of E‘. If this fails the verifier rejects the 
proof. Otherwise, if the prover is verifying a signature, the verifier accepts if 

p’ =wmodp  

and if the prover is disavowing a signature the verifier accepts if rssf # w mod p 

Fig. 1. Bi-proof system for V A L I D ( ~ , K ~ )  (if 1 = I c ) .  The common input is 
( K p ,  T ,  U ,  21, %a) and the private input of the prover is v such that p = a” mod t. 

For soundness first observe that we may assume that r has order t ,  since 
otherwise the verifier would immediately reject. We now show that if for a t  least 
one of the iterations, the prover is capable of satisfying the verifier for both b = 0 
and b = 1, then the input signature is valid. This immediately implies that the 
prover can cheat with probability a t  most 2-[. In the initial message of the round 
the prover sends an encryption (E; ,  E i )  and a number w. A correct answer to  
b = 0 is a pair of numbers s‘, p’ such that 

A correct answer to b = 1 is a number d for which rd = w for verification and 
rd # w for disavowal. Moreover we know that (E;,  Ei)  encrypts d (since the 
prover decrypts it directly in the verification case), i.e. that for some 7 

By putting the two equations on ( E l ,  Ez) together, we can obtain that (a, zz )  = 
(aY--P‘, s’-’dP-P’) where s’-l denotes the multiplicative inyerse modulo t .  Since 
t is also the order of T ,  the fact that for verification u@ = w = rd implies 
that u = raf-ld.  Thus we have shown that for verification, (zl, z2) encrypts the 
discrete log base T of u, which is the condition specified in the definition of 
 VALID(^, Kp). 
Zero- Know ledge 
We exhibit a simulator for one round of the verification case: 
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1. Choose c to be 0 or 1 at random. 
2. If c = 0, follow the prover’s algorithm for computing E‘ and w = 21“ and 

send them to the verifier. 
If c = 1, choose d E 2; at random and compute E’ as an encryption of d. 
Compute w = rd and send E’ and w to the verifier. 

3. Receive b from the verifier. 
4. If c # b, rewind the verifier and go to step 1. 

If c = b = 0, send s‘, p‘ to the verifier. 
If c = b = 1, send d to the verifier and convince him that E’ encrypts d 
(following the prover’s procedure for doing this). 

To simulate I rounds, just repeat this simulation. 
Observe that the prover’s first message is always an encryption of a random 

number d ,  and a w such that w = rd.  Hence the simulators first message has the 
same distribution as the prover’s and is in particular independent of c. Hence the 
expected number of rewinds is 2 and the complete simulation runs in expected 
linear time. It is easy to check that the answers generated by the simulator in 
step 4 have the same distribution as the prover’s responses. Thus the simulation 

When the protocol is used to deny signatures, it is only computationally zerc- 
knowledge. The problem is that the for the case b = 1 it does not seem possible 
to come up with both the product ss‘ and us‘ since u1/8 is not known. Instead, 
this ease is simulated by choosing ss‘ at random, making a random encryption 
of ss’ and instead of us‘ a random number in <g> is selected. To show that this 
simulation works, the following assumption is necessary: 

Assumption EDL If p ,  t ,  Q and p are selected as described by GEN, then given 
a pair (a ,  b) of elements of Z it is not feasible to say if (a, b )  is chosen at random 
or as a random pair satisfying log, p =  log, b. 

This assumption has previously been used in [CvASO, BCDPSl]. 

PropositionB. Under Assumption EDL, the protocol in Figure 1 is a compu- 
tationally zero-knowledge proof system for t h e  compEement of V A L X D ( ~ ,  KP). 
Proof 
Completeness and soundness 
Again completeness is clear. For soundness first observe that we may assume 
that r has order t ,  since otherwise the verifier would immediately accept. As 
in the proof of Proposition 8 correct answers to both b = 0 and b = 1 allows 
us to write (q, z2) = (a r -p ’ ,  s’-ldp--P’) where sr-l  denotes the multiplicative 
inverse modulo t .  We know that us’ = w # rd ,  whence u # r8’-ld. Since we still 
have that s’-ld is the number encrypted in (zl, z2), the condition for being in 
 VALID(^, K p )  is not satisfied. 

This shows that given that the prover cannot cheat in any of the proofs that 
( E i ,  E$> encrypts d, his chance of cheating is at most 2-I. Let t be the probability 
with which the prover can cheat in one such proof. Then the probability that 
he can cheat in any of the 1 proofs is at most 16. We may assume that E is 
exponentially small in k - it may even be 0, if the prover can decrypt the pair 

is perfect. I7 
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directly. Therefore also Zc is exponentially small. This clearly implies that his 
overall chance is exponentially small in Ic (if we use 1 = I c ) ,  and is in fact 2-’ if 
c = 0. 
Zero- knowledge 
The simulation works as follows: 

1. Choose c to be 0 or 1 at random. 
2. If c = 0, follow the prover’s algorithm for computing E‘ and w = us’ and 

send them to the verifier. 
If c = 1, choose d E 2: at random and compute E’ as an encryption of d. 
Choose w at random and send E’ and w to the verifier. 

3. Receive b from the verifier. 
4. If c # b, rewind the verifier and go to step 1. 

If c = b = 0, send s’, p’ to the verifier. 
If c = b = 1, send d to the verifier and convince him that E‘ encrypts d 
(following the prover’s procedure for doing this). 

Let the simulators first message be the encryption Ei,  Ei  and the number 

w = us‘ while if c = 1, w is independent of s’. Distinguishing the two cases 
is at least as hard as deciding if log,(Ejz,’) = loga(s’-lE.$zgl). Hence if the 
probability that b = c is significantly different from 1/2, the verifier could be 
used to construct an algorithm contradicting assumption EDL. Hence, under 
EDL, the simulation runs in expected polynomial time. 

This also shows that the cases b = 1 and b = 0 occur in the simulation 
with probabilities as in the real conversation except for a superpolynomially 
small error. Now note that the distribution of the simulation given that b = 0 
is the same as for the conversation, whereas the distribution given that b = 1 is 
different from the conversation. However, by the same ,argument as before the 
two cannot be distinguished in polynomial time under assumption EDL. 0 

To simulate 1 rounds, just repeat this simulation. 

w. Let s’ be the number encrypted by the pair (EjZi I ’  , E’z,’). Now, if c = 0, 

Remark The verification protocol is not as efficient aa the one for the scheme 
based on Rabin encryption, however this scheme offers additional flexibility, such 
as 

- The signer can convert single signatures (selective conversion as described 
in [BCDPSl]) by releasing p. 

- If the signer chooses a list of 8-values, different P’s can be used for different 
classes of signatures. All signatures in one class can then be converted by 
publishing the corresponding log, 8. 

4 Security of the Schemes 

This section analyses the security of the two schemes, with respect to forgeries 
and recognising signatures. 
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4.1 Forging Signaturas 

For both schemes it is sufficient (and necessary, if the signatures are converted) 
to show that the they are secure if the verification key is published. 

Proposition 10. The schemes using Rabin respectively Difie-Hellman encryp- 
tion are unforgeable, i f  the El Gamal scheme combined with the chosen hash 
function is  secuw against adaptively chosen message attacks for  primes of the 
form wt + 1 where t is the product of two large known primes respectively t is a 
large known prime. 

Proof sketch 
Given a method for forging signatures in one of the two schemes, signatures can 
be forged in the corresponding El Gamal scheme using the following adaptively 
chosen message attack: 

1. 

2. 

3. 

Generate the verification key, and the corresponding part of the public key 
in the undeniable signature scheme. 
Execute the attack against the undeniable scheme with the resulting pub- 
lic key. Whenever, an undeniable signature on a message, rn, is requested 
in this attack, ask for an El Gamal signature on m and encrypt s to ob- 
tain the required undeniable signature. Whenever, the attacker asks if z E 
V A L I D ( ~ , K ~ )  for some message m, this is answered by decrypting I and 
verifying the signature. 
Finally, the attack outputs an undeniable signature on a new message, mo. 
This signature can be made into an ordinary El Gamal signature by decrypt- 
ing s. 

0 

Corollary 11. Both schemes are convertible i f  the El GamaE schemes they are 
based on are secure against adaptively chosen message attacks. 

5 Signature Indistinguishability 

Recall the definition of signature indistinguishability from Section 2. First, note 
that for both schemes, it is enough to argue indistinguishability in the case 
where the enemy knows Ks, as this can only make his task easier. In this case, 
being able to get signatures on chosen messages is of no additional help. In the 
following, an active, resp. passive attack is one where the enemy uses, resp. does 
not use the oracle for testing validity of signatures of his choice, 

5.1 

When the enemy is given a purported signature (r,  E )  on m, all he knows is that 
if the signature is valid then the s determined by the equation m-xr = bs mod t 
(where b is the discrete log of r base g )  equals the s’ determined by the equation 

The Scheme using Rabin Encryption 
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sr2 = E mod t .  If the enemy neither knows b nor the fadorisation of t  this seems 
to be difficult to  decide. 

In an active attack, the enemy may try to  manipulate the equations in order 
t o  get the oraclel to solve his problem. For example, if rn' satisfies that rn - 
xr = rn' - xrp- for some p, then (rp-', Ep2) E V A L I D ( ~ ' , K ~ )  iff ( r , E )  E 
V A L I D ( ~ , K ~ ) .  Recall, however, that m is actually a hash value, so that this 
attack is useless, unless the hash function can be inverted on m'. 

We therefore conjecture that if discrete log mod p ,  factorisation of t ,  and 
inversion of the hash function are hard problems, then this scheme is signature 
indistinguishable. 

5.2 

In this scheme, the enemy must decide, given m, T ,  (El, E2) whether the s deter- 
mined by the equation m - x r  = bs mod t (where b is the discrete log of r base g), 
is also the value encrypted by the pair (El ,  Ez). Even if the enemy knows b, and 
hence s, he is left with the problem of deciding whether log, p = logEl (E~s-'). 
Hence, in a passive attack, the enemy's problem is a t  least as hard as deciding 
equality of discrete logs (assumption EDL). 

In an active attack, the enemy may try as above to  exploit the multiplicative 
properties of the encryption. Indeed, manipulations similar to  the example above 
are possible. Once again, however, this seems useless, unless the hash function 
can be inverted. We therefore conjecture that if assumption EDL holds, and 
the hash function used is oneway, this scheme is signature indistinguishable. 
We remark that exactly the same assumptions were used for the scheme from 
[CvASO] , the oldest surviving undeniable signature scheme. 

The Scheme using DifReHellman Encryption 
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