
The Exact Security of Digital Signatures-
How to Sign with RSA and Rabin

Mihir Bellare’ and Phillip Rogaway2

Department of Computer Science and Engineering, Mail Code 0114, University of
California at San Diego, 9500 Gilrrian Drive, La Jolla, CA 92093, USA.

Email: mihir@cs.ucsd.edu ; Web page: http://www-cse.ucsd.edu/users/mihir
a Department of Computer Science, IJniversity of California at Davis, Davis,

CA 95616, IJSA. E-mail: rogawayecs .ucdavis .edu

Abstract. We describe an RSA-based signing scheme which corribines
essentially optimal efficiency with attractive security properties. Sign-
ing takes one RSA decryption plus sonic hashing, verification takes one
RSA encryption plus some hashing, and the size of the signature is the
size of the modulus. Assuming the underlying hash functions are ideal,
our schemes are not only provably secure, but are so in a tight way-
an ability to forge signatures with a certain amount of coniputational
resources implies the ability to invert R.SA (on the same size modulus)
with about the same computational effort. Furthermore, we provide a
second scheme which maintains all of the above features and in addition
provides message recovery. These ideas cxt,entl to provide schemes for
Rabin signatures with analogous properties; in particular their security
can be tightly related to the hardness of factor-ing.

1 Introduction

A widely employed paradigm for signing with RSA is to first “hash” t,lie message
into a domain point of RSA and then decrypt. (ie. exponentiate with the RSA
decryption exponent,). In particular, this is the basis of several existing standards.
Unfortunately, the security of the standardized schemes cannot be justified under
standard assumptions aboiit R S A , wen assuming the underlying hash functions
are ideal.

We propose new schemes, both for signing and for signing with message
recovery. They are as simple and efficient as the standardized ones. (In particular,
signing takes one RSA decryption plus some hashing, Verification takes one RSA
encryption plus some hashing, and the size of the signature is the size of the
modulus.) But, assuming t,he underlying hash function is ideal, oiir rnethods are
not, only provably secure, but provably secure in a strong sense: the security of
our schemes can be t ightly related to the security of the RSA function.

Besides providing concrete new schemes for signing with RSA, this work
highlights the import,wnce, for practical applications of provable security, of COIF

sideration of the tightness of the security reduction, and also provides a rare ex-
m l p k of modifying one provably-good scheme in order to obtain another which
has a better security bound.
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 399-416, 1996.
0 Springer-Verlag Berlin Heidelberg 1996

400

Let US now expand on all of the above. We begin by looking at current
practice. Then we consider the full domain hash scheme of [3] which is provable,
and discuss its exact security. 'Finally we come to our new schemes, PSS and
PSS-R, arid their exact security.

1.1 Signing with RSA- Current practice

THE R,SA SYS'I'EM. In the RSA public key system [I51 a party has public key
(N , e) and secret key (N , d) , where N is a k-bit modulus, the product of two
(k/2)-bit primes, and e,d E Z;") satisfy ed G 1 mod cp(N). (Think of k =
1024, a recomniended modulus size these days.) Recall that the RSA function
f: ZT,i -+ Z& is defined by f(x) = 2" mod N and its inverse f-': ZT,i + Z& is
defined by f-' (y) = yd mod N (2, y E Zh). The gcnerally-made assumption is
that f is trapdoor one-way- roughly, if you don't know d (or the prime factors
of N) then i t is hard to compute 3: = f - ' (y) for a y drawn raridorrily from Z h .

HASH-THEN-DECRYPT SCHEMES. A widely employed paradigm to sign a doc-
ument M is to first compute some "hash" y = H u s h (M) and then set the
signature to z = f - ' (y) = yd mod N . (To verify that z is a signature of M ,
compute f(x) = xe mod N and check this equals Hash(&').) In particular, this
is the basis for several existing standards. A necessary requirement on Hash
in such a scheme is that it be collision-intractable and produce a k-bit output
in Z;. Accordingly, Hash is most often implernented via a cryptographic hash
function like H = MD5 (which yields a 128 bit output arid is assumed to be
collision-intractable) and s011ie padding. A c:oncre,tt' example of such a scheme is
[16, 171, wherc the hash is

f fashp~cs(M) = OX 00 01 FF FF ' . FF FF 00 1) ff(?d) .
Here 1 1 denotes concatenation, and enough OxFF-bytes are used so as to make
the length of f f a s h p ~ ~ s (l M) equal t,o k hits.

SECURITY. We draw attention to the fact that, the security of a hash-then-
decrypt signature dcpends very much on how exactly one implements Hush. In
particular, it is irnportant, t,o recognize that the security of a signature scheme
like SignpKcs(M) = f - ' (H u s h p ~ (~ ~ (M)) can't be justified given (only) that
RSA is trapdoor one-way, even under the assumption that hash function H is
ideal. (The reason is that the set, of points { HashpK(:s(M) : M E {0,1}* } has
size at, most 2lZg and hence is a very sparse, and a very structurcd, subset of
Z&.) We consider this to be a disadvantage. We stress that we don't know of
any attack on this scheme. But we prefer, for such importrant primitives, to h a w
some proof of security rathcr than just an absence of known attacks.

The same situation holds for other standards, including IS0 9796 [lo]. (There
the function Hash involves no cryptographic hashing, and the message M is
casily recovered from Hash(M). This doesn't effect the points we've just made.)

The above discussion highlights that collision-intractability is not enough.
The function I I u s h p ~ ~ s is guaranteed to be collision-intracta~le if we use a
collision-intractable H . Rut this won't suffice to get a proof of securit,y.

40 1

1.2 FDH and its exact security

TIIE FDH SCHEME. 111 earlier work [3] we suggested to hash M onto the full
domain z& of the RSA function before decrypting. T h a t is, HashFnH: {0,1}* +
Z;V is understood to hash strings “uniformly” into Z;, and the signature of M is
Sign,,,,(M) = f-’ (H u s ~ F D H (M)) . (Candidates for suitable functions hush^^"
can easily be constructed out of MD5 or similar hash functions, as described in
[3].) We call this the Full-DoInain-IIashi-IIas~i scheme (F D H) .

PROVABLE SECURITY OF FDII. Assuming Hush is ideal (ie. it behaves like a
random function of the specified domain and range) the security of FDH can be
proven assuming only that RSA is a trapdoor permutation. (This is a special case
of [3, Section 41, which corisiders this construction with an arbitrary t,rapdoor
permutation.) This makes the seciirit,y guarantee of the FDH scheme superior to
those of the schemes we discussed in Section 1.1.

Now we want to go further. We will explain how, within the class of provable
schemes, quality depends on the quantifiable notion of exact secur i ty . In this
paper we compute t,he exact security of the FDH scheme, and then we offer a
new scheme which has better exact securit,y.

EXACT SECURITY. We quantify t,he security of RSA as a trapdoor permutation.
We say it is (t’, 6‘)-secure if an attacker, given y drawn raridorrily from Z;Y and
limited to running in time t ‘ (k) , su ds in finding f-’ (y) with proba,bility at
most ~ (k) . Values of t’, E‘ for which it is safe to assume RSA is (t’, 6’)-secure can
be provided based on the perceived cryptanalytic strength of RSA.

Next, we quant,ify the security of a signature scheme. A signature scheme is
said to be (t , qsig, yllasll, €)-secure if an attacker, provided the public key, allowed
to run for time t (k) , allowed a chosen-message attack in which she can see up
to qsig (k) legitimate message-signature pairs, and allowed qhas1, invocations of
the (ideal) hash function, is successful in forging the sigriatiire of a new message
with probability at most, ~ (k) .

EXACT SECURITY O F FDH. The “exact security” of t,he reduction of [3] used
to prove the security of the FDH signature scheme is analyzed in Theorem 1.
It says that if RSA is (t’, d-secure and qsig,qt,ast, arc given then the FDH
signature scherrie is (t , qsig, qtlatl, €)-secure for t = t’ - poly(q,i,, qllasll, k) and
€ = (q . slg + qllaskl) E‘. Here poly is some some small polynomial explicitly speci-
fied in Theorem 1.

We note that E could thus be considerably larger than 6 ’ . This means that
even if RSA is quit,e strong, the guarantee on the signature scheme could be quite
weak. To see this, say we would like to allow t,he forger to see at least q s i g (k) = 230
example signatures and corripute hashes on, say, qllaStl = 260 strings. Then even
if the RSA inversion probability was originally as low as 2--F1, all we can say
is that the forging probability is now at most I/2, which is not good enough.
To compensate, we will have to be able to assume that d (k) is very, very low,
like 2-l”. This means that we must have a fairly large value of k , ie. a larger
modulus. But this affects the efficiency of the scheme, because the time to do the

402

uriderlyirig modular exponentiation g~ows (and rather quickly) as the modulus
size increases. We prefer to avoid this.

We reiterate the crucial point: if the reduction provirig security is “loose,”
like the one above, the efficiency of the scheme is impacted, because we must
move to a larger security parameter. Thus, it would be nice t,o have “tighter”
reductions, meaning ones in which E is almost the same as c‘ , with the relations
amongst the other parameters staying about the same as they are now.

One might suggest that it is possible to prove a better security bound for
FDH than that outlined above. Perhaps, but we don’t know how. Instead, we
will strengthen the scherne so that a better security bound can be proven.

CLARIFICATION. Before going on, let us clarify our assessrrlents of scherne quality.
We are not saying the FDH scheme is bad. Indeed, since it is provable, it is ahead
of’ schemes discussed in Section 1.1, and a viable alternative to therri. What we
are saying is that it is possible to do even better than FDH. That is, it is possible
to get a scheme which is not only proven secure, but has strong exact, security.
This successor to FDH is the scheme we discuss next.

1.3 New schemes: PSS and PSS-R

PSS. We introduce a new scheme which we call the probabilistic signature scheme
(PSS). It is fully specified in Section 4.

The idea is to strengthen the FDH scheme by making the hashing probabilis-
tic. In order to sign message M , the signer first picks a random seed T of length
ko, where ko < k is a parameter of the scherne. Then using some hashing, in a
specific way we specify, the signer produces from M and r an image point y =
Hashpss(M,r) E Z>. As usual, thesignatureis 3: = f-’(y) = yd mod N . (Verifi-
cation is a bit morc tricky than usual, since one cannot simple “re-compute” this
probabilistic hash, but still takes only one RSA encryption and some hashing.
See Section 4.) In particular, our scheme is as efficient as the schemes discussed
above. But Theorem 2 shows that the security can be tightly related to that, of
RSA. Roughly, it says that if RSA is (t ‘ , E’)-secure then, given qsig, qllasl1, scheme
PSS is (t,qsig, qilasil,c)-secure for t = t’ - p ~ l y (q ~ i ~ , q ~ ~ ~ ~ ~ ~ , k) and E = E’ - o(1).
Here o(1) denotes a function exponentially small in ko and kl (another paramet,er
of the scheme) and poly denotes a specific polynomial, both of t,hese explicitly
specified in the theorern.

Continuing the above example, if the KSA inversion probability was originally
as low as 2Y61, the probability of forgery for the signature scheme is almost
equally low, regardless of the number of sign and hash queries the advcrsary
makes!

Pss WITH R.ECOVERY. We also have a variant of Pss, called PSS-R, which pro-
vides message recovery. The goal is to save on bandwidth. Rather than trarisrnit
the message M and its signature 3:, a single “enhanced sigriature”.r, of length less
than lMl + 1x1, is transmitted. Thc vc:rificr will ha able to recover M from .r and
simultaneously check the authenticity. With security parameter k = 1024, our

403

scheme enables one to authenticate a message of up to n = 767 bits by transmit-
ting only a total of k bits. PSS-R accomplishes this by appropriately “folding”
the message into the signature iu such a way that the verifier can recover it. The
efficiency and security are the same as for PSS. See Section 5.

RABIN SIGNA’I’URES. The same ideas apply for the Rabin function, and, in par-
ticular, we have both a basic Rabin scheme and a variant which provides for
message recovery, with security tightly related to the hardness of factoring. See
Section 6.

1.4 Discussion

The above illustrates that to fairly compare the efficiency of two provably-secure
schemes one needs to look at more than just Computation time for a k-bit key.
Schemes FDH arid PSS have essentially the same computation time when k is
fixed. But since PSS has tighter provable security one can safely use a smaller
modulus size arid thus, ult,imately, get greater efficiency.

A riurnerical example may help to make this clear. Let us again assume
that the forger F can compute the hash of a t most 260 strings and that> she
can obtain the signatures of at most 230 messages. Assume that it takes time
Ce’ 823(10gN)”3(10g10gN)2’3 to invert RSA [12]. Then, our theorems imply that if
you use FDH then you must, select a modulus of 3447 bits in order to get the
same degree of guaranteed-secuiity as you would have gott,en had you selected
a modulus of 1024 bit,s and used PSS.

1.5 Related work

We have already discussed the PKCS standards [16, 171 and the IS0 standard
[lo] and seen that their security cannot be justified based on the assumption
that RSA is trapdoor one-way. Ot,her standards, such as [l], are similar to [16],
and the same statement applies.

The schemes we discuss in the reiiiainder of this section do not use the
hash-then-decrypt paradigm.

Signature schemes whose security can be provably based on the RSA assurnp-
tioii include [9, 2, 11, 20, 61. The major plus of these works is that they do not
use an ideal hash function (random oracle) model- the provable security is in
the standard sense. On the other hand, the security reductions are quite loose
for each of those schemes. On the efficiency front, the efficiency of the schemes of
[9,2, 11,201 is too poor to seriously consider them for practice. The Dwork-Naor
scheme [6], on the other hand, is computationally quite efficient, taking two to
six RSA computations, although there is some storage overhead and the signa-
tures are longer than a single RSA modulus. This scherrie is the best current
choice if one is willing to allow some extra computation and storage, and one
wants well-justified security without assuming an ideal hash function.

Back among signature schemes which assume an ideal hash, a great many
have been proposed, based on RSA, the hardness of factoring, or other assurnp-
tions. Most of these schemes are derived from identification schemes, as was

404

first done by [8]. Some of these methods are provable (in the ideal hash model),
some not. In some of the proven schemes exact security is analyzed; usually it
is not. In no case that we know of is the security tight. The efficiency varies.
The computational requirements are often lower than a hash-then-decrypt RSA
signature, although key sizes are typically larger.

The paradigm of protocol design wit,h ideal hash functions (aka random ora-
cles) is developed in [3] and continued in [4]. The current paper is in some ways
thc analogue, for digital signatures, of our earlier work on encryption [4]. Further
work on signing in the random oracle model includes Pointcheval and Stern [13].
(They do not consider exact security, and it may he helpful to do so in their
context .)

2 Definitions

We provide definitions for an exact, securit,y treatment of RSA, basic signature
schemes, and signing with recovery.

2.1 An exact treatment of RSA

TIIE R.SA FAMILY. RSA is a family of trapdoor permutations. It is specified by
the RSA generator, RSA, which, on input l k , picks a pair of random distinct
(k/2)-bit primes and multiplies them to produce a modulus N . It also picks,
at random, an encryption exponent e E Z;(,) and corriputes the corresponding
decryption exponent d so that ed = 1 mod p(N). The generator returns N, e , d ,
these specifying f: Z& + Zh and f-’: Z& + Zh, which are defined by f(x) =
Z‘ mod N and f-’ (y) = y d mod N. Recall that both functions arc permutations,
and, as the notation indicates, inverses of cach other.

The trapdoor permutation generator RSAS is identical to RSA except that,
the encryption exponent e is fixed to he 3. More generally, RSA-e provides an
encryption exponent of the specified constant. Other variants of RSA use a
somewhat different distribution on the rnodulus N . Our results, t,hoiigh stated
for RSA, also hold for these other variants.

EXACT SECURITY OF THE K.SA FAMILY. An inverting algorithm for RSA, 1 , gets
input N , e,y and tries to find f-’(y). Its success probability is the probability it,
outputs f-’(y) when N , c , d are obtained by running RSA(lk) and y is set to
f(x) for an x chosen at random from Z;t. The standard asymptotic definition of
security asks that the success prohbilit,y of any PPT (probabilistic, polynomial
time) algorithm be a negligible function of k . We want to go further. We are
interested in exactly how milch time an inverting algorithm uses and what success
probability it achieves in this time. Formally an inverting algorithms is said t,o be
a t-inverter, where t: N + N, if its running time plus the size of its description
is bounded by t(lc), in some fixed standard model of computation. We say that
I @,€)-breaks RSA, where 6: N + [0,1], if i is a t-inverter and for each k the
success probability of 1 is at least ~ (k) . Finally, we say that ‘RSA is (t ! €)-secure
if there is no inverter which (t , c)-breaks RSA.

405

EXAMPLE. The asymptot,ically best factoring algorithm known (NFS) takes time
which seems to be about e1 .gk”3(10gk)2/3 to factor a k-bit modulus. So one might
be willing to assume that the trapdoor permutation family RSA is (t , €)-secure
for any (t , c) satisfying t (k) / c (k) 5 ~ e k ” ~ , for some particular constant, C.

2.2

SIGNATURE SCIIEMES. A digital signature scheme I7 = (Ge71, Sign, Verify) is
specified by a key generation algorithm, Gen, a signing algorithm, Sign, and a
verifying algorithm, Verify. The first two arc prohahilistic, and all three should
run in expected polynomial time. Given lk, the key generation algorithm outputs
a pair of matching public and secret keys, (pk, sk) . The signing algoritlirn takes
the message M to be signed and the secret kcy sk, and it returns a signature x =
Signsk (M) . The verifying algorithm takes a message MI a carididate signature
d, and the public key p k , arid it retiirns a bit I/erifyy,k(M, x’), with 1 signifying
"accept" and 0 signifying “reject.” We demand that if x was produced via z t
SignSk(M) then Verifypk(M , x) = 1.

One or more strong hash functions will usually be available to the algorithms
Sz.9n and Verify, their domairi and rarige depending on the scheme. We model
t,hem as ideal, meaning that if hash function It is invoked on some input, t,he
output is a uniformly distributed point of the range. (But if invoked twice on
the same input, the same thing is returned both times.) Formally, h is a random
oracle. It is called a hash oracle and it is accessed via oracle queries: an algorithm
can write a stxirig z and get back h(z) in time 12).

SECURITY OF SIGNATURE SCIIEMES. Defiriitions for the security of signatures in
the asymptotic setting were provided by Goldwasser, Micali and Rivest [9], and
enhanced to take into account the presence of an itleal hash function in [3]. Here
we provide an exact version of these definitions.

A forger takes as input a public key pk, where (pk , sk) e Gen(l‘), and
tries to forge signatures with respect to p k . The forger is allowed a chosen mes-
sage attack in which it can request, and obtain, signatures of messages of its
choice. This is modeled by allowing the forger oracle a s to the signing al-
gorithm. The forger is deemed successful if it outputs a lid forgery -namely,
a message/signaturc pair (M , z) such that Verifypk(M, x) = 1 hut M was: not,
a message of which a signature was requested earlier of the signer. The forger
is said to be a (t , qsig, qhas&forger if its running time plus description size is
bounded by t (k) ; it makes at most qsig(k) queries of its signing oracle; arid it
makes a total of at most yllasl1(k) queries of its various hash oracles. As a con-
vention, the time t (k) includes the time to answer the signing queries. Such a
forger F is said to (t , psig, pllasll, c)-brcak the signature scheme if, for every k , the
probability that F outputs a valid forgery is at least ~ (k) . Finally we say that
the signature schem (Gen, Sign, Verify) is (t , psig, qtlasIl, €)-secure if there is no
forger who (t , qsig, qllasll, €)-breaks the scheme.

ssary book-keeping
so that, it never repeats a hash query. (It rriight repeat a signing query. If the
scheme is probabilistic, this might help it.)

Signature schemes and the i r exact security

For simplicity we will assume that a forger does any n

406

2.3

Our theorems will have the form: If RSA is (t’, €‘)-secure, theu some signature
scheme ll = (Gen, Szgn, Verzfy) is (t , psig, qhmh, c)-secure. The proof will take
a forger F who (tryslg, ~ ~ = l ~ , ~) - b r e a k s L7 and produce from F an inverter I
who (t’,d)-breaks RSA. The quality of the reduction is in how the primed
variables depend on the unprimed ones. We will typically view qsig,qllasll as
given, these being query bounds we are willing to allow. (For example, qsig = Z 3 O

and qllasll = 260 are reasoriable possibilities.) Obviously we want t‘ to be as large
as possible and we want E’ to be as small as possible. We are usually satisfied
when t’ = t - poly(Q~las~~, qsig, I c) and C‘ M 6 .

Quantifying the quality of reductions

3 The fill-Domain-Hash Scheme - FDH

THE SCHEME. Signature scheme FDH = (GenFDH, SignFDH, VerifyFDH) is
defined as follows [3] . The key generation algorithm, on input lk, runs RSA(lk)
to obtain (N , e , d) . It outputs (pk , sk) , where p k = (N , e) arid sk = (N , d) .
The signing and verifying algorithms have oracle access to a hash function
H F D H : (0 , l}’ + Z;V. (In the security analysis it is assumed to be ideal. In
practice it can be implemented on top of a cryptographic hash function such as
SHA-1.) Signature generation and verification are as follows:

SignF13HN,, (M)
Y t HFDH(M)
return yd mod N

Verzf?lFDHN,e (M , x)
y t xe mod N ; y’ t H F D H (M)
if y = 9’ then return I else return 0

SECURITY. The following theorem summarizes the exact security of the FDH
scheme as provided by the reduction of [3] . The proof is straightforward, but it
is instructive all the same, so we include it. The disadvantage of the result, froin
our point of view, is that 6’ could be rriuch smaller than e.

Proof. Let F be a forger which (t , qsig, qllasl1, e)-brcaks FDH. We present an in-
verter 1 which (t’, el)-breaks RSA.

407

Inverting algorithm I is given as input (N, e , y) where N , e, d were obtained
by running the generator RSd(lk), and y was chosen at random from Zh. I t
is trying to find x = f- ' (y), where f is the RSA function described by N , c .
I t forms the public key N , e of the Full-Domain-Hash signature scheme, and
starts running F on input of this key. Forgcr F will make two kinds of oracle
queries: hash oraclc queries and signing queries. Inverter I must answer these
queries itself. For simplicity we assume that if F makes sign query M then it has
already made hash oracle query M . (We will argue later that this is wlog.) Let
q = qsig + qilaSll. Inverter I picks at random an integer j from (1,. . . , q} . Now we
describe how 1 answers oracle queries. Here i is a counter, initially 0.

Suppose F makes hash oracle query M . Inverter 1 increments i and sets
Mi = M . If i = j then it sets yi = and returns yi. Else it picks ri at random
in Zk, sets yi = f (r i) , and returns yi.

Alternatively, suppose F makes sigriirig query M . By assumption, there was
already a hash query of M , so M = Mi for some i. Let I return the corresponding
T - ~ as the signature.

Eventually, F halts, outputting some (attempted forgery) (M , z). Let invert-
ing algorithm I output x. Without loss of generality (see below) we may assume
that M = Mi for some i . In that case, if (M , z) is a valid forgery, then, with
probability at least l / q , we have i = j and z = f- '(yi) = f-'(y) was t,he correct
inverse for f .

The running time of I is that of F plus the time t,o choose the yi-values. The
main thing here is one RSA computation for each yi, which is cubic time (or
bett,er). This explains the formula for t .

It remains to justify the assumptions. Recall that I is running F . So if the
latter makes a sign query without having made the corresponding hash query,
I at once goes ahead and makes the hash query itself. Similarly for the output
forgery. All this means that the effective number of hash queries is at most

0 qhas11 + qsig + 1, which is the number we used in the time bound above.

Is there a different proof which would achieve a trarislation in which t is like the
above but E is [I(€')? We don't believe so. Instead we will modify the scheme to
get the security we want. We do this by making the hashing probabilistic.

4 The Probabilistic Signature Scheme - PSS

Here we propose a new scheme a probabilist,ic generalization of FDH. I t pre-
serves the efficiency and provable security of FDH but achieves the latter with a
much better security bound.

4.1 Description of the PSS

Signature scheme PSS[ko, k l] = (GenPSS, SignPSS, VerifyPSS) is pararneter-
ized by ICo and I C , , which are numbers between 1 and k satisfying ko + kl 5 k - 1.
To be concrete, the reader may like to imagine k = 1024, ko = kl = 128.

408

Fig. 1. PSS: Corriponents of image y = 0 1 1 w I / T* 1 1 yl(w) are darkened. The
signature of hi’ is yd mod N .

The key generation algorithn GenPSS is identical to GenFDH: on input lk,
run RSd(lk) to obtain (N , e, d) , and out,put (pk , sk), where p k = (N, e) and

The signing and verifying algorithms make use of two hash functions. The
first, h, called the compressor, maps as 11: ((1,l)’ + (0, l}kl and the second, g ,
called the generator, maps as g: (0, l } k o 4 (0, l}k-kl-l . (The analysis assumes
these to be ideal. In practice they can be implemented in simple ways out of
cryptographic hash functions like MD5, as tlisciisscd in Apperidix -4.) Let g1
be the function which on input 7u E (0,1}’0 returns the first ko bits of g(w),
and let 9 2 be the function which on input w E (0, l j k 0 returns the remaining
k - Ico - kl - 1 bits of g(w). We now describe how to sign arid verify. Refer to
Figure 1 for a picture.

sk = (N , d) .

VerzfyPSS (M , x)
y c xe mod N
Break up y as h 1 1 7 1 ~ 1 1 T * 1) y. (That is, let b be the first bit of y, 71)

the ncxt kl bits, ?-* the next ko bits, and 7 the remairiiiig bits.)
T t 7’*@3,Yl (UJ)

if (h(M 1 1 r) = ’UI and g2(4u) = y and b = 0) then return 1
else return 0

The step T & (0, l}ko indicates that t,he signer picks at random a seed T of ko
bits. He then concatenates this seed to the message M , effectively “raridornizing”

409

the message, and hashes this down, via the “compressing” function, to a kl bit
string w. Then the generator g is applied to w to yield a ko bit string T* = 91 (w)
and a k - ko - kl - 1 bit string 9 2 (7 1 1) . The first is used to “mask” the seed
T , resulting in the masked seed T * . Now w 1 1 T * is pre-pended with a 0 bit and
appended with y~(w) to create the image point y which is decrypted under the
RSA function to define the signature. (The 0-bit is to guarantee that y is in Zk.)
Notice that a new seed is chosen for each mcssage. In particular, a given message
has many possible signatures, depending on the value of T chosen by the signer.

Given (111, z), the verifier first computes y = xe mod N and recovers T * , w, T .

These are used to check that y was correctly constructed, and the verifier only
accepts if all the checks succeed.

Note the efficiency of t,he scheme is as claimed. Signing takes one application
of h, one application of g, and one RSA decryption, while verification t,akes one
application of h,, one application of g, arid one RSA encryption.

4.2 Security of the PSS

The following theorem proves the security of the PSS based on t,he security of
M A , but with a relation betwccn the two securities that is much tighter than
the one we saw for the FDH scheme. The key difference is that ~ (k) is within
an additive, rather than multiplicative, factor of d (k) , and this additive factor
decreases exponentially with ko, k l . Tlie ~elatiori between t and t’ is about the
same as in Theorem 1.

Theorem 2 . Suppose that RSA is (t ‘ , c’)-secure. Then for any qsig, qll,l1 the
signature scheme PSS[ko, k l] is (t , qsig, qtllaSt,, E)-secure, where

t (k :) = t ’ (k) - [ysig(k) + yllasll(k) + 11 k.0 . ~ (k ’) , and

F(k) = 4 (k) + [2(qsig(k) + qllash(k))2 + 11 ’ (2+ + 2 - 9 .

The rest of this section is devoted to a sketch of the proof of this theorem.

Proof Sketch. Let F be a forger which (t , qSig , qlllasl1, €)-breaks the PSS. We present
an inverter I which (t’, €‘)-breaks the trapdoor permutation family ’RSA.

The input to I is N , e and 7) where q was chosen at random from Zb, and
N , e, d were chosen by running the generator RSA(1”. (But d is not provided
to I !) We let f : Z> + Zk be f(x) = xe mod N . 1 wants to compute fP1(q) =
q‘ mod N . I t forms the public key N , e , and starts running F on input this key. F
will make oracle queries (signing queries, h-oracle queries, and g-oracle queries),
which I must answer itself. We assume no hash query (h or g) is repeated (but, a
signing query rriight be repeated). We let 61,. . . , QQs,g+qhnsh denote the sequence
of oracle queries that F makes. (This is a sequence of randorn variables.) This
list includes all queries, and we implicitly assume that along with each Qi is an
indication of whether it is a sigriirig oracle query, an h-oracle query or a g-oracle
query. In the process of answering thcsc qiieries, 1 will “build” or “define” t,he
fiinctions JL, y.

410

I maintains a counter i, initially 0, which is incrernented for each query. We
now indicate how the queries are answered. It depends on the type of query.

Answering signing queries. First, suppose 8% = A4 is a signing query. Let US

first try to give some intuition, and then the precise instructions for I to ariswer
the query.

The problem is that I cannot answer a signing query as the signer would
since it doesn't know f-'. So, it fiIst picks a point 2 t Zh, and then arranges
that y = f(z) be the image point of a signature of M . (It, does this by viewing
y as 0 1 1 w 1 1 T* 1 1 y, and then defining h(A4 1 1 r) = w and g(w) = r*$T 1 1 y, for
some raridorn r.) A t this point, x can be returned as a legitimate signature of M .
Some technicalities include making sure there are no conflicts (re-defining h or g
on points where their values were already assigned) and making sure y has first

0. These are attended to in the following full description of the instructions
I to answer signing query Qi:

Increment i and let Mi = Q i .

Pick Ti & (0, I}". (Recall this notation means ri is chosen at random from

If 3 j : j < i : rj = ri then abort.
Repeat zi & Zh ; yi t f(zi) u n t i l the first bit of yi is 0.
Break up yi to write it as 0 1 1 wi 1 1 r: 1 1 yi. (That is, let wi be the ICo bits
following the 0, lct T: be the next k l bits, and let yi be tlie last k - ko - kl - 1
bits.)
Set h(A4i 1 1 r i) = wi.
If 3 j : j < i : wj = U I ~ then abort.

(0, 1 j k o 0 .)

1 Set g1 (wi) = r f ~ ~ ~ i ; Set y2(wi) = yi ; Set y(wi) = 91 (wi) 11 yz(wi).
(9) Return xi to F as the answer t,o signing query Qi = Mi.

Answering h-oracle queries. Next, suppose Qi is an h,-oracle query. We may
assume it has length at least k.0 since otherwise it doesn't help the adversary to
make this query. Again, before the precise instructions, here is the intuition. The
query looks like M (1 T . We want to arrange that, if F later forges a signature of
M using seed r then3 we invert f at rl. To arrange this, we will associate to query
M (1 T an image of the form vx:, where xi is random. (Thus if F later comes up
with an f-l(qz:) = ziq', then I can divide out zi and recover 7' = f - ' (q) .)
This is done by choosing a random xi, viewing qzt as 0 (1 U J 11 r* 1 1 y, and, as
before, defining h (M (1 T) = w arid g (w) = T * & (1 y. The detailed instxuctions
for 1 to answer h-oracle query CJi (taking into account technicalities similar to
tlie above) are:
(1) Increment i and break up Qi as Mi 1 1 ri. (That is, let 7-i be the last ko bits

of Qi and let Mi be the rest).
(2) Say Qi is old if 3-j : j < i : A 4 j (1 rj = M i (1 ~ i , arid new otherwise. (Since

h-queries are not repeated, Qi is old iff Mi was signing query M j and in the

F might forge a signature of A4 with a seed T' such that h-query M 1 1 7.' was never
made. But the probability of this is very low.

41 1

process of answering it above we picked rj = T ~ .) Now if Qi is old then set
(w i , r ; , y i) = (7 ~ j , ~ T , 3 j) and return w j (which is h (M j 1) r j)) ; Else go on to
next step.

(3) Repeat zi Z;V ; zi t f (z i) ; yi t qzi mod N u n t i l the first bit of yi
is 0.

(4) Break up yi to write it as 0 1 1 wi 1 1 rt / I yi.

(6) If 3 j : j < i : 111j = wi then abort.
(7) Set yl(wi) = r;@ri ; Set ga(wi) = ̂ li ; Set g(74) = gl(wi) (1 yz(wi).

(8) Return wi to F as t8he answer to Loracle query Qi = Mi 1) ~ i .

Answering g-oracle queries. Last, suppose &i is a y-oracle query. We may
assume it has length Icl since otherwise it doesn't help the adversary to make
this query. This time, there is not much to do:

(1) lncrement i and let wi = Qi.

(2) If 3 j : j < i : wj = wi then return g(w,y). Else pick a string (Y & (0, l }k -ko- ' ,
set g(wi) = a, and return a.

(5) Set /&(Mi 1 1 T i) = w i .

Analysis. Let Distinct be the event that we never abort in Steps (3) or (7) in
answering signing queries or Step (6) in answering h-oracle queries. The reader
can verify that Pr[lDistinct] 5 p where p = 2(ysigSq~,,,~,)'~(2-~o+2-'1). So with
probability E - p , Distinct holds and F halts and outputs a valid forgery (M , x).
Assume we are in this situation, and let y = f(z) = ze mod N . If the first bit of y
is not 0 then the forgery is invalid, so assume this bit is 0. So we can break y up to
view it as 0 1 1 w 1) T* 1) y. Let T = r*@,91 (7 ~) . We now claim that with probabilit,y
atleastE-p-2-li1, thereisani suchthat: (M , r , w , r * , y) = (Mi,ri,wi,r;,yi); h-
oracle query Qi = Mi 1) ri was madc; and this query was new when it was made.
Assuming this claim we have y = yi = TIZ% rriod N . Now I outputs x / q mod N.
Note (z / ~ i) ~ = ye/z: = r/ so z / z i is indeed f - l (q) as desired.

Now let us justify the claim. If M 1 1 T # M i 1) 7-i for all i then the probability
that h (M 1) T) = w is at most 2 T k 1 . So now a~suirie there is such an i . Since
(M , z) is a valid forgery we know that M was never a signing query, so it must
be that M 1 1 T was a h-oracle query. Furthermore, for the same reason, i t must
have been new.

Finally, note that the time for Step (4) in answering signing queries arid
Step (3) in answering h-oracle queries can't be bounded. But the expected time
is two executions of the loop. So we just stop the loop after 1 + Ic0 steps. This

0 adds at most 2 - l i 0 to the error, completing our proof sketch.

We stress how this proof differs from that of Theorem 1. There, we had to
"guess" t,he value of i E (1,. . . , qsis + qhash} for which F would forge a message,
a i d we were only successful if we guessed right. Here we are successful (except,
with very small probability) no matter what is the value of i for which the forgery
occurs.

41 2

I I

Fig. 2. PSS-R: Corriponents of image y = 0 (1 ‘w 1 1 r* 1 1 M ” are darkened.

5 Signing with Message Recovery - PSS-R

MESSAGE RECOVERY. In a standard signature scheme the signer transmits the
message M in the clear, attaching to i t the signature 2. In a scheme which
provides rriessagc recovery, only an “enhanced signature” is transmitted. The
goal is to save on the bandwidth for a signed message: we want the length of
this enhanced signature to be smaller than \MI + 1x1. (In particular, when M is
short, we would like the length of T to be k, the signature length.) The verifier
recovers the message A4 from the enhanced signaturc and checks authenticity at
the same timc.

We accomplish this by “folding” part of the message into the signature in
such a way tha t it is “recoverable” by the verifier. When the length n of M is
small, we can in fact fold the entire message into the signaturc, so that only a
k bit quantity is transmitted. In t,he scheme below, if the security parameter is
k = 1024, we can fold up to 767 message bits into the signature.

DEFINITION. Formally, the key gencration arid signing algorithms are as he-
fore, but Verify is replaced by Recover, which takes pk and x arid returns
Recowerpk(x) E (0, I}* U {REJECT}. The distinguished point REJECT is used to
indicate that the recipient rejected the signature; a return value of Ad E (0, l}’
indicates that the verifier accepts the message M as aut,hentic. The formulation
of security is the same exccpt for what it means for the forger to be successful:
it should provide an 2 such that, Recover,k(z) = M E {0,1}*, where M was not
a previous signing query. We demand that if x is produced via 2 t Sign,(M)
then Recouer,k(z) = M.

A simple variant of PSS achieves message recovery. We now describe that,
scheme and its security.

41 3

THE SCHEME. The scheme PSS-R[ko, kl] = (GenPSSR, SagnPSSR, RecPSSR) is
parameterized by ko and Icl , as before. The key generation algorithm is GenPSS,
the same as before. As with PSS, the signing arid verifying algorithms depend
on hash furictions h: (0, I}* -+ (0, l}ki and 9: (0, l } k o + (0, l}k-kl-l , and we
use the same 91 and yz notation. For simplicity of explication, we assume that
the messages t,o be signed have length n = k - ko - kl - 1. (Suggested choices
of parameters are k = 1024, ko = kl = 128 arid 'rt = 767.) In this case, we
produce "enhanced signatures" of only k bits from which the verifier can recover
the n-bit message and simultmeously check authenticity. Signature generation
and verification proceed as follows. Refer to Figure 2 for a picture.

Rec PSSlz (x)
y t ze rriod N
Break up y as 6 1 1 111 1 1 r* 1) M*. (That is, let h be the first bit of y, w

the next kl bits, T* the next, ko bits, and M * the rerriaining bits.)
7' t 7.*O)Yl(W)

M t M*@~4(711)

if (h (M 1 1 7') = w and b = 0) then rctiirn A4 else return REJECT

The difference in SignPSSR with respect, t,o SaynPSS is that the last part of
y is not y2(w). Instead, y%(w) is used to "mask" the message, arid the masked
message M * is the last part of the image point y.

The above is easily adapted to handle messages of arbitrary length. A fully-
specified scheme would use about min{k, 7t + k.0 + kl + 16) bits.

SECURITY. The security of PSS-R is the same as for PSS.

Theorem3. Suppose that RSA i s (t ' , c ') - s e c w e . Then fw uny qsig, qllaYl, the
signing-with-recoaery scheme PSS-R[ko, k,] is (t , qSig , ~ 1 ~ ~ ~ l ~ , c) -secure, tuhere

t (k) = t ' (k) - [qsig(k) + gilail(k) + I] . ko 0 (k 3) , and

~ (k) = ~ ' (k) + [2(qsig(k) + qlias\l(k))' + 11 ' (2 - k ~ + 2-") .

The proof of this theorem is very similar to that of Theorem 2 and hence is
omitted.

6

The ideas of this paper extend to Rabin signatures [18, 191, yielding a signature
scheme arid a signing with recovery schcmo whose security can be tightly related
to the hardness of factoring.

Rabin signatures - PRab and PRab-R

41 4

THE SCHEME. Scheme PRab[ko, k ~] = (GenPRab, SzgnPRab, VerifyPRab), the
probabilistic Rabin scheme, depends on parameters ko, kl, where Ico + k.1 5 k.
Algorithm GenPRab, on input lk l picks a pair of random distinct (k/2)-bit
primes p , q and multiplies them to produce the k-bit modulus N . It outputs
(pk ,sk) , where pk = N and sk = (N , p , q) .

The signing and verifying algorithms of PRab use hash functions h, g, where
h,: {0,1}* -+ { O , l) k l and 9: { O , l } k o + { O , l } k - k l . We let g1 be the function
which on input w E {a, l } k o returns the first k~ bits of g(w), and let g~ he the
function which on input w E (0, l } k o returns the remaining k - ko - kl bits of

The signing procedure, SignPRab, is similar to the corresponding SiynPSS,
but it returns a random square root of the image y, as opposed to yd mod N .
We stress that a random root is chosen; a fixed one won’t, do. The verification
procedure checks if the square of the signature has the correct image. Thus
verification is particularly fast. IIere, in full, are SzgnPRnb and Verz~yPRab:

g(711).

SignPRab (M)
repeat

T (0, ; 711 t h,(M 1 1 T) ; 7.* t gl(W)$T
Y + 7u II T * I1 92(w)

Let 2 8- { 2 ~ , 2 ~ , 2 3 , L c 4 } .

unti l y is a quadratic residue modN.
Let { 2 1 , 2 2 , 2 3 , 2 4 } be the four distinct square roots of y in Zk.

r e tu rn 2

VerzfyYRab (M , 2)

y t x2 mod N
Break up y as w 1 1 T * 11 y. (That is, let w be the first kl bits of y,

T * the next ko bits, and y the remaining bits.)
T t T * @) y , (W)

if (h (M 1 1 T) = w arid g ~ (w) = y 1 then return 1 else return 0

EXACT SECURITY OF FACTORING. This scheme is based on the hardness of
factoring, so we need an exact security formulation of the hardness of factoring
awump tion.

A factoring algorithm takes a k-bit number and tries to factor it. It is a
t-factoring algorithm if the size of its descriptiori plus it,s running time is at
most t (k) for every k. We say that A (t , f)-factors if, given a number which is
the product of two random distinct (k/2)-bit primes, A produces the correct
factorization with probability at least ~ (k) . We say t,hat factoring is (t, €)-hard
if there is IIO algorithm which (t , t)-factors. A reasonable assumption would be
that factoring is (t, €)-hard for any t , F satisfying t (k) / e (k) = ek’ /4 (’ogk)3 /4 .

SECURITY OF THE PRab. The following theorcm says that the security of PRab
is similar to that of PSS.

41 5

Theorem4. Suppose that factoring is (t‘, €‘)-hard. Then for any qsig, qtlasll the
signature scheme PRab[ko, k l] is (t , 48igr ~ l ~ ~ l ~ , €)-secure, where

Thc proof of this theorem is analogous to that of Theorem 2. Given a forger F
who (t , qsig, q ~ , ~] , , c)-breaks PRab we construct an algorithm which (t’, €‘)-factors.
We begin by picking an element a E Z;C a t random and setting q = u2 rriod N.
Then we procccd as in the proof of Theorem 2, with c set to 2 rather than
to the RSA encrypt,ion exponent. We therehy recover a square root of 7 with

with probability e (k) / 2 - 6 (k) this square root is different from LY arid hence we
factor N . Thus we have a factor of two deterioration in the success probability.
On the other hand, there is an improvement in the time complexity, since our
algorithm has to raise numbers to the power two rather than to an arbitrary RSA
exponent e , thereby bringing the O (k 3) time to O (k 2) . Also, it is a potentially
weaker assumption to say that factoring is (t‘, e’) hard.

RECOVERY. As with PSS, we can add message recovcry to the PRab scheme in
the same way, resulting iri the PRab-R signing-with-recovery scheme. Its security
is the same as that of PRab.

probability €(k) - 6 (k) where b (k) = [2(q,ig(k)+4,,,1,(k))~ +1].(2-k0+2-k1). Rut

References

1. D . BALENSON, “Privacy Enhancement for Internet Electronic Mail: Part 111: Al-
gorithms, Modes, and Identifiers,” lETF RFC 1423, February 1993.

2. M. BELLAH.E AND s. MICALI, “How to sign given any trapdoor permutation,”
.JACM Vol. 39, No. 1, 214-233, January 1992.

3. M. BELLARE A N D P . ROGAWAY, “Random oracles are pract,ical: a paradigm for
designing efficient protocols,” Proceedings of the First Annual Conference on Com-
puter and Communications Security, ACM, 1993.

4. M . BELLARE A N D P. ROGAWAY, “Optirrial Asymmetric Encryption,” Advances
in Cryptology - Eurocr,ypt Y4 Proceedings, Lecture Notes in Computer Science
Vol. 950, A. De Santis ed., Springer-Verlag, 1994.

5. W. DIFFII? A N D M. E. HELLMAN, “New directions in crypt,ography,” IEEE ‘ ~ ~ I L s .
Znfu. Theory IT-22, 644-654, November 1976.

6. C. DWORK AND M. NAOR.. An efficient existentially unforgeable signature scheme
arid its applications. Advances in Cryptology - Crypto 94 Proceedings, Lecture
Notes in Computer Science Vol. 839, Y . Desmedt ed., Springer-Verlag, 1994.

7. T. EL GAMAL, “A public key cryptosystem and a signature scheme based on dis-
crete logarithms,” IEEE Transactions on Information Theory, Vol. 31, No. 4, July
1985.

8. A . FIAT AND A . SHAMIR, “How to prove yourself: practical solutions to identi-
fication and signature problems,” Advances in Cryptology - Crypto 86 Proceed-
ings, Lecture Not,es in Computer Science Vol. 263, A . Odlyzko ed., Springer-Verlag,
1986.

416

9. S. COLDWASSER., S. MICALI AND R . RIVEST, “A digital signature scheme secure
against adaptive chosen-message attacks,” SIAM Journal of Computing, I7(2):281--
308, April 1988.

10. ISO/lEC 9796, “Information Technology Security Techniques - Digital Signature
Scheme Giving Message Recovery,” International Organization for Standards, 1991.

11. M. NAOR A N D M . YUNG, “Universal one-way hash functions and their crypt,o-
graphic applications,” Proceedings of the 21st Annual Symposium on Theory of
Computing, ACM, 1589.

12. A . LENSTRA AND H . LENSTRA (ctls.), “The development of the number field sieve,”
Lecture Notes in Mathematics, vol 1554, Springer-Vcrlag, 1993.

13. D. POINTCHEVAL AND J . STERN, “Security proofs for signatures,” Advances in
cryptofogy - Eurocrypt 96 Proceedings, Lecture Notes in Cornpu ter Science,
t J . Maurer ed., Springer-Verlag, 1996.

14. R. RIVEST, “The MD5 Message-lligest Algorithm,” IETF RFC 1321, April 1952.
15. R.. RIVEST, A. SHAMIR A N D L. ADLEMAN, “A method for obtaining digital signa-

tures and public key cryptosystems,” CACM 21 (1978).
16. RSA Data Security, Inc., “PKCS #1: I tSA Encryption Standard (Version 1.4).”

June 1991.
17. RSA Data Security, Inc., “I’KCS #7: Cryptographic Message Syntax Standard

(version 1.4).” June 1991.
18. M. R.ABIN, “Digital signatmes,” in Foundations ofsecure computation, R. A. Millo

et. al. eds, Academic Press, 1978.
19. M . RARIN., “Digit,al signatures and public key functions nc; intractable as factor-

ization,” MIT Laboratory for Computer Science Report TR-212, January 1979.
20. J . ROMPEL, “One-way Functions are Necessary and Sufficient for Secure Signa-

t11res,” Proceedings of the 22nd Annual Symposium on Thcory of Computing,
ACM, 1990.

21. H. WILLIAMS, “A rriodification of the I t S A public key encryption procedure,” IEEE
Transactions on Information Theory, Vol. IT-26, No. 6, November 1980.

A How t o implement the hash functions h , g

In the PSS we need a concrete hash function h with output length some given
number IC, . Typically we will construct / L from some cryptographic hash function
H such as H = MD5 or H = S H A - I . Ways to do this have been discussed before
in [3, 41. For completeness we quickly sumrnarize some of these possibilities. The
simplest is to define h(z) as the appropriate-length prcfix of

fZ(const.(O).z) 1 1 H(const.(l).z) 1 1 H(const.(2).z) 1 1 * .

The constant const should bc unique to h; to make another hash function, g,
simply select a different constant.

	The Exact Security of Digital Signatures-How to Sign with RSA and Rabin
	1 Introduction
	1.1 Signing with RSA- Current practice
	1.2 FDH and its exact security
	1.3 New schemes: PSS and PSS-R
	1.4 Discussion
	1.5 Related work

	2 Definitions
	2.1 An exact treatment of RSA
	2.2 Signature schemes and their exact seeurity
	2.3 Quantifying the quality of reductions

	3 The fill-Domain-Hash Scheme - FDH
	4 The Probabilistic Signature Scheme - PSS
	4.1 Description of the PSS
	4.2 Security of the PSS

	5 Signing with Message Recovery - PSS-R
	6 Rabin signatures - PRab and PRab-R
	References

