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Abstract. We describe an RSA-based signing scheme which corribines 
essentially optimal efficiency with attractive security properties. Sign- 
ing takes one RSA decryption plus sonic hashing, verification takes one 
RSA encryption plus some hashing, and the size of the signature is the 
size of the modulus. Assuming the underlying hash functions are ideal, 
our schemes are not only provably secure, but are so in a tight way- 
an ability to forge signatures with a certain amount of coniputational 
resources implies the ability to invert R.SA (on the same size modulus) 
with about the same computational effort. Furthermore, we provide a 
second scheme which maintains all of the above features and in addition 
provides message recovery. These ideas cxt,entl to provide schemes for 
Rabin signatures with analogous properties; in particular their security 
can be tightly related to the hardness of factor-ing. 

1 Introduction 

A widely employed paradigm for signing with RSA is to first “hash” t,lie message 
into a domain point of RSA and then decrypt. (ie. exponentiate with the RSA 
decryption exponent,). In particular, this is the basis of several existing standards. 
Unfortunately, the security of the standardized schemes cannot be justified under 
standard assumptions aboiit R S A  , wen assuming the underlying hash functions 
are ideal. 

We propose new schemes, both for signing and for signing with message 
recovery. They are as simple and efficient as the standardized ones. (In particular, 
signing takes one RSA decryption plus some hashing, Verification takes one RSA 
encryption plus some hashing, and the size of the signature is the size of the 
modulus.) But, assuming t,he underlying hash function is ideal, oiir rnethods are 
not, only provably secure, but provably secure in a strong sense: the security of 
our schemes can be t ightly related to  the security of the RSA function. 

Besides providing concrete new schemes for signing with RSA, this work 
highlights the import,wnce, for practical applications of provable security, of COIF 

sideration of the tightness of the security reduction, and also provides a rare ex- 
m l p k  of modifying one provably-good scheme in order to  obtain another which 
has a better security bound. 
U. Maurer (Ed.): Advances in Cryptology - EUROCRYPT ’96, LNCS 1070, pp. 399-416, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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Let US now expand on all of the above. We begin by looking at  current 
practice. Then we consider the full domain hash scheme of [3] which is provable, 
and discuss its exact security. 'Finally we come to our new schemes, PSS and 
PSS-R, arid their exact security. 

1.1 Signing with RSA- Current practice 

THE R,SA SYS'I'EM. In the RSA public key system [I51 a party has public key 
( N , e )  and secret key ( N , d ) ,  where N is a k-bit modulus, the product of two 
(k/2)-bit primes, and e,d E Z;") satisfy ed G 1 mod cp(N). (Think of k = 
1024, a recomniended modulus size these days.) Recall that the RSA function 
f: ZT,i -+ Z& is defined by f(x) = 2" mod N and its inverse f-': ZT,i + Z& is 
defined by f-' (y) = yd mod N (2, y E Zh). The gcnerally-made assumption is 
that f is trapdoor one-way- roughly, if you don't know d (or the prime factors 
of N )  then i t  is hard to  compute 3: = f - ' (y)  for a y drawn raridorrily from Z h .  

HASH-THEN-DECRYPT SCHEMES. A widely employed paradigm to sign a doc- 
ument M is to  first compute some "hash" y = H u s h ( M )  and then set the 
signature to  z = f - ' (y )  = yd mod N .  (To verify that z is a signature of M ,  
compute f(x) = xe mod N and check this equals Hash(&').) In particular, this 
is the basis for several existing standards. A necessary requirement on Hash 
in such a scheme is that it be collision-intractable and produce a k-bit output 
in Z;. Accordingly, Hash is most often implernented via a cryptographic hash 
function like H = MD5 (which yields a 128 bit output arid is assumed to  be 
collision-intractable) and s011ie padding. A c:oncre,tt' example of such a scheme is 
[16, 171, wherc the hash is 

f fashp~cs(M) = OX 00 01 FF FF ' .  FF FF 00 1 )  ff(?d) . 
Here 1 1  denotes concatenation, and enough OxFF-bytes are used so as to make 
the length of f f a s h p ~ ~ s ( l M )  equal t,o k hits. 

SECURITY. We draw attention to the fact that, the security of a hash-then- 
decrypt signature dcpends very much on how exactly one implements Hush. In 
particular, it is irnportant, t,o recognize that the security of a signature scheme 
like SignpKcs(M) = f - ' ( H u s h p ~ ( ~ ~ ( M ) )  can't be justified given (only) that  
RSA is trapdoor one-way, even under the assumption that hash function H is 
ideal. (The reason is that the set, of points { HashpK(:s(M) : M E {0,1}* } has 
size at, most 2lZg and hence is a very sparse, and a very structurcd, subset of 
Z&.) We consider this to be a disadvantage. We stress that we don't know of 
any attack on this scheme. But we prefer, for such importrant primitives, to h a w  
some proof of security rathcr than just an absence of known attacks. 

The same situation holds for other standards, including IS0 9796 [lo]. (There 
the function Hash involves no cryptographic hashing, and the message M is 
casily recovered from Hash(M). This doesn't effect the points we've just made.) 

The above discussion highlights that collision-intractability is not enough. 
The function I I u s h p ~ ~ s  is guaranteed to be collision-intracta~le if we use a 
collision-intractable H .  Rut this won't suffice to get a proof of securit,y. 
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1.2 FDH and its exact security 

TIIE FDH SCHEME. 111 earlier work [3] we suggested to hash M onto the full 
domain z& of the RSA function before decrypting. T h a t  is, HashFnH: {0,1}* + 
Z;V is understood to hash strings “uniformly” into Z;, and the signature of M is 
Sign,,,,(M) = f-’ ( H u s ~ F D H ( M ) ) .  (Candidates for suitable functions  hush^^" 
can easily be constructed out of MD5 or similar hash functions, as described in 
[3].) We call this the Full-DoInain-IIashi-IIas~i scheme ( F D H ) .  

PROVABLE SECURITY OF FDII. Assuming Hush is ideal (ie. it behaves like a 
random function of the specified domain and range) the security of FDH can be 
proven assuming only that RSA is a trapdoor permutation. (This is a special case 
of [3, Section 41, which corisiders this construction with an arbitrary t,rapdoor 
permutation.) This makes the seciirit,y guarantee of the FDH scheme superior to  
those of the schemes we discussed in Section 1.1. 

Now we want to go further. We will explain how, within the class of provable 
schemes, quality depends on the quantifiable notion of exact secur i ty .  In this 
paper we compute t,he exact security of the FDH scheme, and then we offer a 
new scheme which has better exact securit,y. 

EXACT SECURITY. We quantify t,he security of RSA as a trapdoor permutation. 
We say it is (t’, 6‘)-secure if an attacker, given y drawn raridorrily from Z;Y and 
limited to running in time t ‘ ( k ) ,  su ds in finding f-’ (y) with proba,bility at 
most ~ ( k ) .  Values of t’, E‘ for which it is safe to  assume RSA is (t’, 6’)-secure can 
be provided based on the perceived cryptanalytic strength of RSA. 

Next, we quant,ify the security of a signature scheme. A signature scheme is 
said to  be ( t ,  qsig, yllasll, €)-secure if an attacker, provided the public key, allowed 
to run for time t ( k ) ,  allowed a chosen-message attack in which she can see up 
to qsig ( k )  legitimate message-signature pairs, and allowed qhas1, invocations of 
the (ideal) hash function, is successful in forging the sigriatiire of a new message 
with probability at most, ~ ( k ) .  

EXACT SECURITY O F  FDH.  The “exact security” of t,he reduction of [3] used 
to prove the security of the FDH signature scheme is analyzed in Theorem 1. 
It says that if RSA is (t’, d-secure and qsig,qt,ast, arc given then the FDH 
signature scherrie is ( t ,  qsig, qtlatl, €)-secure for t = t’ - poly(q,i,, qllasll, k) and 
€ =  ( q .  slg + qllaskl) E‘. Here poly is some some small polynomial explicitly speci- 
fied in Theorem 1. 

We note that E could thus be considerably larger than 6 ’ .  This means that 
even if RSA is quit,e strong, the guarantee on the signature scheme could be quite 
weak. To see this, say we would like to  allow t,he forger to see at least q s i g ( k )  = 230 
example signatures and corripute hashes on, say, qllaStl = 260 strings. Then even 
if the RSA inversion probability was originally as low as 2--F1, all we can say 
is that the forging probability is now at most I/2,  which is not good enough. 
To compensate, we will have to be able to assume that d ( k )  is very, very low, 
like 2-l”. This means that we must have a fairly large value of k ,  ie. a larger 
modulus. But this affects the efficiency of the scheme, because the time to do the 



402 

uriderlyirig modular exponentiation g~ows (and rather quickly) as the modulus 
size increases. We prefer to avoid this. 

We reiterate the crucial point: if the reduction provirig security is “loose,” 
like the one above, the efficiency of the scheme is impacted, because we must 
move to a larger security parameter. Thus, it would be nice t,o have “tighter” 
reductions, meaning ones in which E is almost the same as c‘ ,  with the relations 
amongst the other parameters staying about the same as they are now. 

One might suggest that it is possible to prove a better security bound for 
FDH than that outlined above. Perhaps, but we don’t know how. Instead, we 
will strengthen the scherne so that a better security bound can be proven. 

CLARIFICATION. Before going on, let us clarify our assessrrlents of scherne quality. 
We are not saying the FDH scheme is bad. Indeed, since it is provable, it is ahead 
of’ schemes discussed in Section 1.1, and a viable alternative to therri. What we 
are saying is that it is possible to do even better than FDH. That is, it is possible 
to get a scheme which is not only proven secure, but has strong exact, security. 
This successor to FDH is the scheme we discuss next. 

1.3 New schemes: PSS and PSS-R 

PSS. We introduce a new scheme which we call the probabilistic signature scheme 
(PSS). It is fully specified in Section 4. 

The idea is to strengthen the FDH scheme by making the hashing probabilis- 
tic. In order to sign message M ,  the signer first picks a random seed T of length 
ko, where ko < k is a parameter of the scherne. Then using some hashing, in a 
specific way we specify, the signer produces from M and r an image point y = 
Hashpss(M,r)  E Z>. As usual, thesignatureis 3: = f-’(y) = yd mod N .  (Verifi- 
cation is a bit morc tricky than usual, since one cannot simple “re-compute” this 
probabilistic hash, but still takes only one RSA encryption and some hashing. 
See Section 4.) In particular, our scheme is as efficient as the schemes discussed 
above. But Theorem 2 shows that the security can be tightly related to that, of 
RSA. Roughly, it says that if RSA is ( t ‘ ,  E’)-secure then, given qsig,  qllasl1, scheme 
PSS is (t,qsig, qilasil,c)-secure for t = t’ - p ~ l y ( q ~ i ~ , q ~ ~ ~ ~ ~ ~ ,  k )  and E = E’ - o(1). 
Here o( 1) denotes a function exponentially small in ko and kl (another paramet,er 
of the scheme) and poly denotes a specific polynomial, both of t,hese explicitly 
specified in the theorern. 

Continuing the above example, if the KSA inversion probability was originally 
as low as 2Y61, the probability of forgery for the signature scheme is almost 
equally low, regardless of the number of sign and hash queries the advcrsary 
makes! 

Pss WITH R.ECOVERY. We also have a variant of Pss, called PSS-R, which pro- 
vides message recovery. The goal is to save on bandwidth. Rather than trarisrnit 
the message M and its signature 3:, a single “enhanced sigriature”.r, of length less 
than lMl + 1x1, is transmitted. Thc vc:rificr will ha able to recover M from .r and 
simultaneously check the authenticity. With security parameter k = 1024, our 
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scheme enables one to authenticate a message of up to n = 767 bits by transmit- 
ting only a total of k bits. PSS-R accomplishes this by appropriately “folding” 
the message into the signature iu such a way that the verifier can recover it. The 
efficiency and security are the same as for PSS. See Section 5. 

RABIN SIGNA’I’URES. The same ideas apply for the Rabin function, and, in par- 
ticular, we have both a basic Rabin scheme and a variant which provides for 
message recovery, with security tightly related to the hardness of factoring. See 
Section 6. 

1.4 Discussion 

The above illustrates that to fairly compare the efficiency of two provably-secure 
schemes one needs to look at  more than just Computation time for a k-bit key. 
Schemes FDH arid PSS have essentially the same computation time when k is 
fixed. But since PSS has tighter provable security one can safely use a smaller 
modulus size arid thus, ult,imately, get greater efficiency. 

A riurnerical example may help to make this clear. Let us again assume 
that the forger F can compute the hash of a t  most 260 strings and that> she 
can obtain the signatures of at  most 230 messages. Assume that it takes time 
Ce’ 823(10gN)”3(10g10gN)2’3 to invert RSA [12]. Then, our theorems imply that if 
you use FDH then you must, select a modulus of 3447 bits in order to get the 
same degree of guaranteed-secuiity as you would have gott,en had you selected 
a modulus of 1024 bit,s and used PSS. 

1.5 Related work 

We have already discussed the PKCS standards [16, 171 and the IS0 standard 
[lo] and seen that their security cannot be justified based on the assumption 
that RSA is trapdoor one-way. Ot,her standards, such as [l], are similar to [16], 
and the same statement applies. 

The schemes we discuss in the reiiiainder of this section do not use the 
hash-then-decrypt paradigm. 

Signature schemes whose security can be provably based on the RSA assurnp- 
tioii include [9, 2, 11, 20, 61. The major plus of these works is that they do not 
use an ideal hash function (random oracle) model- the provable security is in 
the standard sense. On the other hand, the security reductions are quite loose 
for each of those schemes. On the efficiency front, the efficiency of the schemes of 
[9,2,  11,201 is too poor to seriously consider them for practice. The Dwork-Naor 
scheme [6], on the other hand, is computationally quite efficient, taking two to 
six RSA computations, although there is some storage overhead and the signa- 
tures are longer than a single RSA modulus. This scherrie is the best current 
choice if one is willing to allow some extra computation and storage, and one 
wants well-justified security without assuming an ideal hash function. 

Back among signature schemes which assume an ideal hash, a great many 
have been proposed, based on RSA, the hardness of factoring, or other assurnp- 
tions. Most of these schemes are derived from identification schemes, as was 
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first done by [8]. Some of these methods are provable (in the ideal hash model), 
some not. In some of the proven schemes exact security is analyzed; usually it 
is not. In no case that we know of is the security tight. The efficiency varies. 
The computational requirements are often lower than a hash-then-decrypt RSA 
signature, although key sizes are typically larger. 

The paradigm of protocol design wit,h ideal hash functions (aka random ora- 
cles) is developed in [3] and continued in [4]. The current paper is in some ways 
thc analogue, for digital signatures, of our earlier work on encryption [4]. Further 
work on signing in the random oracle model includes Pointcheval and Stern [13]. 
(They do not consider exact security, and it may he helpful to do so in their 
context .) 

2 Definitions 

We provide definitions for an exact, securit,y treatment of RSA, basic signature 
schemes, and signing with recovery. 

2.1 An exact treatment of RSA 

TIIE R.SA FAMILY. RSA is a family of trapdoor permutations. It is specified by 
the RSA generator, RSA, which, on input l k ,  picks a pair of random distinct 
(k/2)-bit primes and multiplies them to produce a modulus N .  It also picks, 
at random, an encryption exponent e E Z;(,) and corriputes the corresponding 
decryption exponent d so that ed = 1 mod p(N). The generator returns N, e ,  d ,  
these specifying f: Z& + Zh and f-’: Z& + Zh, which are defined by f(x) = 
Z‘ mod N and f-’ (y) = y d  mod N. Recall that both functions arc permutations, 
and, as the notation indicates, inverses of cach other. 

The trapdoor permutation generator RSAS  is identical to RSA except that, 
the encryption exponent e is fixed to he 3. More generally, RSA-e provides an 
encryption exponent of the specified constant. Other variants of RSA use a 
somewhat different distribution on the rnodulus N .  Our results, t,hoiigh stated 
for RSA, also hold for these other variants. 

EXACT SECURITY OF THE K.SA FAMILY. An inverting algorithm for RSA, 1 ,  gets 
input N ,  e,y and tries to find f-’(y).  Its success probability is the probability it, 
outputs f-’(y) when N ,  c ,  d are obtained by running RSA(lk)  and y is set to  
f(x) for an x chosen at random from Z;t. The standard asymptotic definition of 
security asks that the success prohbilit,y of any PPT (probabilistic, polynomial 
time) algorithm be a negligible function of k .  We want to go further. We are 
interested in exactly how milch time an inverting algorithm uses and what success 
probability it achieves in this time. Formally an inverting algorithms is said t,o be 
a t-inverter, where t: N + N, if its running time plus the size of its description 
is bounded by t(lc), in some fixed standard model of computation. We say that 
I @,€)-breaks RSA, where 6: N + [0,1], if i is a t-inverter and for each k the 
success probability of 1 is at  least ~ ( k ) .  Finally, we say that ‘RSA is ( t !  €)-secure 
if there is no inverter which ( t ,  c)-breaks RSA.  
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EXAMPLE. The asymptot,ically best factoring algorithm known (NFS) takes time 
which seems to  be about e1 .gk”3(10gk)2/3  to factor a k-bit modulus. So one might 
be willing to  assume that the trapdoor permutation family RSA is ( t ,  €)-secure 
for any ( t ,  c) satisfying t ( k ) / c ( k )  5 ~ e k ” ~ ,  for some particular constant, C. 

2.2 

SIGNATURE SCIIEMES. A digital signature scheme I7 = (Ge71, Sign, Verify) is 
specified by a key generation algorithm, Gen,  a signing algorithm, Sign, and a 
verifying algorithm, Verify. The first two arc prohahilistic, and all three should 
run in expected polynomial time. Given lk,  the key generation algorithm outputs 
a pair of matching public and secret keys, (pk, sk) .  The signing algoritlirn takes 
the message M to be signed and the secret kcy sk, and it returns a signature x = 
Signsk ( M ) .  The verifying algorithm takes a message MI a carididate signature 
d, and the public key p k ,  arid it retiirns a bit I/erifyy,k(M, x’), with 1 signifying 
"accept" and 0 signifying “reject.” We demand that if x was produced via z t 
SignSk(M) then Verifypk( M ,  x) = 1. 

One or more strong hash functions will usually be available to the algorithms 
Sz.9n and Verify, their domairi and rarige depending on the scheme. We model 
t,hem as ideal, meaning that if hash function It is invoked on some input, t,he 
output is a uniformly distributed point of the range. (But if invoked twice on 
the same input, the same thing is returned both times.) Formally, h is a random 
oracle. It is called a hash oracle and it is accessed via oracle queries: an algorithm 
can write a stxirig z and get back h(z)  in time 12). 

SECURITY OF SIGNATURE SCIIEMES. Defiriitions for the security of signatures in 
the asymptotic setting were provided by Goldwasser, Micali and Rivest [9], and 
enhanced to take into account the presence of an itleal hash function in [3]. Here 
we provide an exact version of these definitions. 

A forger takes as input a public key pk, where (pk , sk)  e Gen(l‘), and 
tries to  forge signatures with respect to p k .  The forger is allowed a chosen mes- 
sage attack in which it can request, and obtain, signatures of messages of its 
choice. This is modeled by allowing the forger oracle a s to the signing al- 
gorithm. The forger is deemed successful if it  outputs a lid forgery -namely, 
a message/signaturc pair ( M ,  z) such that Verifypk(M, x) = 1 hut M was: not, 
a message of which a signature was requested earlier of the signer. The forger 
is said to  be a ( t ,  qsig, qhas&forger if its running time plus description size is 
bounded by t ( k ) ;  it makes at most qsig(k) queries of its signing oracle; arid it 
makes a total of at most yllasl1(k) queries of its various hash oracles. As a con- 
vention, the time t ( k )  includes the time to answer the signing queries. Such a 
forger F is said to  ( t ,  psig, pllasll, c)-brcak the signature scheme if, for every k ,  the 
probability that F outputs a valid forgery is at least ~ ( k ) .  Finally we say that 
the signature schem (Gen, Sign, Verify) is ( t ,  psig, qtlasIl, €)-secure if there is no 
forger who ( t ,  qsig, qllasll, €)-breaks the scheme. 

ssary book-keeping 
so that, it never repeats a hash query. (It rriight repeat a signing query. If the 
scheme is probabilistic, this might help it.) 

Signature schemes and the i r  exact security 

For simplicity we will assume that a forger does any n 
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2.3 

Our theorems will have the form: If RSA is (t’, €‘)-secure, theu some signature 
scheme ll = (Gen, Szgn, Verzfy) is ( t ,  psig, qhmh, c)-secure. The proof will take 
a forger F who (tryslg,  ~ ~ = l ~ , ~ ) - b r e a k s  L7 and produce from F an inverter I 
who (t’,d)-breaks RSA. The quality of the reduction is in how the primed 
variables depend on the unprimed ones. We will typically view qsig,qllasll as 
given, these being query bounds we are willing to allow. (For example, qsig = Z 3 O  

and qllasll = 260 are reasoriable possibilities.) Obviously we want t‘ to be as large 
as possible and we want E’ to be as small as possible. We are usually satisfied 
when t’ = t - poly(Q~las~~, qsig, I c )  and C‘ M 6 .  

Quantifying the quality of reductions 

3 The fill-Domain-Hash Scheme - FDH 

THE SCHEME. Signature scheme FDH = (GenFDH,  SignFDH, VerifyFDH) is 
defined as follows [ 3 ] .  The key generation algorithm, on input lk, runs RSA(lk) 
to obtain ( N , e , d ) .  It outputs (pk , sk ) ,  where p k  = ( N , e )  arid sk = ( N , d ) .  
The signing and verifying algorithms have oracle access to a hash function 
H F D H :  (0 ,  l}’ + Z;V. (In the security analysis it is assumed to be ideal. In 
practice it can be implemented on top of a cryptographic hash function such as 
SHA-1.) Signature generation and verification are as follows: 

SignF13HN,, ( M )  
Y t HFDH(M) 
return yd mod N 

Verzf?lFDHN,e ( M ,  x) 
y t xe mod N ; y’ t H F D H ( M )  
if y = 9’ then return I else return 0 

SECURITY. The following theorem summarizes the exact security of the FDH 
scheme as provided by the reduction of [3 ] .  The proof is straightforward, but it 
is instructive all the same, so we include it. The disadvantage of the result, froin 
our point of view, is that 6’ could be rriuch smaller than e. 

Proof. Let F be a forger which ( t ,  qsig, qllasl1, e)-brcaks FDH. We present an in- 
verter 1 which (t’, el)-breaks RSA. 
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Inverting algorithm I is given as input (N, e ,  y) where N ,  e, d were obtained 
by running the generator RSd(lk), and y was chosen at random from Zh.  I t  
is trying to find x = f- ' (y),  where f is the RSA function described by N , c .  
I t  forms the public key N , e  of the Full-Domain-Hash signature scheme, and 
starts running F on input of this key. Forgcr F will make two kinds of oracle 
queries: hash oraclc queries and signing queries. Inverter I must answer these 
queries itself. For simplicity we assume that if F makes sign query M then it has 
already made hash oracle query M .  (We will argue later that this is wlog.) Let 
q = qsig + qilaSll. Inverter I picks at  random an integer j from (1,. . . , q} .  Now we 
describe how 1 answers oracle queries. Here i is a counter, initially 0. 

Suppose F makes hash oracle query M .  Inverter 1 increments i and sets 
Mi = M .  If i = j then it sets yi = and returns yi. Else it picks ri at random 
in Zk, sets yi = f ( r i ) ,  and returns yi. 

Alternatively, suppose F makes sigriirig query M .  By assumption, there was 
already a hash query of M ,  so M = Mi for some i. Let I return the corresponding 
T - ~  as the  signature. 

Eventually, F halts, outputting some (attempted forgery) ( M ,  z). Let invert- 
ing algorithm I output x. Without loss of generality (see below) we may assume 
that M = Mi for some i .  In that case, if ( M , z )  is a valid forgery, then, with 
probability at least l / q ,  we have i = j and z = f- '(yi) = f-'(y) was t,he correct 
inverse for f .  

The running time of I is that of F plus the time t,o choose the yi-values. The 
main thing here is one RSA computation for each yi, which is cubic time (or 
bett,er). This explains the formula for t .  

It remains to justify the assumptions. Recall that I is running F .  So if the 
latter makes a sign query without having made the corresponding hash query, 
I at once goes ahead and makes the hash query itself. Similarly for the output 
forgery. All this means that the effective number of hash queries is at  most 

0 qhas11 + qsig + 1, which is the number we used in the time bound above. 

Is there a different proof which would achieve a trarislation in which t is like the 
above but E is [I(€')? We don't believe so. Instead we will modify the scheme to 
get the security we want. We do this by making the hashing probabilistic. 

4 The Probabilistic Signature Scheme - PSS 

Here we propose a new scheme a probabilist,ic generalization of FDH. I t  pre- 
serves the efficiency and provable security of FDH but achieves the latter with a 
much better security bound. 

4.1 Description of the PSS 

Signature scheme PSS[ko, k l ]  = (GenPSS,  SignPSS, VerifyPSS) is pararneter- 
ized by ICo and I C ,  , which are numbers between 1 and k satisfying ko + kl 5 k - 1. 
To be concrete, the reader may like to imagine k = 1024, ko = kl = 128. 
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Fig. 1. PSS: Corriponents of image y = 0 1 1  w I /  T* 1 1  yl(w) are darkened. The 
signature of hi’ is yd mod N .  

The key generation algorithn GenPSS is identical to GenFDH: on input lk, 
run RSd(lk) to obtain ( N ,  e,  d) ,  and out,put (pk ,  sk), where p k  = (N,  e) and 

The signing and verifying algorithms make use of two hash functions. The 
first, h, called the compressor, maps as 11: ((1,l)’ + (0, l}kl and the second, g ,  
called the generator, maps as g: (0, l } k o  4 (0, l}k-kl-l . (The analysis assumes 
these to be ideal. In practice they can be implemented in simple ways out of 
cryptographic hash functions like MD5, as tlisciisscd in Apperidix -4.) Let g1 
be the function which on input 7u E (0,1}’0 returns the first ko bits of g(w), 
and let 9 2  be the function which on input w E (0, l j k 0  returns the remaining 
k - Ico - kl - 1 bits of g(w). We now describe how to sign arid verify. Refer to 
Figure 1 for a picture. 

sk = ( N , d ) .  

VerzfyPSS ( M ,  x) 
y c xe mod N 
Break up y as h 1 1  7 1 ~  1 1  T *  1 )  y. (That is, let b be the first bit of y, 71) 

the ncxt kl  bits, ?-* the  next ko bits, and 7 the remairiiiig bits.) 
T t 7’*@3,Yl (UJ) 

if ( h(M 1 1  r )  = ’UI and g2(4u) = y and b = 0 ) then return 1 
else return 0 

The step T & (0, l}ko indicates that t,he signer picks at  random a seed T of ko 
bits. He then concatenates this seed to the message M ,  effectively “raridornizing” 



409 

the message, and hashes this down, via the “compressing” function, to a kl  bit 
string w. Then the generator g is applied to w to  yield a ko bit string T*  = 91 (w) 
and a k - ko - kl - 1 bit string 9 2 ( 7 1 1 ) .  The first is used to “mask” the seed 
T ,  resulting in the masked seed T * .  Now w 1 1  T *  is pre-pended with a 0 bit and 
appended with y~(w) to create the image point y which is decrypted under the 
RSA function to  define the signature. (The 0-bit is to guarantee that y is in Zk.) 
Notice that a new seed is chosen for each mcssage. In particular, a given message 
has many possible signatures, depending on the value of T chosen by the signer. 

Given (111, z), the verifier first computes y = xe mod N and recovers T * ,  w, T .  

These are used to check that y was correctly constructed, and the verifier only 
accepts if all the checks succeed. 

Note the efficiency of t,he scheme is as claimed. Signing takes one application 
of h, one application of g, and one RSA decryption, while verification t,akes one 
application of h,, one application of g,  arid one RSA encryption. 

4.2 Security of the PSS 

The following theorem proves the security of the PSS based on t,he security of 
M A ,  but with a relation betwccn the  two securities that is much tighter than 
the one we saw for the FDH scheme. The key difference is that ~ ( k )  is within 
an additive, rather than multiplicative, factor of d ( k ) ,  and this additive factor 
decreases exponentially with ko, k l .  Tlie ~elatiori between t and t’ is about the 
same as in Theorem 1. 

Theorem 2 .  Suppose that RSA is (t ‘ ,  c’)-secure. Then for any qsig,  qll,l1 the 
signature scheme PSS[ko, k l ]  is ( t ,  qsig,  qtllaSt,, E)-secure, where 

t ( k : )  = t ’ ( k )  - [ysig(k) + yllasll(k) + 11 k.0 . ~ ( k ’ ) ,  and 

F(k) = 4 ( k )  + [2(qsig(k) + qllash(k))2 + 11 ’ (2+ + 2 - 9  . 

The rest of this section is devoted to a sketch of the proof of this theorem. 

Proof Sketch. Let F be a forger which (t ,  qSig ,  qlllasl1, €)-breaks the PSS. We present 
an inverter I which (t’, €‘)-breaks the trapdoor permutation family ’RSA. 

The input to I is N ,  e and 7) where q was chosen at random from Zb, and 
N ,  e, d were chosen by running the generator RSA( 1”. (But d is not provided 
to I ! )  We let f :  Z> + Zk be f(x) = xe mod N .  1 wants to compute fP1(q)  = 
q‘ mod N .  I t  forms the public key N ,  e ,  and starts running F on input this key. F 
will make oracle queries (signing queries, h-oracle queries, and g-oracle queries), 
which I must answer itself. We assume no hash query ( h  or g) is repeated (but, a 
signing query rriight be repeated). We let 61,. . . , QQs,g+qhnsh denote the sequence 
of oracle queries that F makes. (This is a sequence of randorn variables.) This 
list includes all queries, and we implicitly assume that along with each Qi is an 
indication of whether it is a sigriirig oracle query, an h-oracle query or a g-oracle 
query. In the process of answering thcsc qiieries, 1 will “build” or “define” t,he 
fiinctions JL, y. 
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I maintains a counter i, initially 0, which is incrernented for each query. We 
now indicate how the queries are answered. It depends on the type of query. 

Answering signing queries. First, suppose 8% = A4 is a signing query. Let US 

first try to give some intuition, and then the precise instructions for I to ariswer 
the query. 

The problem is that I cannot answer a signing query as the signer would 
since it doesn't know f-'. So, it fiIst picks a point 2 t Zh, and then arranges 
that y = f(z) be the image point of a signature of M .  (It, does this by viewing 
y as 0 1 1  w 1 1  T* 1 1  y, and then defining h(A4 1 1  r )  = w and g(w) = r*$T 1 1  y, for 
some raridorn r.) A t  this point, x can be returned as a legitimate signature of M .  
Some technicalities include making sure there are no conflicts (re-defining h or g 
on points where their values were already assigned) and making sure y has first 

0. These are attended to in the following full description of the instructions 
I to  answer signing query Qi:  

Increment i and let Mi = Q i .  

Pick Ti & (0, I}". (Recall this notation means ri is chosen at random from 

If 3 j : j < i : rj = ri then abort. 
Repeat zi & Zh ; yi t f(zi) u n t i l  the first bit of yi is 0. 
Break up yi to write it as 0 1 1  wi 1 1  r: 1 1  yi. (That is, let wi be the ICo bits 
following the 0, lct T: be the next k l  bits, and let yi be tlie last k - ko - kl - 1 
bits.) 
Set h(A4i 1 1  r i )  = wi. 
If 3 j : j < i : wj = U I ~  then abort. 

(0, 1 j k o 0 . )  

1 Set g1 (wi) = r f ~ ~ ~ i  ; Set y2(wi) = yi ; Set y(wi) = 91 (wi) 11 yz(wi). 
(9) Return xi to F as the answer t,o signing query Qi = Mi.  

Answering h-oracle queries. Next, suppose Qi is an h,-oracle query. We may 
assume it has length at  least k.0 since otherwise it doesn't help the adversary to  
make this query. Again, before the precise instructions, here is the intuition. The 
query looks like M ( 1  T .  We want to arrange that, if F later forges a signature of 
M using seed r then3 we invert f at rl. To arrange this, we will associate to query 
M ( 1  T an image of the form vx:, where xi is random. (Thus if F later comes up 
with an f-l(qz:) = ziq', then I can divide out zi and recover 7' = f - ' ( q ) . )  
This is done by choosing a random xi, viewing qzt as 0 ( 1  U J  11 r* 1 1  y, and, as 
before, defining h ( M  ( 1  T )  = w arid g ( w )  = T * &  ( 1  y. The detailed instxuctions 
for 1 to answer h-oracle query CJi (taking into account technicalities similar to 
tlie above) are: 
(1) Increment i and break up Qi as Mi 1 1  ri. (That is, let 7-i be the last ko bits 

of Qi and let Mi be the rest). 
(2) Say Qi is old if 3-j : j < i : A 4 j  ( 1  rj = M i  ( 1  ~ i ,  arid new otherwise. (Since 

h-queries are not repeated, Qi is old iff Mi was signing query M j  and in the 

F might forge a signature of A4 with a seed T' such that h-query M 1 1  7.' was never 
made. But the probability of this is very low. 
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process of answering it above we picked rj = T ~ . )  Now if Qi is old then set 
(w i , r ; , y i )  = ( 7 ~ j , ~ T , 3 j )  and return w j  (which is h ( M j  1 )  r j ) ) ;  Else go on to 
next step. 

(3) Repeat zi Z;V ; zi t f ( z i )  ; yi t qzi mod N u n t i l  the first bit of yi 
is 0. 

(4) Break up yi to write it as 0 1 1  wi 1 1  rt / I  yi. 

(6) If 3 j : j < i : 111j = wi then abort. 
(7) Set yl(wi) = r;@ri ; Set ga(wi) = ̂ li ; Set g(74) = gl(wi) ( 1  yz(wi). 

(8) Return wi to F as t8he answer to Loracle query Qi = Mi 1 )  ~ i .  

Answering g-oracle queries. Last, suppose &i is a y-oracle query. We may 
assume it has length Icl since otherwise it doesn't help the adversary to make 
this query. This time, there is not much to do: 

( 1 )  lncrement i and let wi = Qi.  

(2) If 3 j  : j < i : wj = wi then return g(w,y). Else pick a string (Y & (0, l }k -ko- ' ,  
set g(wi )  = a,  and return a.  

(5) Set /&(Mi 1 1  T i )  = w i .  

Analysis. Let Distinct be the event that we never abort in Steps (3) or (7) in 
answering signing queries or Step (6) in answering h-oracle queries. The reader 
can verify that Pr[lDistinct] 5 p where p = 2(ysigSq~,,,~,)'~(2-~o+2-'1). So with 
probability E - p ,  Distinct holds and F halts and outputs a valid forgery ( M ,  x). 
Assume we are in this situation, and let y = f(z) = ze mod N .  If the first bit of y 
is not 0 then the forgery is invalid, so assume this bit is 0. So we can break y up to 
view it as 0 1 1  w 1 )  T*  1 )  y. Let T = r*@,91 ( 7 ~ ) .  We now claim that with probabilit,y 
atleastE-p-2-li1, thereisani  suchthat: ( M , r , w , r * , y )  = (Mi,ri,wi,r;,yi); h- 
oracle query Qi = Mi 1 )  ri was madc; and this query was new when it was made. 
Assuming this claim we have y = yi = TIZ% rriod N .  Now I outputs x / q  mod N. 
Note ( z / ~ i ) ~  = ye/z: = r/ so z / z i  is indeed f - l ( q )  as desired. 

Now let us justify the claim. If M 1 1  T # M i  1 )  7-i for all i then the probability 
that h ( M  1 )  T )  = w is at  most 2 T k 1 .  So now a~suirie there is such an i .  Since 
( M , z )  is a valid forgery we know that M was never a signing query, so it must 
be that M 1 1  T was a h-oracle query. Furthermore, for the same reason, i t  must 
have been new. 

Finally, note that the time for Step (4) in answering signing queries arid 
Step (3) in answering h-oracle queries can't be bounded. But the expected time 
is two executions of the loop. So we just stop the loop after 1 + Ic0 steps. This 

0 adds at  most 2 - l i 0  to the error, completing our proof sketch. 

We stress how this proof differs from that of Theorem 1. There, we had to 
"guess" t,he value of i E (1,. . . , qsis + qhash} for which F would forge a message, 
a i d  we were only successful if we guessed right. Here we are successful (except, 
with very small probability) no matter what is the value of i for which the forgery 
occurs. 
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I I 

Fig. 2. PSS-R: Corriponents of image y = 0 ( 1  ‘w 1 1  r* 1 1  M ”  are darkened. 

5 Signing with Message Recovery - PSS-R 

MESSAGE RECOVERY. In a standard signature scheme the signer transmits the 
message M in the clear, attaching to i t  the signature 2. In a scheme which 
provides rriessagc recovery, only an “enhanced signature” is transmitted. The 
goal is to save on the bandwidth for a signed message: we want the length of 
this enhanced signature to be smaller than \MI + 1x1. (In particular, when M is 
short, we would like the length of T to be k, the signature length.) The verifier 
recovers the message A4 from the enhanced signaturc and checks authenticity at 
the same timc. 

We accomplish this by “folding” part of the message into the signature in 
such a way tha t  it is “recoverable” by the verifier. When the length n of M is 
small, we can in fact fold the entire message into the signaturc, so that only a 
k bit quantity is transmitted. In t,he scheme below, if the security parameter is 
k = 1024, we can fold up to 767 message bits into the signature. 

DEFINITION. Formally, the key gencration arid signing algorithms are as he- 
fore, but Verify is replaced by Recover, which takes pk and x arid returns 
Recowerpk(x) E (0, I}* U {REJECT}. The distinguished point REJECT is used to 
indicate that the recipient rejected the signature; a return value of Ad E (0, l}’ 
indicates that the verifier accepts the message M as aut,hentic. The formulation 
of security is the same exccpt for what it means for the forger to be successful: 
it should provide an 2 such that, Recover,k(z) = M E {0,1}*, where M was not 
a previous signing query. We demand that if x is produced via 2 t Sign,(M) 
then Recouer,k(z) = M. 

A simple variant of PSS achieves message recovery. We now describe that, 
scheme and its security. 
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THE SCHEME. The scheme PSS-R[ko, kl ]  = (GenPSSR, SagnPSSR, RecPSSR) is 
parameterized by ko and Icl , as before. The key generation algorithm is GenPSS, 
the same as before. As with PSS, the signing arid verifying algorithms depend 
on hash furictions h: (0, I}* -+ (0, l}ki and 9: (0, l } k o  + (0, l}k-kl-l , and we 
use the same 91 and yz notation. For simplicity of explication, we assume that 
the messages t,o be signed have length n = k - ko - kl - 1. (Suggested choices 
of parameters are k = 1024, ko = kl  = 128 arid 'rt = 767.) In this case, we 
produce "enhanced signatures" of only k bits from which the verifier can recover 
the n-bit message and simultmeously check authenticity. Signature generation 
and verification proceed as follows. Refer to Figure 2 for a picture. 

Rec PSSlz (x) 
y t ze rriod N 
Break up y as 6 1 1  111 1 1  r* 1 )  M*. (That is, let h be the first bit of y, w 

the next kl bits, T*  the next, ko bits, and M * the rerriaining bits.) 
7' t 7.*O)Yl(W) 

M t M*@~4(711) 

if ( h ( M  1 1  7') = w and b = 0 ) then rctiirn A4 else return REJECT 

The difference in SignPSSR with respect, t,o SaynPSS is that the last part of 
y is not y2(w). Instead, y%(w) is used to "mask" the message, arid the masked 
message M *  is the last part of the image point y. 

The above is easily adapted to handle messages of arbitrary length. A fully- 
specified scheme would use about min{k, 7t + k.0 + kl + 16) bits. 

SECURITY. The security of PSS-R is the same as for PSS. 

Theorem3. Suppose that RSA  i s  (t ' ,  c ' ) - s e c w e .  Then fw uny  qsig,  qllaYl, the  
signing-with-recoaery scheme PSS-R[ko, k,] is ( t ,  qSig ,  ~ 1 ~ ~ ~ l ~ ,  c) -secure, tuhere 

t ( k )  = t ' ( k )  - [qsig(k) + gilail(k) + I] . ko 0 ( k 3 ) ,  and 

~ ( k )  = ~ ' ( k )  + [2(qsig(k) + qlias\l(k))' + 11 ' ( 2 - k ~  + 2-") . 

The proof of this theorem is very similar to  that of Theorem 2 and hence is 
omitted. 

6 

The ideas of this paper extend to  Rabin signatures [18, 191, yielding a signature 
scheme arid a signing with recovery schcmo whose security can be tightly related 
to the hardness of factoring. 

Rabin signatures - PRab and PRab-R 
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THE SCHEME. Scheme PRab[ko, k ~ ]  = (GenPRab, SzgnPRab, VerifyPRab), the 
probabilistic Rabin scheme, depends on parameters ko, kl, where Ico + k.1 5 k. 
Algorithm GenPRab, on input lk l  picks a pair of random distinct (k/2)-bit 
primes p , q  and multiplies them to produce the k-bit modulus N .  It outputs 
(pk ,sk) ,  where pk = N and sk = ( N , p , q ) .  

The signing and verifying algorithms of PRab use hash functions h, g,  where 
h,: {0,1}* -+ { O , l ) k l  and 9: { O , l } k o  + { O , l } k - k l .  We let g1 be the function 
which on input w E {a, l } k o  returns the first k~ bits of g(w), and let g~ he the 
function which on input w E (0, l } k o  returns the remaining k - ko - kl bits of 

The signing procedure, SignPRab, is similar to the corresponding SiynPSS, 
but it returns a random square root of the image y, as opposed to yd mod N .  
We stress that a random root is chosen; a fixed one won’t, do. The verification 
procedure checks if the square of the signature has the correct image. Thus 
verification is particularly fast. IIere, in full, are SzgnPRnb and Verz~yPRab: 

g(711). 

SignPRab ( M )  
repeat 

T (0, ; 711 t h,(M 1 1  T )  ; 7.* t gl(W)$T 
Y + 7u II T *  I1 92(w) 

Let 2 8- { 2 ~ , 2 ~ , 2 3 , L c 4 } .  

unti l  y is a quadratic residue modN. 
Let { 2 1 , 2 2 , 2 3 , 2 4 }  be the four distinct square roots of y in Zk. 

r e tu rn  2 

VerzfyYRab ( M ,  2 )  

y t x2 mod N 
Break up y as w 1 1  T *  11 y. (That is, let w be the first kl bits of y, 

T *  the next ko bits, and y the remaining bits.) 
T t T * @ ) y , ( W )  

if ( h ( M  1 1  T )  = w arid g ~ ( w )  = y 1 then return 1 else return 0 

EXACT SECURITY OF FACTORING. This scheme is based on the hardness of 
factoring, so we need an exact security formulation of the hardness of factoring 
awump tion. 

A factoring algorithm takes a k-bit number and tries to factor it. It is a 
t-factoring algorithm if the size of its descriptiori plus it,s running time is at 
most t ( k )  for every k. We say that A ( t ,  f)-factors if, given a number which is 
the product of two random distinct (k/2)-bit primes, A produces the correct 
factorization with probability at least ~ ( k ) .  We say t,hat factoring is (t, €)-hard 
if there is IIO algorithm which (t ,  t)-factors. A reasonable assumption would be 
that factoring is (t, €)-hard for any t ,  F satisfying t ( k ) / e ( k )  = ek’ /4 ( ’ogk)3 /4 .  

SECURITY OF THE PRab. The following theorcm says that the security of PRab 
is similar to that of PSS. 



41 5 

Theorem4. Suppose that factoring is (t‘, €‘)-hard. Then for any  qsig, qtlasll the 
signature scheme PRab[ko, k l ]  is (t ,  48igr ~ l ~ ~ l ~ ,  €)-secure, where 

Thc proof of this theorem is analogous to that of Theorem 2. Given a forger F 
who ( t ,  qsig, q ~ , ~ ] , ,  c)-breaks PRab we construct an algorithm which (t’, €‘)-factors. 
We begin by picking an element a E Z;C a t  random and setting q = u2 rriod N. 
Then we procccd as in the proof of Theorem 2, with c set to  2 rather than 
to the RSA encrypt,ion exponent. We therehy recover a square root of 7 with 

with probability e ( k ) / 2  - 6 ( k )  this square root is different from LY arid hence we 
factor N .  Thus we have a factor of two deterioration in the success probability. 
On the other hand, there is an improvement in the time complexity, since our 
algorithm has to raise numbers to the power two rather than to  an arbitrary RSA 
exponent e ,  thereby bringing the O ( k 3 )  time to O ( k 2 ) .  Also, it is a potentially 
weaker assumption to say that factoring is (t‘, e’) hard. 

RECOVERY. As with PSS, we can add message recovcry to the PRab scheme in 
the same way, resulting iri the PRab-R signing-with-recovery scheme. Its security 
is the same as that of PRab. 

probability €(k) - 6 ( k )  where b ( k )  = [2(q,ig(k)+4,,,1,(k))~ +1].(2-k0+2-k1 ). Rut 
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A How t o  implement the hash functions h , g  

In the PSS we need a concrete hash function h with output length some given 
number IC, . Typically we will construct / L  from some cryptographic hash function 
H such as H = MD5 or  H = S H A - I .  Ways to do this have been discussed before 
in [3, 41. For completeness we quickly sumrnarize some of these possibilities. The  
simplest is to define h(z)  as the appropriate-length prcfix of 

fZ(const.(O).z) 1 1  H(const.(l).z) 1 1  H(const.(2).z) 1 1  * .  

The constant const should bc unique to  h; to make another hash function, g,  
simply select a different constant. 
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