Skip to main content

Minimal Triangulations for Graphs with “Few” Minimal Separators

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 1461))

Abstract

We give a characterization of minimal triangulation of graphs using the notion of “maximal set of neighbor separators”. We prove that if all the maximal sets of neighbor separators of some graphs can be computed in polynomial time, the treewidth of those graphs can be computed in polynomial time. This notion also unifies the already known algorithms computing the treewidth of several classes of graphs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. R. S. Blair and B. Peyton. An introduction to chordal graphs and clique trees. In A. George, J. R. Gilbert, and J. H. U. Liu, editors, Graph Theory and Sparse Matrix Computations, pages 1–29. Springer, 1993.

    Google Scholar 

  2. H.L. Bodlaender, T. Kloks, and D. Kratsch. Treewidth and pathwidth of permutation graphs. In Proceedings of the 20th International Colloquium on Automata, Languages and Programming (ICALP’93), volume 700 of Lecture Notes in Computer Science, pages 114–125. Springer-Verlag, 1993.

    Google Scholar 

  3. M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

    MATH  Google Scholar 

  4. R. Hayward. Weakly triangulated graphs. J. Combin. Theory ser. B, 39:200–208, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Kloks. Treewidth of circle graphs. In Proceedings 4th Annual International Symposium on Algorithms and Computation (ISAAC’93), volume 762 of Lecture Notes in Computer Science, pages 108–117. Springer-Verlag, 1993.

    Google Scholar 

  6. T. Kloks, H.L. Bodlaender, H. Mller, and D. Kratsch. Computing treewidth and minimum fill-in: All you need are the minimal separators. In Proceedings First Annual European Symposium on Algorithms (ESA’93), volume 726 of Lecture Notes in Computer Science, pages 260–271. Springer-Verlag, 1993.

    Google Scholar 

  7. T. Kloks, H.L. Bodlaender, H. Mller, and D. Kratsch. Erratum to the ESA’93 proceedings. In Proceedings Second Annual European Symposium on Algorithms (ESA’94), volume 855 of Lecture Notes in Computer Science, page 508. Springer-Verlag, 1994.

    Google Scholar 

  8. T. Kloks and D. Kratsch. Finding all minimal separators of a graph. In Proceedings 11th Annual Symposium on Theoretical Aspects of Computer Science (STACS’94), volume 775 of Lecture Notes in Computer Science, pages 759–768. Springer-Verlag, 1994.

    Google Scholar 

  9. T. Kloks and D. Kratsch. Treewidth of chordal bipartite graphs. In Proceedings 11th Annual Symposium on Theoretical Aspects of Computer Science (STACS’94), volume 775 of Lecture Notes in Computer Science, pages 759–768. Springer-Verlag, 1994.

    Google Scholar 

  10. A. Parra. Structural and Algorithmic Aspects of Chordal Graph Embeddings. PhD thesis, Technische Universität Berlin, 1996.

    Google Scholar 

  11. A. Parra and P. Scheffler. How to use the minimal separators of a graph for its chordal triangulation. In Proceedings of the 22nd International Colloquium on Automata, Languages and Programming (ICALP’95), volume 994 of Lecture Notes in Computer Science, pages 123–134. Springer-Verlag, 1995.

    Google Scholar 

  12. N. Robertson and P. Seymour. Graphs minors. II. Algorithmic aspects of treewidth. J. of Algorithms, 7:309–322, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. Spinrad and R. Sritharan. Algorithms for weakly triangulated graphs. Discrete Applied Mathematics, 59:181–191, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Sundaram, K. Sher Singh, and C. Pandu Rangan. Treewidth of circular-arc graphs. SIAM J. Discrete Math., 7:647–655, 1994.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bouchitté, V., Todinca, I. (1998). Minimal Triangulations for Graphs with “Few” Minimal Separators. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds) Algorithms — ESA’ 98. ESA 1998. Lecture Notes in Computer Science, vol 1461. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-68530-8_29

Download citation

  • DOI: https://doi.org/10.1007/3-540-68530-8_29

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64848-2

  • Online ISBN: 978-3-540-68530-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics