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Abstract. We introduce oblimnns decisiori proofs and agnostic decision 
proofs. In the former, the prover does not have to know whether the 
instance is in the language proven or not in order to  be able to  perform 
the decision proof; in the latter. t.he prover cannot even find out this 
information from interacting in the protocol. The  proofs are minimum- 
knowledge, limiting the knowledge exposed to  the verifier as well. We 
demonstrate an easily distributable ohlivious computational minimum- 
knowledge decision proof protocol for proving validity/invalidity of iin- 
deniable signatures. This method, using obliviousness, solves an open 
problem [6] of practical value: the distributed verification of undeniable 
signatures. We also present an agnostic proof for the same language; an 
agnostic prover reduces the disseiiiiiiatiori of trust in the system; in fact, 
a prover can be blindfoldedand not get to learn the input. As part  of the 
agnostic protocol, and perhaps of independent interest, we exhibit an ef- 
ficient zero-knowledge proof of knowledge (possession) of both a base and 
an exponent of an element of a finite group (arid similar algebraic struc- 
tures). Finally, we show a perfect agnostic riiinimuni-knowledge decision 
proof protocol for quxlratic residuosity modulo Blurn iiitegers. 

1 Introduction 

The future comrnunicat~ion infrastmct,ure seems t.o require the use of crypto- 
graphic provers which will assure that cert,aiii c~ommunicatioii and computations 
are valid (e.g., proof of origin and validity of e-money.) If the provers need to  
know the full information about the instances t,hey prove things about, then a 
lot of trust has to be put on t,hrm. In this paper, we demonstratme that sometimes 
provers can perform their task even if t,hey only possess partial information, and 
furthermore, the participat,ion in a proof does not, need to give them additional 
knowledge. Our methods, therefore, will help in reducing trust requirements in 
sound cryptograpliic systems. Whereas zero-knowledge proofs restrict the advan- 
tage gained by the verifier, here we are  interested in a simultaneous restriction 
of the knowledge gained by t,he prover und the verifier. 
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RESULTS. A decision proof is a proof in whic,h the prover shows a string to be in 
or not t o  be in a certain input language. We introduce the notions of oblivzous 
and ugnostic decision proofs. We call a decision proof oblivious if the prover does 
not have to know whether the string in question is in t,he language or not for the 
proof to  succeed, and agnostic if he cannot, even find out whether he is proving 
language membership or non-membership. 

Oblivious dec.ision proofs are useful in  a distrihut,ed sethng since the dis- 
tributed provers do not have to reach consensus (regarding what protocol to 
use) before the start, of the protocol. Apart, from being an obvious effic.iency 
improvement, this can reduce the trust, one has to put in the individual servers 
of the prover authority. We illustrate this in t,he set,ting of verification/disavowal 
of undeniable signatures by demonst,rating an oblivious distributed (computa- 
tional) minimum-knowledge protocol for signatsure verification and disavowal. 
This is minimum knowledge (i.e., transfers only t,he single bit of knowledge, in- 
dicating whether the st,ring is in the language or not,) even if any subset of the 
confirmers are corrupt,. This is an irnpi-ovemrnt, over existing distributed meth- 
ods [ 6 ] ,  where lists of valid signatures are kept, to avoid corrupt, servers from 
obtaining signat,iires on arbitrary messages. 

Agnostic decision proofs are extensions of oblivious decision proofs, hiding 
the result, of the calculation from the provers, and ca.n be useful to thwart t,raf- 
fic analysis (e.g., in verifying signat,ures on e-money, the prover may also be 
asked to “verify” non-signatures in order t,o hide an actrual flow of valid cash 
transactions.) We give two examples of such protocols, the first, a comput,a- 
t(iona1 agnostic decision proof protocol for iindeniable signatures, and the second 
a perfect minimum-knowledge, perfect, agnost,ic protocol for proving quadratic 
residuosity and non-residuosity modulo Bliim integers. 

For all of these example protocols, t,he int,eract,ion does not, let the prover 
obtain any more inforinat#ion about, the instance than what the verifier gets by 
interact,ing, i.e., at  most, (as in the first example) whether t,he indance is in t,he 
language or not. The inst>anc.e in itaself is perfectly blinded from him (except for 
public knowledge like t,he instance size). We say t,ha.t such a protocol is hiding. 
We call a prover in a hiding proof blin,dfr , ldfd.  Of course, we allow t,he verifier 
to send a nuinber of queries t,o t8he prover who has no idea. &out t,he input,. 
The protocol assures t,hat an honest, verifier does not, get, ext,ra knowledge. A 
cheating verifier may ask arbit,rary qiiest,ions, but pract,ically speaking, as long 
as this verifier is invoked on a specific inpiit,  he can learn only t,he decision bit 
about, this input and perhaps a liiiiit,ed number of bit,s on random choices (which 
is typically acceptable in  the a.pplicat,ions we have in mind). 
Of possible independent, interest is the zero-knowledge proof of knowledge [3, 7, 
151 of a base and an exponent, of a number, which we use as a subprotocol. Here, 
we prove the knowledge of a t,riple ( a ,  b ,  c )  for a given input, ( A ,  B )  = (a ‘ ,  b‘) over 
certain algebraic domains (like Zp‘ and Zi;, the 1at)ter when the prover knows 
the factorization of N . )  It uses a novel “value splitt,ing” technique that enables 
a direct and c1uit.e efficient proof. 
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RELATED WORK. Goldwasser, Micah arid Rackoff 11 13 introduced the notion of 
a zcro-knowledye proof ,  a method that. allows one to prove a stat,ement, while 
yielding nothing but, t,he validit,y of t,his as~ert~ion t,o the verifier. A minzrnum- 
knowledge trunsfer. of znformotion, or m.iiiimui~i-knr)u,Icdye proof, int>roduced by 
Galil, Haber and Yung [lo], extends this notion by allowing the transfer of 
some information (like language membership or non-membership), but, leaking 
no further information. They call a proof in which both membership and non- 
membership can be proven a deczs?~on proof. Decision proofs in which the verzfier 
does not learn the predicate were int,roduced by Feige, Fiat and-Shamir [7] in the 
cont,ext of identification. In this paper, though, the objective of the  proofs are 
for the verifier to learn the predicat,e - without the p ~ o i i e r .  necessarily learning i t .  
Thus, we extend and generalize the work of Fujioka, Okamoto and Ohta [Y], who 
presented a computat,ional minimum-knowledge decision proof for undeniable 
signatures, which in terms of this paper could he called oblivious. However, they 
make no attempt, t,o efficieiitly distribute t.he protocol (i.t?., iising multi-provers), 
which may be difficult t80 do. 

Our results are inspired by several prwious not,ions: We combine minimum- 
knowledge proofs with not,ior~s for hiding result,s from an oracle, studied by 
Abadi, Feigenbaiiin and Kilian 113. In thrir model, player V wants t,o know t.he 
value f (x )  for some 2 ,  but, lacks t,he power t,o compute it,. P, on the other hand, 
has this power, and is willing to help T/ compute the fu~iction, but V wants P to 
be able to obtain as lit,t,le inforrnation as possihle ahout. x and f(x). Their result, 
is of asymmet,ric nature in the serise t,hat, it, is not, minimum-knowledge w.r.t,. 
the verifier, only the prover. Ours is symrnetric in  na.t,iire and hides information 
both ways. Anot,her difference is that, we J o  iiot, assume (although we sometimes 
do allow) t,he prover to  he powerful. 

Further work that inspired us is that. of Beaver, Feigenbaum, Ostrovsky 
and Shoup [2, 81, where the above instmarice hiding is combined with rninimum- 
knowledge proof systems in multi and single prover models. They show condi- 
tions on lariguages which have si1c.h prot,ocols. The results are different. First, we 
allow multi provers and d l o w  t8hem to int,era.ct,, whereas the provers are required 
to  be totally separated in t.heir model. Second, t,hey require 2 ( n  + 1) provers 
to prove a theorem on a string of length R ,  ~ h e r e a ~  we allow any number of 
provers. Furtzlieririore, we coricent,rate on specific., concrete languages that c.an 
be efficiently proven, whereas t,heir  result,^, beiiig muc,h more general, is mostly 
classification result,s of existent,ial r d u r e .  

Our prot,ocols are related t80 the basic ideas of Yao [Ifj, 171. We suggest, ef- 
ficient solutions t,o t,wo-part,y part.ia1 information games whereas Yao's gcncral 
methods are ineffic.ient. Yao defined and solved t,he 7rri l l~onoir .e~'  p rob lem,  giving 
an efficient metliod for two part,icipant,s t,o compare t,heir riches and decide who 
is wealthier, wit,hout revealing t,lirir inpuf.s to  ea.cli other. More generally, he 
showed that two participants, one wit>h input x ,  t,he other wit,h inputj y,  can cal- 
culate any function f ( ~ :  , y) wit,hout, revealing t,heir input to each other, assuming 
factoring is hard. It, is import,arit 1.0 note that, t,llr: latt,er is an exist,ent,ial result 
and that  the calculat~ion may he very irieflicient.. As part, of t.wo of our prot,ocols 
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we present efficient solutions to what, we call the soczalist inzllioriuzresi probleni 
and the extruvagant socialzsi i n i l l i o n u i r ~ s ’  probleni, both closely related to  the 
millionaires’ problem 

2 Definitions 

Model 
We assume the model of interactivp Turing machines [ 111, zero-knowledge [I I] 
and minimum-knowledge [lo] proof syst,erns. 

Proof of Knowledge (sketch; for a formal definit,ion see 13 ,  15, 113.) 
A proof of knowledge is a proof for which t,here is a polynomial time witness 
extractor t,hat succeeds with a non-negligible probability. This witness extractor 
works by rewinding the prover and providing different verifier transcripts for 
different partially rewound sessions. 

Decision Proof [lo] 
We say that a prot,ocol ( P ,  V )  = ( ( P I )  P2)!  (Vl, FA)) is a decis ion proof for a 
language L with input,s I and error probahility 6(k)) where k is the length of the 
input, if 

1. For any z E I given as inpiit, t,o ( P I  V ) ,  (PI, Vl)  is a proof system such 
that V1 accepts, halting wit,h t,he correct, oiit,put, (z E L )  with probability at 
least 1 - 6 ( k ) .  For any z 6 I giveri as input to ( P )  V ) ,  (Pz, V2) is a proof 
systerri such that, Vl ac.cept,s, halting with the correct, out,put, (x 6 L )  with 
probability a.t least, 1 - h ( k ) .  

2 .  For any incorrec,t. prover (P; resp P;), t,he probability t,hat, the verifier halts 
with the inc.orrect output is at, most, 6( k). 

Next, we define properties l i m i h g  the knowledge gained by a prover in an 
interaction: 

0 blivious 
A decision proof is oblivious if the prover does not, need to know thc predicate 
of tlie instance (i.e., its membership bit, w.r.ts. the input language) in order to  
perform the protocol; thus, Pi = P2. 

Agnostic 
A decision proof is comput,ational (perfect,) agnost ic  if a polynomial-time limited 
(computationally unlimit,ed) provcr does not. learn the predicute of the  i n d u n c e  
by the interaction. Namely, the probability of such a machine to compute the 
predicate after interadon is only negligibly bet,t,er than computing it prior to 
the interaction. 

Hiding 
A proof is c.omput,ational (perfect) hiding if a polynomial-time limited (compu- 
tationally unlimit,ed) prover obt,ains no instance specific zn format ion ,  except for 



190 

possibly the predica te  of the  instance. This implies t,hat, a prover only gets access 
to a modified input, (we say that he is blindfolded) and the prover obtains no 
advantage in computing the input (similar to [l].) 

Now we define what, it, means to limit the knowledge gained by a verifier: 

Minimum-Knowledge [lo] 
Let ( P I  V )  be a protocol in  which on input, T ,  P calculat,es and sends to V the 
value z = f(z) for a given fiinc.t,ion (predicate) f .The  protocol is computational 
(perfect) minimum-knowledge if there exists a probabilistic polynomial-time ma- 
chine Mv that,, given one-time access to an oracle 0 for f (z) ,  for eac,h auxiliary 
input y and any input 2 ,  produc.es transcripts {Mv(x,y)} with a distribution 
indistinguishable from (identical to) that of he real transcripts { P ( z ) ,  V(Z, y)}. 

Notme next that the verifier may, for example, send niultbiple queries (about 
elements in the language) to t,he prover. Queries are prot,ocol related challenges 
about elements in the language answered by the prover. The blinded prover in 
protoc,ols that  are hiding can be fooled to  answer queries unrelated tjo the actual 
input (by definition, it cannot, make t,he connection of a query to  an input). 
As long as the verifier is honest, i t  asks queries as needed and we can be sure 
that our protocol is “honest verifier minimum-knowledge” (see e.g., [13] , where 
assuming one-way permutations exist, , such protocols can be transformed into a 
minimum-knowledge protocols). 

All of our protocols that, are hiding are “honest verifier minimum-knowledge” . 
The protocols in fact ,  involve multi-queries (which we may allow the verifier to  
ask)- we call these protocols minimum-knowledge w.r.t. multi-queries. 
If the L queries are generated honestly, the protocol is minimum-knowledge. 
Otherwise, we may leak k answers about. language elements (a  simulator may 
require k accesses to a language oracle), which in practice may be acceptable 
(as in our case). In particular, when t,he verifier is re.st,rict,ed t,o access the input, 
only- all he can ask are queries related to tfhe input, or random ones. 

2.1 Uses of the above kiiowledge restrictioiis 

In a distributed setting , oblivious decision proofs can be very convenient. In 
Appendix A, we demonstrate a potential weakness of existing, non-oblivious 
methods for verifying and disavowing undeniable signatures. This problem stems 
from the fact that there are two different, prot,ocols, one for verification of a valid 
undeniable signature and one for disavowal of an invalid undeniable signature. 
Although both of these are zero-knowledge given the right, kind of input (i.e., 
a valid signature for the former, and an invalid signat,iire for the latter) they 
leak knowledge if, for example, the protocol for verification is used on an invalid 
signature. In fact, here the verifier obtains the valid signature on the given 
message, which is problemat,ic in light, of the fact that individual servers in a 
distributed setting have no way of dist#inguishing valid signatures from invalid 
ones, and so, are at risk of using the wrong protoc.ol. Two partial solutions to  this 
problem have been suggested [ 6 ] :  One is for t$he confirmers to reach consensus 
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before engaging in t,he proof (a iiiet,hod which may allow a cheating c.onfiriner t,o 
obtain signat,ures on arbitrary messages in the same way t,liat, a verifier could, 
if caution is not, taken.) The otther is for tlhe signer t,o distribute a list of valid 
signatures to the confirmers, a so1iit)ion that has problems contradicting the 
desired properties of undeniable signat,ures. The latter method is adso not very 
appealing in a technical sense. IJsing an oblivious minimimi-knowledge decision 
proof, we can solve these problems in an elegant, way: since t,he confirmers do not 
have to  choose what, protocol tlo use, t,here is no risk that, the wrong protocol is 
chosen. Our solution is minimum knowledge against, a set of corrupt confirmers 
as well as against a nornial verifier. Making protocols agnostic instead of merely 
oblivious can be useful in preventing traffic analysis. It is possible that a verifier 
in a scenario relat,ed to, e.g., e1ect)ronic payments, does not, want the prover to 
know whet,her a signature is valid or not,. Making such proofs “hiding” at the 
same time prevents t,he prover from learning any inst,ance specific information, 
including what the predicat,e is. This IllPDlJS that each day, regardless of the 
act(ua1 number of signature validations needed, t,he prover is going to be probcd 
by a given “upper bound” of validat,ion requests. This will prevent, the release of 
the ac.tiia1 flow of signatures which may br micia1 in t,he cont,ext, of e-commerce. 

3 
S i gnat u r e s 

Oblivious and Agnostic Decisioii Proofs for Undeniable 

3.1 Uiideniable Sigiiatures:  a shor t  Expos6 

An undeniable signature is a signatatire ttliat, cannot be verified without the co- 
operation of a prover, who is either the signer or a confirmer assigned by the 
signer. That, is, it, is not possible t,o distinguish bet,ween a valid and an invalid 
undeniable signatlure unless some t.rap-door informat,ion is known. The only ef- 
ficient type of undeniable signa.t.ure to dat8e is t,he following type, introduced by 
Chaum and van Antwerpen [4]. 

A n  Undeniable Signature: 
Let y = q l +  1 for primes p and q and an intseger I ,  a n d  let g be a generator of 
Gp. The signer of an undeniable signat,ure has a private key 3: E 2, and a public 
key y = gz mody.  The valid signat>ure on a message hashing to m is nzz m o d y .  

Assumpt ion  1: 
The language of undeniable signat,iircs is not, iii BPP, i.e.,  given (m,  s, g, y ,p )  it. 
is hard to decide whether u = for input g = g” niodp and s = r n p  inody.  

Verification and Disavowal of an Undeniable  S igna ture :  
An undeniable signatlire (m,  s ,  g ,  y,p)  is verified by p~oving that log-s = log,y, 
and disavowed by proving that log,s # log,  y 
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3.2 The Oblivious Protocol 

In the  following, we show the  simplified non-dist,rihuted prover version for sirn- 
plicity of notation and ease of reading, but, note t,hat. the suggested prot~ocols 
are trivially dist,ributed using standard secret, sha.ring methods, and that the 
distribution of the function generation is transparent, to the  verifier, i .e. , he will 
not, have t80 know tha t  the  prover is distribut,ed. 

Our solution uses as a subprotocol a protocol t,hat, solves a problem we call the 
socialist mi1lionuirc:s’ p r o b l e m  and t,he c~~raaogont  socialist mil l ionaires’  prob- 
lem, both closely related to the millionuirr’s problcm (171: Two people, P and 
V ,  want to compare their riches, TP arid X V ,  to see whether xp equals xv. V 
learns (only) whether zv = xp. In  t,he .S fJCiU / iS~  n~?Ihon&es’  prob lem,  f‘ learns 
nothing about  T V  ; in the cxtrovagunt socialzst nrillionuirw ’ problem, V is willing 
to reveal zv t,o P aft,er P lias committ.ed t,o the value zp to be used in the 
calculation. 

In order t,o decide an  undeniable signature in an ohlivious fashion, we can use 
the following prot,oc.ol, which is minimum-knowledge (it, is minimum-knowledge 
in itjs distributed version w.r . t , .  any set of corrupt servers and verifiers.) In  the 
following, all operations will he modulo p ,  wlierr applicable. 

Oblivious protocol fcir deciding an iirideniable signatimre: 
Input t o  the prover: 3:, the secret. key of t,Iic? prover, such tha t  y = 9“. 
Input to the  verifier: A t,uple (m,  s, 9 ,  y, 11).  
Objective: T h e  verifier wants t,o learn wlirt,lier (7n, s) is i~ valid message-signature 
pair w.r.t.  (g, g ) ,  i .e.,  whet,her log-s = loygy. 
The  following subprotocol is repeated k tsitries in parallel: 

The verifier flips a fair coin G g,, { 0,  1 } iiiid picks a blinding fact,or /I E,, Z, 
uniformly at random. He calculates 

and  sends iii to the prover. 
T h e  prover c.alculat,es the undeniable signat.iire S = Ex on E. 
Using the protocol solving the ext,rava.gaiit, socialist inillionaires’ problem, 
the  verifier and the prover c,ornpares f and S; at, the  end of the  calculation, 
the verifier ACCEPTS or REJECTS, depending on whether he thinks that 
5 is equal to S ,  or iiot. Let, res be this result,. The verifier writes ( b ,  rcs)  on 
his private tape.  

The verifier reads all t1he out,put,s ( b ,  r t s )  of t,he k subprot,ocols and writes 

- “(m, s ,  g ,  y,p):  VALID SIGNATURE’ on his privat,e ou tput  tape ,  and ac- 
cepts, if the result, of any of t,he subprot.ocols is (6, res )  = (1, ACCEPT), 

~- “CHEATING PROVER’ on his privat,e out,put t,ape, and rejec.ts, if t,he 
result of any of t,he subprot,oc.vls (6,re.s) = (0, R E J E C T )  and none is 
(1, ACCEPT).  
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- “(m, s ,  g ,  y, p ) .  INVALID SIGNATURE” on his private output tape,  and 
accepts, otherwise 

Subprotoco13 solviiig the extravagant socialist millionaires’ problem: 
Input, t>o t<he prover: i E G P .  
Input to t,he verifier: s E G,. 
Objective: The verifier wants to learn whether s = s. 

1 .  The verifier sends (‘5 = cummitc:(B)  t,o t,he prover ,  where cotnmifc  is an 
unconditionally secure (and co~idit~ionally binding) comniitiiient, scheme. 

2 .  T h e  prover picks a blinding factor /3 E,, 2, uniformly at, random. He calcu- 
lates (S, G) = (Si’, g p )  and sends (3, G) tlo the  verifier. 

3.  The  verifier pic.ks u ,  v E,, 2, and calculates 2 = T’y” and  sends z t,o the 
prover. 

4. The  prover cAculatm 
‘1u = ;p  { r,,/ = CO77/?? , i tR(7U)  

and sends ell, t,o t,he verifier. Here, C O ? ? m i t R  is a cominitment sc.heme t1ia.t 
is conditionally secure. 

5. The  verifier sends (s, u ,  v)  t,o t,hr prover a n d  the  prover vcrifies t ha t  t = Sug” :  
if no t ,  then he hnlt,s. 

6. T h e  prover sends 20 to t,he verifier and verifies whether w = P G ” .  If this 
is the  case, he outputs  ACCEPT a n d  halts,  otherwise he outsputs REJECT 
and halts. 

Remark 1: The ahove prot,ocol is rniniiiiuiii-k~iowledf;e n7.r.t. k-queries, i.e., it, 
can be simulat,ed given k accesses to  an oracle. I t  may a.ppear that, a knowledge 
comp1exit)y of k hit,s releases a lot, of information; however, note tha t  one can only 
iise the prover as ail oracle for deciding whether uiideiiiable signatures are valid 
or not ,  and t,he prot,ocol leaks no ot,lier inforniation. Thus, a cheating verifier can 
only obt>aiii more bit8s of knowledge than oiie b y  verifying several signat,ures in the 
same protocol, wliich seeiiis liarinless. 111 application where we need to cont)rol 
knowledge tight>ly, we can t,raiisforiii the  prot,ocol to  be  niinimuni-knowledge [ l B ] .  

Remark 2: The knowledge complexity of t,lle above prot,ocol c.an easily be re- 
duced from k b i t s  to merely one bit,, wit.hout illcreasing the  probability of success 
of a cheating prover. This can be done by having the  verifier release the  blinding 
factor p just, before tbhe end of t,he prot,ocol, so t,hat the prover can make sure 
t,hat either (g, y) or on,r: specific ( m :  s) was used in each round of the prot,ocol. 
If this is not so, lie will halt. (This call bt. cornbined wit,h blindfolding to hide 
(tn, s) from t,he prover.) 

This protocol is w r y  closely related to one known protocol [4] for verification of 
undeniable signatures. JII fact, it combines the iioririd signing procedure, using a 
random one-tirrie secret key, with tlie verification protocol usirig the same key. 
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Theorem 1: The oblivious protocol for deciding an undeniable signature is 
complete, oblivious, sound, and minimum-knowledge w . r . t .  k-queries. 

3.3 The Agnostic Protocol 

The agnostic protocol for decision proofs of urideniable signatures is quite similar 
to the one for oblivious decision proofs, but, instead of making calls t80 a subpro- 
tocol solving the extravagant socialist millionaires' problem, we make calls (with 
the same input) to a subprot,ocol solving the socialist millionaires ' problem, i.e., 
a protocol for comparing inputs in which the verifier's value is not leaked to  
a p-time prover. The protocol for solving t,he socialist millionaires' problem, in 
turn, is rat,her similar t,o t1hat solving the ext,ravagant, version: 
Instead of commit,ting to and sending 5, t,he verifier commits to and sends ya 
for a secret a E,, 2;. Moreover, he calc,ulates gu and sends this to the prover, 
after which he proves that he knows a value i such that there is a value cy SO 

that s" and go are the values previously sent,. This is a proof of knowledge w.r.t,. 
s .  We act,ually give a more geiieral proof, namely a zero-knowledge proof of 
knowledge (i.e., possession) of both t,he ba.ses and the common exponent, of two 
inputs. There are assumed hard problems which are expressed t,his way (perhaps 
with added constnints); e.g., we use t.he problem assuming one of the bases is a. 
known generator. 

- 

Base-and-Exponent Proof Protocol: 
Input to  the prover ( u ,  6, c), 
Part 1 (proof of knowledge of (I, 6 using busi s p h f t 7 n y )  

Input to the verifier ( a C ,  6')  

1. The prover selects no, bo E, Z, and calc.ulates 

' a1 = uao-1 
61 = bbo-' 
A; = ( l i e  i E (0, I }  
B; = b;" 
C(,, = cornn~it(oi)  i E (0,  l} 

i E (0, l} 

. chi = c o m ~ n i t ( 6 ; )  i E (0, I} 

1 He sends { A ; ,  B,, c, , ,  c * ; } ~ = ( ,  to the verifier. 

sends ( e , ,  eb)  t,o the prover. 

corresponding caes and qtl. are correct&ly calculat,ed. 

proves t,o the verifier that. logcLca A f a  = Iagbvb B,, . 

2. The verifier checks that A = AoAl and B = BoB1, picks c,, eb E ,  ( 0 , l )  and 

3. The prover sends a,. and b,, to the verifier. The verifier checks that the 

4. Using a normal proof [4] of validit,y of an undeniable signature, t,he prover 

Part two (proof of knowledge of c ,  using ezpmnt:7zt s p l z i i i n g ) :  
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5. The prover selects cO E,, Z,  and calciilat,rs 

He sends (Ccl, C,)  to  the verifier. 

the prover. 
6. The verifier c,hecks t,hat, Aea = CclC'l and sends a challenge e Eu ( 0 , l )  to 

7. The prover sends c ,  t,o t,he verifier and the verifier checks that C, = a e a c e .  

There are two versions of the above prot,ocol: 

- If cornntit is unconditionally secure, t)lien the above is a perfect, zero-knowledge 

- If conzrnil is c,ondit,ionally secure, then the above is a computational zero- 
argument of knowledge. 

knowledge proof of knowledge. 

The above protoc,ol is repeat,ed k t,imes (possibly in parallel) to bring down the 
error probabilit-y t,o &. We show tellat,: 

Theorem 2: The base-and-expoilent, 1)roof protocol is a c.omplet,e, sound ar- 
gument of knowledge which is also perfed zero-knowledge (or, alternatively, a. 
proof of knowledge whic.h is also comput,at,iona.l zero-knowledge.) 

Based on t,he above tmheorem, we conclude that: 

Theorem 3: The agnostic protocol for deciding an undeniable signature is com- 
plete, agnostic, sound, and minimum-knowledge w.r.t. multi-queries. 

Remark 3: We not,e that, t,he exporielit, splitting idea can be used to prove 
knowledge of an exponent pair ( u ,  6)  for an unconditionally secure commitment 
scheme g f l h b  mod p ,  or equality between two messages ( n o ,  a l )  committed to for 
such a scheme. 

Let cg and c1 be the commitment values corresponding to two messages WI 
and a l ,  and let bo, bl  be random strings. We waiit, to prove t,hat a = a0 = a i ,  
where ci = ga*hb*  mody for i E {0,1}: 

1. Randomly split (1 into a( ( ) )  and a(,), 6i  int,o bi(cl) and 6i( l )  for i E ( 0 , l )  
calculate ca(") = cornnzit(q[,)) ,  cfl(l) = ~0172772it(u(~)), and 
send ( g f l ( ~ ) h b c l ( ( l ) ,  gfl(l) h % 1 ) ,  ga(~l) h b l ( l l ) ,  g c l ( l ) h b l ( l ) ,  to  the receiver. 

2.  The receiver sends F E~ {0,1} tjo us. 
3.  Send b q , ) ,  6l(,))  t,o t,he receiver. who verifies t.hat, the corresponding 

values previously sent, were correctly calculated. 

The above is repeated k tirnes 
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4 A c kn ow 1 e d g em e 11 t s 
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Appendix A 

We look at the verification protocol of [514, and show what, could happen if an  
at,t!acker who does not, know a valid signature for 171 were still allowed t.0 interact 
in the prot,oc,ol for verific.ation of valid signatures. (Even though this can be a 
distributed protocol w.r.t>. the provers, we show the simplified one-prover version 
for increased clarity.) Alice wants t,o prove t,o Bob that, log,s = log,y for a 
message pair (m ,  s) given to  her by Bob: 

1. The  verifier, Bob, chooses a ,  b E,, Z,  and c,alculates tl = 7nngb. Bob sends d 

2. Alice chooses T E,' 2, and calciilat,es 
to Alice. 

'lU1 = q,q' i 1112 = 1111= 

and sends (wl ,  wl') t,o Rob. 
3 .  Bob sends ( a ,  b )  t,o Alice. 
4. Alice verifies t,hat d = m " y L ,  anti t,hen sends T t,o Boh, who verifies that 

7111 = dlJ' 
7u2 sayh+r 

However, Bob can easily obtain s = 172' ~ i e , Alice's signature on m, for an 

s = (w2y - ( b + T ) ) l / c J  = ( (  ~l"Vlgr)ly-(l+r))i/" . = m x  
arbitrary message 171 by participating in the protocol above and  calculating 

Appendix B 

In this section, we exhibit an agnostic, hiding decision protocol for quadratic 
residuosity and non-residuosit,y riiodiilo a Blum int,eger. Here, Alic,e knows the 
factorization of N ,  whereas Bob does not,. Bob wants to know whether cr E ZN 
belongs to Q RN or QN R N .  There are several zero-knowledge proofs of quadratic 
residuosity modulo Blum integers (and thus also for quadrat,ic non-residuosity) 
in the  literature, e.g. ,  [11, 71. We can use any such protocol as a subprotocol in 
our proof. Consider the following prot,ocol: 

1. Bob selects a p  E ,  QRN and c Eu (0,  I}, and calculat*es (Y = ( -1)"pa mod N .  

2.  Alice proves t,o Bob , using a standard perfect zero-knowledge proof either 
He sends CY to Alice. 

t ha t  ti E QRN or rU 6 Q N R N .  If c = 0 ,  Bob c.oncludes tha t  CY 6 QRN 
(Y E Q R N ;  if c = 1, Bob concludes that, (1 E QRN u 6 Q N R N .  

A similar ''attackl) can be mounted uaiiig tlie I ) rOtoC(J l  of [14]. 
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It is trivial to see tlia,tq t,he sliove prot,ocol is cornplet,e, sinw Alice knows the 
factorization of N .  Also, the soiindness and perfect, minimum-knowledge prop- 
erties follow easily from the soundness and perfect, zero-kriowledge properties of 
the standard proof or qiiadrat,ic residuosity/non-residuosity used. Finally, the 
protocol is perfec,t, hiding and perfect agnost,ic since Bob’s transcript will be sta- 
tistically uncorrelated t,o the quadratic residuosity or quadratic non-residuosity 
of CY (by means of c )  and to LY itself (by means of p . ) .  

The above prot,ocol is similar t,o the “divertible zero-knowledge” protocol 
of [la]. In that protocol, a warden manipulates the query to avoid subliminal 
channels between the prover and verifier, here we allow the verifier to manipulate 
the queries to hide the input,. Prot,ocols in [12] for random self reducible languages 
can be applied in the current setsting. 

Appendix C 

We sketch the proofs of t,lie prrviously st,a.ted t,lieorems 

Theorem 1: The oblivious 1)rotocol fur deciding an undeniable signature is 
complete, oblivious, sound, aiid miniiiiuiii-knowledge w .r .  t,. 8-queries. 

The prot,ocol is trivially c o ~ ~ / p l e i e  (as x e  t,he other protoc,ols) arid ~ b l i i i i o l ~ ~ .  
We prove t,he other proprrt,ies: First, we show t,liat. t,he protocol is minimum- 
knowledge w.r.t, .  niult,i-queries. Let. 0 be ail oracle such that, for each instance of 
the ~ubprot~ocol ,  it out,put,s a hit, 6, indic,at,ing wliet,her the verifier I/* knows t,liat 
the corresponding rnessage-signat,ure pair (z, s) is valid (b i  = 1) or that  he does 
not, (b;  = 0). We will show how, given access to 0, we can generate one set of 
transcripts T r i n l i d  and Tz,ll,n~id, such that t<heir dist,ributions are indistinguishable 
to those of real transcripts of t,he prot,ocol~ of valid vs. invalid signatures being 
verified. Let, B be a bit indicating wlict,lier t,o generate a taranscript of the type 
’valid’ ( B  = 1) or “illvalid” ( B  = U). 

The following simulation will Ge performet1 in parallel for each one of the k 
parallel sessions: 

1. Receive m; and cg; from I/*, arid 6 ,  from 0. 
2.  Select $,G; E,, Zp’ and send (&Si,Gi) t,o V ” .  
3. Receive z; from V’. 
4. Select, w; Eu Z,, calculat,e c,,, = ~ 0 1 7 7 r n i t ~ ( u 4 ) ,  and send c,, to V’. 
5. Receive (F;, u, 1 ) ) .  Verify t,ha.t, cFi = rommitC(;Fi) and that zi = Sit1g’’; halt if 

6. Let 
either fails. Rewind V *  t,o t~lie st,at.e right, after step 1 above. 

K ,  = Si If  6 ,  1 V B zz 1 
{ A  si E ,  GJq ot,lierwise. 

Calculate (3, , ~ i )  = ($%, g Y i >  and seilci (:*) t.0 IT* 

7. Receive z; from V‘. 
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WI = Z r P l  

C?,,, X ~ O l l l l l l Z f ~ ( U l ; )  

8. Let 

and send c,; to  V‘. 

either fails. 
10. Send w; to  V’. 

9. Receive ( S j , u ,  1)). Verify t,hat, c,; = c o r r i m i t c ( S ; )  and that, zi = Si ”g” ;  halt if 

We see that, t,he above simulator runs in polyiiomial t,ime in the size of t,he 
input. In t,he case Li = 1 V B = 1, t,he distribution of the simulated transcript 
is identical to a real f,ranscript; in the other case, the simulated transcript is 
indistinguishable from a real transc.ript, according to  assumption 1, or this would 
give us a method of dec.iding undeniable signa.t,ures in p-time without knowledge 
of the secret key. Thus, the prot,ocol is computational minimum-knowledge. 
The oblivious protocol for deciding an undeniable signature is sound, since the 
verifier will only a.c.c.ept, if 111 = ,+P 1 where the prover sets ( 7 0 ,  S, G) after 
seeing z = Y g ” ,  but, without, any infoririatioii about, (s, u,, v). Since both S and 
g are generators of G,, tlie verifier can only achieve this with a non-negligible 
probabi1it)y if (70, S ,  G) = ( z p , @ , G f l ) ,  i.e., the prover needs t80 know S. 0 

Theorem 2: The base-and-exponent proof protocol is a complete, sound and a 
perfect zero-knowledge argument, of knowledge (or a computational zero-knowledge 
proof of knowledge.) 

We show that, the base-and-expoilent. proof prot,ocol is sound. 
Purl 1: If the prover is able to corrtxtly answer bot,h the challenge e ,  = 0 and 
a, = 1, then he can c.alculatt [J, = al,ul mody. Therefore, and by a similar 
argument for b ,  part, 1 of t,he prot,ocol is sound. 
Par-t 2: If t,he verifier can answer bot,h t,he chillerige e = 0 and e = 1 then he 
can calculate c = ctI + c1 modp, and consequently, part 2 is also sound. 
Next, we show that the base-and-exponent. proof protocol is either a perfect 
zero-knowledge argument, of knowledge or computational zero-knowledge proof 
of knowledge (depending on t.he comrnitrnent, type used). We will prove this by 
giving a simulator for the prover: 

1 .  Randomly select, numbers 

F a ,  i b  €1‘ (0 )  1) 
c E, z, 
‘10, (11, lo, b l  € , I  z,, 

and calculat,e 

1 Send { A t ,  B,, c (,,, ~ t , ~ } , = ~ ~  to the verifier 
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2 .  Receive ( e , , e t )  and halt, if ( ~ . , , e b )  # ( i ' n , L f , ) .  
3.  Otherwise, continue with steps 3-7 of t,he standard protocol. 

The  distribut,ion seen by the  verifier a f k r  t,he first. move will be identical t o  
(indistinguishable from) t,he distribut,ion of real t,ra.nscripts if the coiiimitment 
scheme is unconditionally secure, (correspondingly, if corrimit is only condition- 
ally secure). Therefore, t he  prohabilit,y that, we will not, halt is at least 1/4 per 
t ry .  Sinc,e the  real prot,ocol is followed in the rest, of tlhe steps, it, generates an 
ident,ical distribution to t,he real protocol, and suc,ceeds with probability 1, the  
protocol will be a perfect zero-knowledge argument when commit is uncondi- 
tionally secure (and conditionally binding), and a c.omput,ational zero-knowledge 
proof when commit is conditionally secure (and iinconditionally binding). 0 

Theorem 3: The agnostic protocol for deciding an undeniable signature is a 
complete, agnostic and  sound proof, which is rniiiimum-knowledge w .r .t,. multi- 
queries. 

First we show tha t  the protocol is indeed agnostic. Assuming t,liat the  verifier 
selects 6 = 1 (the other case is not, int,erest,iiig w.r.t, .  knowledge leaked from the  
verifier), the prover will get, (?,PI s p a ,  y") from the verifier, along with a proof 
tha t  Iog,pspu = l o g g g u .  According to Theorem 2 ,  this is a perfect zero-knowledge 
argument, and  only reveals sp" and g", which are public anyway. Since the prover 
knows 2, he can calculate the triple ( , m p >  ( ~ f ~ ' ) ' / ~ ,  g" ) ,  which, if s = m', equals 
(mP, infa, ga). Assume for the  sake of a cont>ra.diction that8 t,he prover will be 
able to  decide whether s = nix wit,h a non-negligible probability, after seeing the 
above mentioned t,ranscript,. 

According to  the Diffie-Hellman assumptiori, it, is not possible to calculate 
mP' given only mp, ma and m. Therefore, it, is also not. possible to calculate 
this given nip, g u ,  m and 9 ,  or we c,oiild set, g = n1.0 for a random /3 and get, a 
cont#radict,ion. Thus ,  the prover will not, he able t,o ca1culat.e m,pa. If he were able 
tlo decide whether s = 7nx, i,hen whtn t,his ecluat,ion holds, he could calculate 
m P a  simply using which would he a cont,radict,ion. We conclude that, 
a p-time prover cannot, ilec.ide whet,hrr lie is proving validit,y or invalidity if t<he 
Diffie-Hellman assuinpt,ion holds. 

Soundness is shown analogously 1.0 t,he proof of Theorem 1. Next, we show 
tha t  the prot,ocol is minimurii-knowledge w.r.t,. multiqueries. Since t,he base- 
and-exponent, proof is a.n argument of knowledge (possession) w.r.t>. tohe base, 
there is an extract,or of the witness, i.e., of s,, and this reduc,es the  proof to  the  
proof of Theorem 2 ,  which shows t,hat,, given TI, t,he corresponding prot,ocol is 
minimum-knowledge w.r  .t2. mult,i-queries. 0 
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