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Abstract. We introduce oblivious decision proofs and agnostic decision
proofs. In the former, the prover does not have to know whether the
instance 1s in the language proven or not in order to be able to perform
the decision proof; in the latter, the prover cannot even find out this
information from interacting in the protocol. The proofs are minimum-
knowledge, Limiting the knowledge exposed to the verifier as well. We
demonstrate an easily distributable oblivious computational minimum-
knowledge decision proof protocol for proving validity/invalidity of un-
deniable signatures. This method, using obliviousness, solves an open
problem [6] of practical value: the distributed verification of undeniable
signatures. We also present an agnostic proof for the same language; an
agnostic prover reduces the dissemination of trust in the system; in fact,
a prover can be blindfolded and not get to learn the input. As part of the
agnostic protocol, and perhaps of independent interest, we exhibit an ef-
ficient zero-knowledge proof of knowledge (possession) of both a base and
an exponent of an element of a finite group (and similar algebraic struc-
tures). Finally, we show a perfect agnostic minimum-knowledge decision
proof protocol for quadratic residuosity modulo Blum integers.

1 Introduction

The future communication infrastructure seems to require the use of crypto-
graphic provers which will assure that certain communication and computations
are valid (e.g., proof of origin and validity of e-money.) If the provers need to
know the full information about the instances they prove things about, then a
lot of trust has to be put on them. In this paper, we demonstrate that sometimes
provers can perform their task even if they only possess partial information, and
furthermore, the participation in a proof does not need to give them additional
knowledge. Our methods, therefore, will help in reducing trust requirements in
sound cryptographic systems. Whereas zero-knowledge proofs restrict the advan-
tage gained by the verifier, here we are interested in a simultaneous restriction
of the knowledge gained by the prover and the verifier.
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RESULTS. A decision proof is a proof in which the prover shows a string to be in
or not to be in a certain input language. We introduce the notions of obftvious
and agnostic decision proofs. We call a decision proof oblivious if the prover does
not have to know whether the string in question is in the language or not for the
proof to succeed, and agnostic if he cannot even find out whether he 1s proving
language membership or non-membership.

Oblivious decision proofs are useful in a distributed setting since the dis-
tributed provers do not have to reach consensus (regarding what protocol to
use) before the start of the protocol. Apart from being an obvious efficiency
improvement, this can reduce the trust one has to put in the individual servers
of the prover authority. We illustrate this in the setting of verification/disavowal
of undeniable signatures by demonstrating an oblivious distributed (computa-
tional) minimum-knowledge protocol for signature verification and disavowal.
This is minimum knowledge (i.e., transfers only the single bit of knowledge, in-
dicating whether the string is in the language or not) even if any subset of the
confirmers are corrupt. This is an improvemnent over existing distributed meth-
ods [6], where lists of valid signatures are kept to avoid corrupt servers from
obtaining signatures on arbitrary messages.

Agnestic decision proofs are extensions of oblivious decision proofs, hiding
the result of the calculation from the provers, and can be useful to thwart traf-
fic analysis (e.g., 1n verifying signatures on e-money, the prover may also be
asked to “verify” non-signatures in order to hide an actual flow of valid cash
transactions.) We give two examples of such protocols, the first, a computa-
tional agnostic decision proof protocal for undeniable signatures, and the second
a perfect minimum-knowledge, perfect agnostic protocol for proving quadratic
residuosity and non-residuosity modulo Blum integers.

For all of these example protocols, the interaction does not let the prover

obtain any more information about the instance than what the verifier gets by
interacting, i.e., at most (as in the first example) whether the instance is in the
language or not. The instance in itself is perfectly blinded from him (except for
public knowledge like the instance size). We say that such a protocol is hiding.
We call a prover in a hiding proof blindfolded. Of course, we allow the verifier
to send a number of queries to the prover who has no idea about the input.
The protocol assures that an honest verifier does not get extra knowledge. A
cheating verifier may ask arbitrary questions, but practically speaking, as long
as this verifier is invoked on a specific input, he can learn only the decision bit
about this input and perhaps a limited number of bits on random choices (which
1s typically acceptable in the applications we have in mind).
Of possible independent interest is the zero-knowledge proof of knowledge 3, 7,
15] of a base and an exponent of a number, which we use as a subprotocol. Here,
we prove the knowledge of a triple (a, b, ¢) for a given input (4, B) = (a®, b%) over
certain algebraic domains (like Z7 and Zj, the latter when the prover knows
the factorization of N.) It uses a novel “value splitting” technique that enables
a direct and quite efficient proof.
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RELATED WORK. Goldwasser, Micali and Rackoff {11] introduced the notion of
a zero-knowledge proof, a method that allows one to prove a statement while
yielding nothing but the validity of this assertion to the verifier. A minimum-
knowledge transfer of information, or mintmum-knowledge proof, introduced by
Galil, Haber and Yung [10], extends this notion by allowing the transfer of
some information (like language membership or non-membership), but leaking
no further information. They call a proof in which both membership and non-
membership can be proven a deciston proof. Decision proofs in which the verifier
does not learn the predicate were introduced by Feige, Fiat and"Shamir [7] in the
context of identification. In this paper, though, the objective of the proofs are
for the verifier to learn the predicate — without the prever necessarily learning it.
Thus, we extend and generalize the work of Fujioka, Okamoto and Ohta [9], who
presented a computational minimum-knowledge decision proof for undeniable
signatures, which in terms of this paper could be called oblivious. However, they
make no attempt to efficiently distribute the protocol (i.e., using multi-provers),
which may be difficult to do.

Our results are inspired by several previous notions: We combine minimum-
knowledge proofs with notions for hiding results from an oracle, studied by
Abadi, Feigenbaum and Kilian [1]. In their model, player V wants to know the
value f(x) for some x, but lacks the power to compute it. P, on the other hand,
has this power, and is willing to help V compute the function, but V wants P to
be able to obtain as little information as possible abhout z and f(z). Their result
is of asymmetric nature in the sense that it is not minimum-knowledge w.r.t.
the verifier, only the prover. Qurs is symmetric in natnre and hides information
both ways. Another difference is that we do not assume {(although we sometimes
do allow) the prover to be powerful.

Further work that inspired us is that of Beaver, Feigenbaum, Ostrovsky
and Shoup [2, 8], where the above instance hiding is combined with minimum-
knowledge proof systems in multi and single prover models. They show condi-
tions on languages which have such protocols. The results are different. First, we
allow multi provers and allow them to interact, whereas the provers are required
to be totally separated in their model. Second, they require 2(n + 1) provers
to prove a theorem on a string of length n, whereas we allow any number of
provers. Furthermore, we concentrate on specific, concrete languages that can
be efficiently proven, whereas their results, being much more general, is mostly
classification results of existential nature.

Our protocols are related to the basic 1deas of Yao [16, 17). We suggest ef-
ficient solutions to two-party partial information games whereas Yao’s general
methods are inefficient. Yao defined and solved the millionaires’ problem, giving
an efficient method for two participants to compare their riches and decide who
1s wealthier, without revealing their inputs to each other. More generally, he
showed that two participants, one with input z, the other with input y, can cal-
culate any function f(z,y) without revealing their input to each other, assuming
factoring is hard. It is important to note that the latter is an existential result
and that the calculation rnay be very inefficient. As part of two of our protocols
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we present efficient solutions to what we call the socialist millionaires’ problem
and the ertravagant socialist millionaires’ problem, both closely related to the
millionaires’ problem.

2 Definitions

Model
We assume the model of interactive Turing machines [11], zero-knowledge [11]
and minimum-knowledge [10] proof systems.

Proof of Knowledge (sketch; for a formal definition see [3, 15, 11].)

A proof of knowledge i1s a proof for which there is a polynomial time witness
extractor that succeeds with a non-negligible probability. This witness extractor
works by rewinding the prover and providing different verifier transcripts for
different partially rewound sessions.

Decision Proof [1(]

We say that a protocol (P, V) = ((Py, Py), (Vi, Va)) 1s a decision proof for a
language L with inputs I and error probability 8(k), where k is the length of the
input, if

1. For any = € I given as input to (P, V), (P, Vi) is a proof system such
that V] accepts, halting with the correct output (z € L) with probability at
least 1 ~ §(k). For any « € I given as input to (P, V), (Ps, V3) is a proof
system such that V5 accepts, halting with the correct output (z ¢ L) with
probability at least 1 — 6(k).

2. For any incorrect prover (Py resp Py), the probability that the verifier halts
with the incorrect output is at most 8(k).

Next, we define properties limiting the knowledge gained by a prover in an
interaction:

Oblivious

A decision proof is oblivious if the prover does not need to know the predicate
of the instance (i.e., its membership bit w.r.t. the input language) in order to
perform the protocol; thus, P, = Ps.

Agnostic

A decision proof is computational (perfect) agnostic if a polynomial-time limited
(computationally unlimited) prover does not. learn the predicate of the instance
by the interaction. Namely, the probability of such a machine to compute the
predicate after interaction is only negligibly better than computing it prior to
the interaction.

Hiding
A proof is computational (perfect) hiding if a polynomial-time limited (compu-
tationally unlimited) prover obtains no instance specific information, except for
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possibly the predicate of the instance. This implies that a prover only gets access
to a modified input (we say that he is blindfolded) and the prover obtains no
advantage in computing the input (similar to [1].)

Now we define what it means to limit the knowledge gained by a verifier:

Minimum-Knowledge [10]

Let (P, V) be a protocol in which on input x, P calculates and sends to V' the
value z = f(z) for a given function (predicate) f.The protocol is computational
(perfect) minimum-knowledge if there exists a probabilistic polynomial-time ma-
chine My that, given one-time access to an oracle O for f(z), for each auxiliary
input y and any input =, produces transeripts { My (z,y)} with a distribution
indistinguishable from (identical to) that of Le real transcripts {P(z), V(z,y)}.

Note next that the verifier may, for example, send multiple queries (about
elements in the language) to the prover. Queries are protocol related challenges
about elements in the language answered by the prover. The blinded prover in
protocols that are hiding can be fooled to answer queries unrelated to the actual
input (by definition, it cannot make the connection of a query to an input).
As long as the verifier is honest, it asks queries as needed and we can be sure
that our protocol is “honest verifier minimum-knowledge” (see e.g., [13], where
assuming one-way permutations exist, such protocols can be transformed into a
minimum-knowledge protocols).

All of our protocols that are hiding are “honest verifier minimum-knowledge”.
The protocols in fact, involve multi-queries (which we may allow the verifier to
ask)— we call these protocols minimum-knowledge w.r.t. multi-queries.
If the k& queries are generated honestly, the protocol is minimum-knowledge.
Otherwise, we may leak k& answers about langunage elements (a simulator may
require k accesses to a language oracle), which in practice may be acceptable
(as in our case). In particular, when the verifier is restricted to access the input
only- all he can ask are queries related to the input or random ones.

2.1 Uses of the above knowledge restrictions

In a distributed setting, oblivious decision proofs can be very convenient. In
Appendix A, we demonstrate a potential weakness of existing, non-oblivious
methods for verifying and disavowing undeniable signatures. This problem stems
from the fact that there are two different protocols, one for verification of a vahd
undeniable signature and one for disavowal of an invalid undeniable signature.
Although both of these are zero-knowledge given the right kind of input (i.e.,
a valid signature for the former, and an invalid signature for the latter) they
leak knowledge if, for example, the protocol for verification is used on an invalid
signature. In fact, here the verifier obtains the valid signature on the given
message, which is problematic in light of the fact that individual servers in a
distributed setting have no way of distinguishing valid signatures from invalid
ones, and so, are at risk of using the wrong protocol. Two partial solutions to this
problem have been suggested [6]: One is for the confirmers to reach consensus
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before engaging in the proof (a method which may allow a cheating confirmer to
obtain signatures on arbitrary messages in the same way that a verifier could,
if caution is not taken.) The other is for the signer to distribute a list of valid
signatures to the confirmers, a solution that has problems contradicting the
desired properties of undeniable signatures. The latter method is also not very
appealing in a technical sense. Using an oblivious minimum-knowledge decision
proof, we can solve these problems in an elegant way: since the confirmers do not
have to choose what protocol to use, there is no risk that the wrong protocol is
chosen. Our solution is minimum knowledge against a set of corrupt confirmers
as well as against a normal verifier. Making protocols agnostic instead of merely
oblivious can be useful in preventing traffic analysis. It is possible that a verifier
in a scenario related to, e.g., electronic payments, does not want the prover to
know whether a signature is valid or not. Making such proofs “hiding” at the
same time prevents the prover from learning any instance specific information,
including what the predicate is. This means that each day, regardless of the
actual number of signature validations needed, the prover is going to be probed
by a given “upper bound” of validation requests. This will prevent the release of
the actual flow of signatures which may be crucial in the context of e-commerce.

3 Oblivious and Agnostic Decision Proofs for Undeniable
Signatures

3.1 Undeniable Signatures: a short Exposé

An undeniable signature is a signature that cannot be verified without the co-
operation of a prover, who is either the signer or a confirmer assigned by the
signer. That is, it is not possible to distinguish between a valid and an invalid
undeniable signature unless some trap-door information is known. The only ef-
ficient type of undeniable signature to date is the following type, introduced by
Chaum and van Antwerpen [4].

An Undeniable Signature:

Let p = ¢l + 1 for primes p and ¢ and an integer {, and let g be a generator of
Gp. The signer of an undeniable signature has a private key # € Z; and a public
key y = g® mod p. The valid signature on a message hashing to m is m* mod p.

Assumption 1:
The language of undeniable signatures is not. in BPP, i.e., given (m, s, ¢,y,p) it
is hard to decide whether « = £ for input y = ¢® medp and s = m®? mod p.

Verification and Disavowal of an Undeniable Signature:
An undeniable signature (m, s, g, y, p) is verified by proving that logms = log,y,
and disavowed by proving that logms # log,y.
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3.2 The Oblivious Protocol

In the following, we show the simplified non-distributed prover version for sim-
plicity of notation and ease of reading, but note that the suggested protocols
are trivially distributed using standard secret sharing methods, and that the
distribution of the function generation is transparent to the verifier, 1.e., he will
not have to know that the prover is distributed.

Our solution uses as a subprotocol a protocol that solves a problem we call the
socialist millionaires’ problem and the cxiravagant socialist millionaires’ prob-
lem, both closely related to the millionaire’s problem {17]: Two people, P and
V, want to compare their riches, zp and zy, to see whether zp equals zv. V
learns (only) whether zv = zp. In the socialist millionaires” problem, P learns
nothing about xvy;in the ezxtravagant socialist millionaires’ problem, V is willing
to reveal zy to P after P has committed to the value zp to be used in the
calculation.

In order to decide an undeniable signature in an oblivious fashion, we can use
the following protocol, which is minimum-knowledge (it is minimum-knowledge
in its distributed version w.r.t. any set of corrupt servers and verifiers.) In the
following, all operations will be modulo p, where applicable.

Oblivious protocol for deciding an undeniable signature:

Input to the prover: z:, the secret key of the prover, such that y = g%.

Input to the verifier: A tuple (m, s, g,y,p).

Objective: The verifier wants to learn whether (m, 5) is a valid message-signature
pair w.rt. (g,y), i.e., whether logn,,s = log,y.

The following subprotocol is repeated k times in parallel:

1. The venfier flips a fair coin & €, {0, 1} and picks a blinding factor p €, Z;
uniformly at random. He calculates

— @’ y")y Hb=0
(%) = {(m”,s") ifb=1,

and sends 7 to the prover.

2. The prover calculates the undeniable signature § = m° on .

3. Using the protocol solving the extravagant socialist millionaires’ problem,
the verifier and the prover compares § and 3; at the end of the calculation,
the verifier ACCEPTs or REJECTs, depending on whether he thinks that
5 is equal to §, or not. Let res be this result. The verifier writes (b, res) on
his private tape.

The verifier reads all the outputs (b, res) of the k subprotocols and writes

- “(m,s,g,y,p): VALID SIGNATURE” on his private output tape, and ac-
cepts, if the result of any of the subprotocols is (b, res) = (1, ACCEPT),

~ “CHEATING PROVER” on his private output tape, and rejects, if the
result of any of the subprotocols (b,res) = (0, REJECT) and none is
(1, ACCEPT).
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— “(m,s,g,y,p): INVALID SIGNATURE” on his private output tape, and

accepts, otherwise.

Subprotocol® solving the extravagant socialist millionaires’ problem:
Input to the prover: § € G}

Input to the verifier: 5 € Gp.

Objective: The verifier wants to learn whether § = 5.

1. The verifier sends ¢z = commit¢(3) to the prover, where commits is an
unconditionally secure (and conditionally binding) commitment scheme.

2. The prover picks a blinding factor # €, Z; uniformly at random. He calcu-
lates (S, G) = (§7,¢") and sends (S, G) to the verifier.

3. The verifier picks u,v €, Z, and calculates z = 5“g* and sends z to the
prover.

4. The prover calculates

w ="
{ Cy = commitp(w)

and sends ¢, to the verifier. Here, commitg 1s a commitment scheme that
1s conditionally secure.

5. The verifier sends (5, u, v) to the prover and the prover verifies that z = 3%g";
if not, then he halts.

6. The prover sends w to the verifier and verifies whether w = S*GV. If this
is the case, he outputs ACCEPT and halts, otherwise he outputs REJECT
and halts.

Remark 1: The above protocol is minimum-knowledge w.r.t. k-queries, 1.e., 1t
can be simulated given k accesses to an oracle. It may appear that a knowledge
complexity of k bits releases a lot of information; however, note that one can only
use the prover as an oracle for deciding whether undeniable signatures are valid
or not, and the protocol leaks no other information. Thus, a cheating verifier can
only obtain more bits of knowledge than one by verifying several signatures in the
same protocol, which seems harmless. In application where we need to control
knowledge tightly, we can transform the protocol to be minimum-knowledge [13].

Remark 2: The knowledge complexity of the above protocol can easily be re-
duced from k bits to merely one bit, without increasing the probability of success
of a cheating prover. This can be done by having the verifier release the blinding
factor p just before the end of the protocol, so that the prover can make sure
that either (g,y) or vne specific (m, s) was used in each round of the protocol.
If this i1s not so, he will halt. (This can be combined with blindfolding to hide
(m, s) from the prover.)

® This protocol is very closely related to one known protocol [4] for verification of
undeniable signatures. In fact, it combines the normal signing procedure, using a
random one-time secret key, with the verification protocol using the same key.
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Theorem 1: The oblivious protocol for deciding an undeniable signature 1s
complete, oblivious, sound, and minimum-knowledge w.r.t. k-queries.

3.3 The Agnostic Protocol

The agnostic protocol for decision proofs of undeniable signatures is quite similar
to the one for oblivious decision proofs, but instead of making calls to a subpro-
tocol solving the extravagant socialist millionaires’ problem, we make calls (with
the same input) to a subprotocol solving the socialist mullionaires’ problem, ie.,
a protocol for comparing inputs in which the verifier’s value is not leaked to
a p-time prover. The protocol for solving the socialist millionaires’ problem, in
turn, is rather similar to that solving the extravagant version:

Instead of committing to and sending 5, the verifier commits to and sends 5*
for a secret o €, Z,. Moreover, he calculates ¢* and sends this to the prover,
after which he proves that he knows a value 5 such that there is a value a so
that 5 and ¢g* are the values previously sent. This is a proof of knowledge w.r.t.
3. We actually give a more general proof, namely a zero-knowledge proof of
knowledge (i.e., possession) of both the bases and the common exponent of two
inputs. There are assumed hard problems which are expressed this way (perhaps
with added constraints); e.g., we use the problem assuming one of the bases 15 a
known generator.

Base-and-Exponent Proof Protocol:
Input to the prover: (a,b,¢); Input to the verifier: (a®, b¢)
Part 1 (proof of knowledge of a, b using base splitting):

1. The prover selects ag, by €4 Z, and calculates

ay = aay™!

by = bby™?
Ai=af i€{0,1}
B:=b" 1€{0,1}
Cai = commit(a;) 1€ {0,1}
e = commat(b;) 1€ {0,1}.
He sends {4;, B, cas, cb,»},}:“ to the verifier.
2. The verifier checks that A = AgA; and B = By By, picks €4, 1 €4 {0,1} and
sends (e,, e;) to the prover.
3. The prover sends a., and b, to the verifier. The verifier checks that the
corresponding cqe, and ¢y, are correctly calculated.
4. Using a normal proof [4] of validity of an undeniable signature, the prover
proves to the verifier that log.,, A., = logs,, Be,.

Part two (proof of knowledge of ¢, using ezponent splitting):
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5. The prover selects ¢y €, Z, and calculates

1= ¢— cprmodq
C'(] = (Lgucr’
Cy=a,, .
He sends (Cq, C1) to the verifier.
6. The verifier checks that A., = CyCy and sends a challenge ¢ €, {0,1} to
the prover.
7. The prover sends ¢, to the verifier and the verifier checks that Ce = a.,

Ce

There are two versions of the above protocol:

— If commit is unconditionally secure, then the above is a perfect zero-knowledge
argument of knowledge.

— If commit is conditionally secure, then the above is a computational zero-
knowledge proof of knowledge.

The above protocol is repeated k times (possibly in parallel) to bring down the
error probability to “,i,; We show that:

Theoremn 2: The base-and-exponent proof protocol is a complete, sound ar-
gument of knowledge which is also perfect zero-knowledge (or, alternatively, a
proof of knowledge which is also computational zero-knowledge.)

Based on the above theorem, we conclude that:

Theorem 3: The agnostic protocol for deciding an undeniable signature is com-
plete, agnostic, sound, and minimum-knowledge w.r.t. multi-queries.

Remark 3: We note that the exponent splitting idea can be used to prove
knowledge of an exponent pair (a,b) for an unconditionally secure commitment
scheme g®h® mod p, or equality between two messages (ag,a;) committed to for
such a scheme.

Let ¢y and ¢; be the commitment values corresponding to two messages ag
and ay, and let bg,b; be random strings. We want to prove that a = ag = a1,
where ¢; = ¢g* hb modp for i € {0, 1}:

1. Randomly split a 1mnto a(y and ag)y, b; into biey and by for ¢ € {0,1}
calculate Cay = commit(agy), Cayy = commit(a(y), and
send (g®® hbo) | g*) pba) | g% hbl(n),g“mhbx(l),ca(u), Cagyy) to the recelver.

2. The receiver sends e €, {0,1} to us.

3. Send (a(e), bo(e), bi(ey) to the receiver, who verifies that the corresponding
values previously sent were correctly calculated.

The above is repeated k times.
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Appendix A

We look at the verification protocol of {5]*, and show what could happen if an
attacker who does not know a valid signature for m were still allowed to interact
in the protocol for verification of valid signatures. (Even though this can be a
distributed protocol w.r.t. the provers, we show the simplified one-prover version
for increased clarity.) Alice wants to prove to Bob that log,s = loggy for a
message pair (m, s) given to her by Bob:

1. The verifier, Bob, chooses a,b €, Z; and calculates d = m®g®. Bob sends d

to Alice.
Alice chooses r €, Z, and calculates

wy = qg"
wy = un’
and sends {w, w») to Bab.

3. Bob sends (a,b) to Alice.
4. Alice verifies that d = m“g®, and then sends r to Bob, who verifies that

wy = dg”
wy = sSyttT

[N}

However, Bob can easily obtain s = m®, 1.e., Alice’s signature on m, for an
arbitrary message m by participating in the protocol above and calculating

1/a oo 1/a
5 = (way=+7) fa _ ((ma gt gy y=(+0) o _ me.

Appendix B

In this section, we exhibit an agnostic, hiding decision protocol for quadratic
residuosity and non-residuosity modulo a Blum integer. Here, Alice knows the
factorization of N, whereas Bob does not. Bob wants to know whether « € Zn
belongs to QRy or QN Ry . There are several zero-knowledge proofs of quadratic
residuosity modulo Blum integers (and thus also for quadratic non-residuosity)
in the literature, e.g., [11, 7]. We can use any such protocol as a subprotocol in
our proof. Consider the following protocol:

1. Bob selects ap €, @Ry and ¢ €, {0,1}, and calculates @ = (—1)°pa mod N.
He sends a to Alice.

2. Alice proves to Bob | using a standard perfect zero-knowledge proof either
that @ € QRy or @« € QN Ry. If ¢ = 0, Bob concludes that o« € QRy <—>
& € QRy; if ¢ = 1, Bob concludes that « € QRy <= a € QNRn.

* A similar “attack” can be mounted using the protocol of [14].
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It is trivial to see that the above protocol is complete, since Alice knows the
factorization of N. Also, the sonndness and perfect minimum-knowledge prop-
erties follow easily from the soundness and perfect zero-knowledge properties of
the standard proof or quadratic residuosity/non-residuosity used. Finally, the
protocol is perfect hiding and perfect agnostic since Bob’s transcript will be sta-
tistically uncorrelated to the quadratic residuosity or quadratic non-residuosity
of & (by means of ¢) and to « itself (by means of p.).

The above protocol is similar to the “divertible zero-knowledge” protocol
of [12]. In that protocol, a warden manipulates the query to avoid subliminal
channels between the prover and verifier, here we allow the verifier to manipulate
the queries to hide the input. Protocols in [12] for random self reducible languages
can be applied in the current setting.

Appendix C

We sketch the proofs of the previously stated theorems.

Theorem 1: The oblivious protocol for deciding an undeniable signature 1s
complete, oblivious, sound, and minimum-knowledge w.r.t. k-queries.

The protocol is trivially complete (as are the other protocols) and oblivious.
We prove the other properties: First we show that the protocol is minimum-
knowledge w.r.t. multi-queries. Let. O be an oracle such that for each instance of
the subprotocol, it outputs a bit b; indicating whether the verifier V* knows that
the corresponding message-signature pair (7, 5) is valid (b; = 1) or that he does
not (b; = 0). We will show how, given access to O, we can generate one set of
transcripts Tyatia and Tinyatiq, such that their distributions are indistinguishable
to those of real transcripts of the protocol, of valid vs. invalid signatures being
verified. Let B be a bit indicating whetlier to generate a transcript of the type
valid® (B = 1) or “invalid” (B = 0).

The following simulation will be performed in parallel for each one of the k
parallel sessions:

Receive 71; and ¢3; from V*, and b; from O.

Select S;, Gy €4 Z; and send (i, Gi) to V™.

Receive z; from V*.

Select w; €y Zp, calculate cyi = commitg(w;), and send ¢y to V™.

Receive (5;, u, v). Verify that ¢z = commito(5;) and that z; = 5, ¢¥; halt if
either fails. Rewind V* to the state right after step 1 above.

6. Let

AN S

§; €y Gy otherwise.

Calculate (5',', Gi) = (S'f;j‘,g/ﬁ') and send (é’, (7;) to V*.
7. Receive z; from V'*.
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8. Let

w; = z;”
{ Cwi = commit g(w;)
and send c,; to V*.
9. Receive (5;,u,v). Verify that ¢z; = commitc(5;) and that z; = §;"g"; halt if
either fails.
10. Send w; to V'*.

We see that the above simulator runs in polynomial time in the size of the
input. In the case b; = 1 V B = 1, the distribution of the simulated transcript
is identical to a real transcript; in the other case, the simulated transcript is
indistinguishable from a real transcript according to assumption 1, or this would
give us a method of deciding undeniable signatures in p-time without knowledge
of the secret key. Thus, the protocol is computational minimum-knowledge.
The oblivious protocol for deciding an undeniable signature is sound, since the
verifier will only accept if w = S"G", where the prover sets (w,.é', G) after
seeing z = $¥g", but without any information about (¥, u,v). Since both 5 and
g are generators of Gy, the verifier can only achieve this with a non-negligible
probability if (w, S, G) = (2#, 5%, G*#), i.e., the prover needs to know 3. O

Thecrem 2: The base-and-exponent proof protocol is a complete, sound and a
perfect zero-knowledge argument of knowledge (or a computational zero-knowledge

proof of knowledge.)

We show that the base-aud-expouent proof protocol is sound.

Part 1. If the prover is able to correctly answer both the challenge €, = 0 and
@, = 1, then he can calculate a = aga; modp. Therefore, and by a similar
argument for b, part 1 of the protocol is sound.

Part 2: If the verifier can answer both the challenge ¢ = 0 and ¢ = 1 then he
can calculate ¢ = ¢y + ¢; modp, and consequently, part 2 is also sound.

Next, we show that the base-and-exponent proof protocol is either a perfect
zero-knowledge argument of knowledge or computational zero-knowledge proof
of knowledge (depending on the commitment type used). We will prove this by
giving a simulator for the prover:

1. Randomly select numbers

6([1 él> Cu {U, 1}
CEy Zq
ay, ay, bo, b1 €4 Zp

c

and calculate Az, = aq,
Al—éa = A/.Agﬂ
B, = be,©
Bi-s, = B/B:,
Cai = commat(a;) i€ {0,1}
ey = commuat(b;) 1€ {0,1}.

Send {A,, B, cm,cm}fz(, to the verifier
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2. Recelve (e,,e;) and halt if (eq, €4) # (€4, €1).
3. Otherwise, continue with steps 3-7 of the standard protocol.

The distribution seen by the verifier after the first move will be identical to
(indistinguishable from) the distribution of real transcripts if the commitment
scheme is unconditionally secure, (correspondingly, if commit is only condition-
ally secure). Therefore, the probability that we will not halt is at least 1/4 per
try. Since the real protocol 1s followed in the rest of the steps, it generates an
identical distribution to the real protocol, and succeeds with probability 1, the
protocol will be a perfect zero-knowledge argument when commit is uncondi-
tionally secure (and conditionally binding), and a computational zero-knowledge
proof when commit is conditionally secure (and unconditionally binding). O

Theorem 3: The agnostic protocol for deciding an undeniable signature 1s a
complete, agnostic and sound proof, which is minimum-knowledge w.r.t. multi-
queries.

First we show that the protocol is indeed agnostic. Assuming that the verifier
selects & = 1 (the other case is not interesting w.r.t. knowledge leaked from the
verifier), the prover will get (m”,s** ¢“) from the verifier, along with a proof
that log,rs** = log,g®. According to Theorem 2, this is a perfect zero-knowledge
argument, and only reveals s*“ and g, which are public anyway. Since the prover
knows z, he can calculate the triple (m*, (5”“)1/”, ¢“), which, if s = m®, equals
(m?, m?® g®). Assume for the sake of a contradiction that the prover will be
able to decide whether s = m® with a non-negligible probability, after seeing the
above mentioned transcript.

According to the Diffie-Hellman assumption, it is not possible to calculate
mf given only m?, m® and m. Therefore, it is also not possible to calculate
this given m”, g9 m and g, or we could set ¢ = m? for a random £ and get a
contradiction. Thus, the prover will not be able to calculate m#®. If he were able
to decide whether s = m®, then when this equation holds, he could calculate
m?® simply using (s"")l/r, which would be a contradiction. We conclude that
a p-time prover cannot decide whether he is proving validity or invalidity if the
Diffie-Hellman assumnption holds.

Soundness is shown analogously to the proof of Theorem 1. Next, we show
that the protocol i1s minimum-knowledge w.r.t. multi-queries. Since the base-
and-exponent proof is an argument of knowledge (possession) w.r.t. the base,
there 1s an extractor of the witness, i.e., of 5;, and this reduces the proof to the
proof of Theorem 2, which shows that, given §;, the corresponding protocol is
minimum-knowledge w.r.t. multi-queries. O
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