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Abstract. In t,his paper we investigate the strength of the secret-key 
algorithm RC5 newly proposed by Ron Rivwt. The target version of 
RC5 works on words of 32 bits, has 12 rounds and a user-selected key of 
128 bits. At Crypto’95 Kaliski and Yin estimated the strength of RC5 by 
diffcrential and linear cryptanalysis. They conjectured that  their linear 
analysis is optimal and that  t,he use of 12 rounds for RC5 is suffiicicnt 
to make both differential and linear cryptanalysis impractical. In this 
paper we show that  the different.ia1 analysis made by Kaliski and Yin is 
not optimal. We give differential attacks better by up to a factor of 512. 
Also we show that RC5 has many wcak keys with respect to  differential 
attacks. This weakness relies on the structurc of the cipher and not on 
the key schedule. 

Keywords. C‘ryptnnalysis. Block Cipher Differential cryptanalysis. Weak 
keys. 

1 Introduction 

ttC5 is a secrebkey block cipher proposed by Ron Rivest [5]. RC5  has a variable 
word size, a variable number of ronncls arid a variable length of the key. The 
‘Lnominal” choice of parameters is 32 hit#s words, 12 rounds and a 16 bytes key, 
referred to as RC5-32/12/16. A novel feature of the algorithm is the use of data- 
dependent rotations. The security of RC5 relies on the rotation operation and 
t,he mixed usc of xor and addition of words. Kaliski and Yin evaluated RCX 
with respect to differential arid linear cryptanalysis [ a ] .  I t  was shown that linear 
cryptanalysis is applicable only for versions of RC5 with a small number of 
rounds. Also, it was corijecturcd that t,he linear approximations in bhe analysis 
were optimal and that the use of 12 rounds for RC5 is sufficient t,o make both 
differential and linear cryptanalysis impractical. In this paper we show that, t8he 
differential analysis made by Kaliski atrcl Yin is riot optirnal. In our attacks we 
exploit the data-dependcnt rotations to speed up a differential attrack. The idea 
is t)o choose and firid plaintests so t,liat, there are IIO rotations in the first few 
rounds. Once these plairitexts have been iclentified a different,ial attack can he 
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performed with differentials of higher probability. Our differential attacks are 
better than the known attacks by up to a factor of 512. Also, by a closer look 
at the differential attacks of RCX one firids t8hat there exist keys for which the 
attacks perform even better. This is somewhat, surprising since RC5 has a very 
complex key schedule, but, as we will see, the existence of weak keys i s  not due 
to the key schedule itself. 

In the following we use the description of RC5 from [2]. Let (Lo ,  R”) denote 
the left and right, halves of t,he plaintext, respectively, and let Si be t,he ith 
subkey. Then the ciphertext R2,.+I) is dcfincd by 

L1 = Lo + ,s,, 
R1 = Ro + s1 
for i = 2 to 2r + 1 do 

1,; = K;-1 

Ri = ((Li-1 & & - I )  << F l i - i )  + S’i 
where (a  << ,/?) is the rotation of (I by ( B  mod 1 1 , )  positions to the left. l h u s  
the rotation a,rnount is the value of the ly(  w )  = log, IU least significant bits of 
Ri-1. Thc two equations with L j  and R,i on t,he left sides will be called a hulf- 
round. The two initial equations are called the first half-round. For a description 
of the key schedule we refcr to [5]. In the following we will assume that the 
subkcys produced by t,he key schedule are uriiforrnly random. This is a reasomablc 
assumption for what we are goirig to prove which will be illustrated. This paper 
is orgaiiised as follows. I n  Sect. 2 we first review the attacks by Kaliski and Yin 
and introduce our improved differential attack applicable for all versions of RC5 
in Sect. 3. In Sect. 4 it is shown that RC5 has many weak keys with respect to  
differential attacks. We conclude and discuss our work i n  Sect,. 5. 

def 

2 Differential Attacks 

We give first a short description of the differential attack by Kaliski and Yin and 
refer to [‘L] for more details. 

Definition 1. ‘I’he difference between two bit-strings X and &Y* of equal length 
is defined to be A X  = .Y 65, <Y*, i.e. t,he exclusive-OH. Also, we define e ,  to he 
the tu-bit vector having a one i n  position s a.nd zeros cvrrywherc else. 

The basic idea in the attack is t,o compiit,e cert,ain bits of L,,., which can then 
be used to deduce informatioil about, the sul:)kcy 5’2r 1 .  Since I,Z,. = R Z ~ - I ,  
knowledge about the rotation amount in the second-last, half-round gives the 
desired information. This knowledge can he obtained by observing which bits 
are set in the differences of the two cipherlext halves. Once the key ,S~,-+I has 
been found the intercepted ciphertexts can be decrypted by one half-round and 
a similar and easier analysis performed OII less rounds of RC5. 

Denote a differential for one half-round by l 2  = (fjp,  Q,), where f2p = 
(ALi-l ,AR;-,)  and f 2 ~  = (AL;,ARi) .  Let, p” denote the probability of t,he 
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2 r + 1  A P  

3m ( 0 , P u , - I )  

3m + 1 ( c W - - l ,  0 )  

3m + 2 ( e w - l , e w - l )  

Conditions I Probability] 

Table 1. TJsrful half-round cliffererilials of RC5 [2]. 

Q2r+ l  pf2aa.+i 

n",fi ,..., R , Q 4 , R 5  ( " - " y - l ) (  "(-yJ')"-l 
R3' ,Q3,  0,.  .,o, R4,f2' 
a2', P, n3, R,  ..., 0, 04, R' (w - ~g(Zu) - 

( w  - Iq(w) - I)(=)'" 

differential Q. Thc half-round different.ials of Table 1 are of special interest to 
us  as we will see. 'I'he first t8hree half-round differentials can be concatenated 
to obtain an iterative differential, i.r. a differential over three half-rounds t81iat 
can be concatenated with itself. The differentials Q4 and are suitable for 
obtaining the desired information about L2,. used to deduce the key bits. The 
differential Q6 will be used later in our improved attack. 

Table 2 lists the probabilities of differentials to be used i r i  atlacks on RC5 
with any number of rounds. fi denotes the concatenation of R1, R2, and 03. 
The differential Rk' in Table 2 is the sa.me as the differential Q k ,  except it is 
used in the first half-round only and will have probability one. We note that 
the differentials found by Kaliski and Yin are differentials by the definition of 
Lai, Massey and Murphy [3]. The original concept of churacteristics by Biham 
and Shamir [l] predicts one specific value of the ciphert>ext difference after each 
round of a cipher, while in differentials, as used here, the intermediate cipher- 
text difference can take on several values. 'I'hus, there are many characteristics 
contained in t)he differenlials of 'lhble 2 .  

Example 1. Consider &round RC5 arid the differential (ew- l ,  0),  see Table 2. In 
the first half-round the probability is 1 For R3 there are (w - l g ( w ) )  possible 
values for t ,  thus the probability in the secorid half-round is (w-1g(2u))/2wuI. The 
next three occurrences of fi have probability cach (w - I g ( w ) ) / ( 2 ~ ) ~  since there 
i s  only one possible value for s in Q1 arid ( a  - Ig(w))  possible values for t in R3. 
The second-last half-round, using 04) has probability ( to  - Ig(u1) - 1)/2u1 and 
the last half-round, using R', has probability I ,  since there are 7u possibilities 
for u ,  li and the factor 4 can be eliminated [2] 
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The number of pairs required for a successful differential attack is estimated to  
be about 2w x l/pf2 for r 5 11 and 8w x l/p" for r = 12 [a]. 

We close this section by commenting on the modified version of RC5, where 
all additions are changed to exclusive-or, considered by Kaliski and Yin [2]. 
First note that the parity bit of the plaintext exclusivc-or'ed to the parity bit 
of all subkeys equals the paritfly bit of the ciphertext. So given one plaintext- 
ciphertext pair we get one bit of informatmion about, the subkeys and thereby one 
bit of information about t>lie plaintexts from all further intercepted ciphertexts. 
This version of RC5 is therefore weak. 

3 Our Differential Attacks 

The first observation in our improveinelit, ofthc differential attack is, that if R1 = 
0 mod w, hereafter denoted R1 =w 0, h r e  will be no rota.tion in the second half- 
ronnd. Consider Example 1 a.gairi. If there is no rotation i n  the second half-round 
the probability is 1 ,  since it holds that .c@y = e,-l * (z+S2)@(y+Sa) = ew-l .  
In a similar manner, if Ra =w 0 there will be no rotation i n  the third half-round. 
More precisely, if we choose 

then we get 

In this way there will be no rotations in t,he second a,nd third half-rounds. For thc 
differential in Example 1 this means that if (1) and (2) holds t,hen the probability 
of the first four half-rounds is one. Sincc the keys So, S1, S, are unknown to ail 

attackcr, he does riol know the solution t,o eqmtions ( I )  and (2).  However, he ca.n 
construct differentials for all ui x w 11ossihle values of hhe Ig(w) least significant 
bits of both Lo and Ro in turn and observe t,he probabilities for each value. The 
idea is that for the valucs satisfying equations (1) and (2) the proba,bility of the 
differential will be higher than for other values. AL a first glance it may seem 
that wc will need more pairs than for the differential attack by Kaliski-Yin. But 
there are two advantages in our approach. For the values sat,isfying (1) and (2) 

- the differential R will lmve a higher probability, and 
- we will rieed fewer than 2w/p" pairs for success. 

The plan for our extended differential attask is as follows 
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I .  Subkey detection. For all values of t,lie l ,y(w) least significant bits of both 
plaint,ext halves, const,ruct differentials and obscrve their probabilities. De- 
termine the values of Lo and Xo sat,isfying (1) and (2) ,  i.e. determine 2 x l y ( w )  
key bits. 

2.  Improved differential attack. Perform the differential attack by Kaliski- 
Yin [2] wit,h increased performance. 

From this it is obvious t.liat our differential a t t x k  is improved only if the tdal  
a.mount of pairs needed in t,lie key det,ection part is less t,lian the amount of pairs 
needed in the atlack by Kaliski and Yin. 

3.1 

We split, the key det ion algorithm int,o t,wo parts. I n  the first pa.rt we will 
determine the values of the right halves of the plaintcxts satisfying equation (2).  
In the second part, we will determine the values of t>he left, halves o f the  plaintexts 
satisfying cquation (1). 

For tlhe first, part the difference i i i  ()he plnint,exts will be (0,  el,,-l), thus tjhe 
texts t'o be rot,at,ed in the second hitlf-rou1lds have difference etu-l .  II' there is 
no rotsation, the difference after the second half-round is ( e t , , - l ,  e w - l ) .  In the 
third half-round t,he t-cxts to be ro tn t ,d  have difference zero, thence here the 
probability of the differentia.1 is orie, whether or not there is a rotation. We will 
nced to create differentials for t,lie 7 0  diffcrent values of t,hc I g (w)  least significant 
bits of the right halves of the plaint,exts. On the other ha.nd, for the right value 
of the plaintexts the proba.bility of the differential is improved by a factor of ti1 

compared to the estimate3 in Table 2. Furthermore, for pairs of plaint,exts not 
satisfying equation (2) there will be a rot,a.tion in the second half-round, which 
means tshat the aniouiits to be rotated in the  third half-round for the pair are 
not equal, which again means that, thc pa.ir is a wrong pair, i.e. it does not follow 
the expected values in thr. differential. 'l'hwefore we need only about one right 
pair for siiccess instead of 2711 pairs iri the differential attack. If there are right 
pairs for more than one of the ui values of thc right halves of t,hc plaintcxts, 
fiirtlier pairs a.re gcrierated to detect, t.he correct values. 

In Table 3 we list, the differentials used in the first, part of the key detection 
algorithm and their probabilities for the plaintexts satisfying equation (2). For 
2r + 1 = 3n,  thc probabi1it)y of the differential is a factor of TU higher than  
for the full differential attack in [ a ] .  We generat,e pairs for w different groups 
of plaintexts, but, need only about one right pair. 'I'otally this part of the key 
detection algorithm needs about a factor of .w/w x 2eu = 2w less pairs compa.red 
t,o t,he cstiniates for thc difl'erential a.t,t,ack. For 27- + 1 = 3 m  + 1 this fact,or 
is 2(w - ly(tu)) arid for 21. + 1 = 3rri .  + 2 the fkctor is ~ w - l ~ ~ l - l l  , which can 
easily be seen by comparing the probabilit,ics of Tables 2 and 3. For w = 32 
tJliese factors are 64, 54, and 5, respect,ivcly. The irnprovcment is highest for 

A Basic Key Detection Algoritlirri 

' N o t e  t ,hat  t h e  first occu~I( ' i ice of t h e  differcritid f2' has probat)ilit.y l / w  as not,ed in 
PI. 
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27- + 1 = 3m, since t,he differential we use i i i  the key detection is optimal for 
the differential attack, w1ierea.s in the other cases other differentials are optimal 
in the differential att,ack. E.g. for 2r + 1 = 3ni + 2 the differential used in the 
differential attack optimizes the use of half-rounds with zero differences, i.e. with 
probability one. 

Let us explain ill more detail llie different~iitl for key detection in the case 
of 2r + 1 = 3rra + 1. 'I'he probabilities in t,he second. third, and fourt,h half- 
rounds are one, one and (w - I g ( w ) ) / 2 u ~ ,  rcspect>ively. Hereafter follow m - 2 
occurrences of 0 each of probability and one occurrcnce of Q4 with 

probability '''-';?)-' . In the second-last half-round, using Q5, the inputs to be 
rotmated have difference e ,  @ e ( ,  where s ,  t 2 I g ( w ) .  We require that '14, w >. ly (w) ,  
such t,hat there arc equal rotmalions in the last half-round. This happens with 
estimated probability ("-':(")) / (:,), which logethcr with the additional factor 
of 4 give the desired result. Note that iri  the last half-round thcre will be ui 
possibilities for x:, .tj, z and that the factor of 8 can be mostly eliminated in the 
same way as the factor of 4 111 the differential attack of [2]. 

Table 3. The differentials with A P  = (U,eul - l )  for key detection. 

For the sccond part of our algorithm w e  use the differcntial for 3m + 1 in 
Table 2. The difference in t8he plaintexts is ( e a , - ~ >  0),  so the texts to  be rotated 
in the  second half-round have differerice eu,- 1. In the first part of t,he nlgorithni 
we found the value of tlie right halves of tlie plaintexts, so that thcre is no 
rotation here. In the third half-round the texts tso be rotated therefore also have 
difference cu , - l .  If Lo satisfies equation (1) t>here will be no rotation and the 
difference to be rotated in the following half-round have difference zero. Thus, 
for the plaintext, values satisfying eqiiations (1) and (2) t,he first four half-rounds 
of the differential are always satisfied. Therefore t,he coiiiplexity of this part of 
the algorithm will be lower than for t,he first part o f  the kcy detection algorithm. 

For w = 3 ' 2 ,  as proposed by Rivest, the estirnat,ed number of pairs needed in 
the key detectmion algorithm in ordcr to determine the valucs of the plaintexts 
satisfying equations (1) and (2) are given in the second column of Table 4. In 
the following we show how to decrease the complexity of this algorithm. 

3.2 

In this siibsection we extend the key detection algorithm and give experirnerital 
evidence. In ordcr to det,ect the righl values of t,he 2 x I g ( w )  subkey bits more 

Extensions of the key detcction algorithm 
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efficiently, we shall consider inore general output differences than those in the 
differential attacks of [a] .  In addition, considering these more general differences, 
we can experimentally detect the right values of the subkey bits for up to nine 
rounds of RC5. This is motivated by reasonings which also give some insight into 
the interaction of the three bhsic operations +, @ and << used in the design 
of RC5. 

Our first observat,ion concerns a relation between bit differences and integer 
addition. Recall that  the (constant) key words Si eriter each half-round by integer 
addition. Integer addition of a constant word S to words A and B which only 
differ in few bit,s does not, necessarily lead t,o an increase of bit differences in the 
sums A + S and B + S. This may be illustrated by t,he following special case: 

Suppose the words A and B only differ in  the i-th bit, i < w - 1. It  is shown 
in [a] that  with probability f ,  A + S arid B + S also d i k r  in only the i-th bit. If 
we use the binary representation of words, i.e. il = ~ , , , - 1 2 ” - ~  + . . . + a12 + no,  
and similarly for B and S, the binary representation of t,he sum 2 = A + S rnay 
be obtained by the formulae 

z.I = “j + s,, + uj-1 and (7., = t r j s j  + U j U , - l  + sjuj-1, ( 3 )  

where uj-1 denotes the carry bit and u-1 = 0 (cf. [4]). Using these formulae one 
sees that A + 5’ and B + S with probability diRer in exactly two (conseculive) 
b ih .  

Supposc now the words A and B already differ in exactly two consecutive 
bits. Then again using the formulae (3)  one can see that with probability $, A S S  
and B +S differ in exactly one bit arid that with probability $, A S S  and B +s’ 
differ in exactly two (not necessarily conseci~t~ive) bits. l h u s  with probability 

the words A + S and R + S differ again in at most two bits if A and B 
differ in two consecutive bit,s. Using the formulae (3)  one could discuss relatioris 
between integer addit3ion and bit differences in a more gerieral setting. However 
t,his special case suggests that  addition of the key words in each half-round can 
only moderately contribute to an avalanche effect of bit differences. 

Our second comment coIicerns a relationship between the rotation << and 
bit, differences in RC5. The avalanche of bit differcnces in a half-round is expected 
to be strongest if b i b  differ in the last ly(w) positions of Ri-1, i.e., if different 
Ri-1’~ cause different rotations. All t,he differentials considered in [2] (see also 
‘I’sblc I )  refer to differences which escape this (full) rotation effect. If the words 
differ in only one bit,  the probability for this to happen is F. The more 
bits are different, the more this probability is reduced. However even for a bit 
difference of up t,o eight bits this probability for w = 32 is cvaluated to be a t  
least’ 0.21. Thus, differences with up to eight bits different per word escape the 
full rotation effect with non riegligible probability. 

These reasonings have motivated to coiisider output differerices with Ham- 
ming weights larger than one or t,wo, thus extending the differentials Q4 and Q 5 .  

An estimate for probabilitics of such sequences of differences is no longer obvious. 
But starting with the differences sZ1 or 0“ we rnay expect a nor1 negligible frac- 
tion of sequences of half-rounds for which the initdial bit difference propagates in 
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a way such that the carry effect caused by addition of key words is only moderate 
and where all intermediate differences escape the full rotation eflect. Referring 
to  the descript,ion of a half-round, in such a sit,uation the Hamming weights of 
the differences per word propagate roughly like a Fibonacci sequence, i.e., the 
subsequent Hamming weights of differences in  a half-round may be estimated by 
the sequence 0 ,  1, 1, 2,  3,  5, 8, 13 ,... 

Thus for consecutive numbers m, 71. in t,li is sequencr we may consider output, 
pairs ( L i ,  Ri), (L: ,  R:) whose differences have Hamming weight at most m in 
the left, and at  most ri in the right word. Moreover it turns out to be essential 
oiily to use output pairs where the Ig(w) least significant hits of L; and L,t agree, 
as otherwise the Hamming weight of the difference in the right words tends to be 
random as affected by different rotation amounts. We denote such a difference by 
Om,”, m > 1,  arid we expect, that the probability for such an output difference 
is higher than for the output difierence determined by L?‘. 

For the first part of the subkey detection the difference in plaintexts is 
( O j e w - l ) .  The strategy is to create differeritials for w different valucs of the 
right halves of the plaintexts. Our hypothesis is that for the correct value of the 
lg(w) least significant bits of the right halves of the plaintexts the probability of 
the output difference G”’a,n is maximized. For the second part of the subkey de- 
tection the difference in plaintexts is (ew- I 0) .  The strategy is to use the correct 
values of the right halves of the plaintexts found in the first part of the aJgorithm 
and create differentials for w different values of the left halves of the plaintexts. 
We subsume our experimental results as follows (w = 32). We implemented t,he 
tests searching for the correct values in both the left and right halves of the 
plaintexts for versions with r < 8 and we chose as output, differences i23)E1 f2‘,’, 
and f18115 (thus allowing for one resp. two carry bits in the right words for the 
second and third differences). For versions with 8 and 9 rounds we searched only 
for thc correct values of the right halves of the plaintexts, i.e. doing only thc first 
part of tlie above test. Table 4 lists the number of plaintexts required to obtain 
a 90% success rate for the extended key detection algorithm for versions of RC5 
up to 9 rounds. From these numbers we estimated the complexities of RC5 with 
10, 11, and 12 rounds. As can be seen from the numbers in Table 4, the extended 
key detection algorithm is subsbantially betker than the basic algorithm. 

3.3 Improved Differential Attack 

Once we have detected tlie right values of’ the 2 x ly (w)  subkey bits we will 
perform the differential attack described by Kaliski and Yin “21. The types of 
differentials used in the attacks depend on the number of rounds of R C 5  consid- 
ered. There are three different differentials depending on the value 27- + 1 mod 3 
when r-round RC5 is attacked, as noted in  Table 2 .  ‘l’his stems from the fact 
khat using 0‘ arid fIs in the last two half-rounds enables us to determine the key 
of the last half-round. In the following we will use the same typcs of differentials 
as used by Kaliski-Yin and determine the factors we save in the number of pairs 
needed for a successful differential attack. If  2 v +  1 = 3n7 + 1 the differential has 
nonzero differences in the second and third half-rounds. With the key detections 
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11 
12 

Basic Extended 
% 1 2  (*) 
Pi  (*) 
aY2 ( * )  

p ?32 (*) 

240 237 ( * )  
.)45 242  (**) 

247 (**) 
+ 4 . t  ?5:1 (**) 

.', 2 6 

I 

Table 4. Number of chosen plairtt,cxt,s needed for the basic and the extended key 
detection algorithms for w = 3 2 .  (*) (:onfirmed by experiments. (**) Estimated. 

the probabilities in these half-rounds will be one, and it is straightforward to see 
LliaL the saving fact,or is 2w x 2 w / ( w  - I g ( w ) ) .  If 2r -+ 1 = 37n we save a factor of 
w in the second half-round, but nothing in the lliird half-round, since t,he texts 
to be rotated are equal anyway. Hut if  the subkey S's zU, 0, there will be no ro- 
tation in the fourth half-round. This follows from R3 = ( ( R I B  Rz) << Rz) fS3, 
since it holds that R1 =w R:! =w 0.  Therefore, for one out of 211 keys we save an 
additional fador of 2 w / ( w  - ly( ,ur)) .  If 21. + 1 = 3 m  + 2 t,he texts to be rotmated 
in t,hc second half-round have difference zero, so there is no immediate improve- 
ment here, but, in the third half-round we will save a, factor of 2w/(iu -lg(w)).  If 
,S3 =w 0 we save an additional fact,or of 2ur, for reasons similar as in the previous 
case. Tablc 5 shows the improvement factors of a differential attack for various 
numbers of rounds after the application of the key detection algorithm. We can 

Table 5 .  Impioverneiit f u  to rs  of the differential attacks. 

now estimate the full complexity of our differential a t txks  on RC5. 'I'able G lists 
t8hc results of Kaliski-Yin [2] and the complexities of our improved differential 
attacks. The overall complexit,y of our attack is llie sum of the complexities of 
the extended key detection and the ensuing differential attack. FJxcept for 12- 
round RCX the complexity of the key detection algorithm is rnuch less than for 
lhe differential attack. For 12-round RC5 the complexities of both algorit,hms 
are about 253,  yielding the overall complexity of 254. Kaliski-Yin estimated that 
for 12-round R,C5 8w right, pairs are needed for a s~iccessfd differential atta.ck 
due to random noise [2]. However, since the differential in oiir attack has a much 
higher probabi1it)y we estimate t,hat 22u pairs suffice for this attack also. 
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)i ir differ 
All keys 

017 
_ _ _ -  

I 

1' 

- 
4 
5 
6 
7 
8 
9 
10 
11 
12 - 

tial attacks 
in 32 keys 

', 1 5 

Table 6. Numher o f  chosen plaintexk for tlic differential a.t,t,ac.ks on r-round RC5 with 
32-bit words. (*) Assuming a successful kcy dctection algorit,hm. 

3.4 

Rivest also suggested to usc 16 roiinds for R.C5-64, a 64 bit version of RC5 
[5], i.e. a 128 bit block cipher with keys of variable length. Table 7 lists the 
estimates of our iniproved diffcrent,ial attack on RC5-64. Although an attack 
requiring 28R chosen plaintexts is highly unrealistic, our results show that from 
a theoretical point of view 16 rounds are not sui3cient for RC5-64. If resistance 
against differeiitial attacks is required, a 24 round version of RC5-64 appears to  
be prefera.ble. 

RC5 with 64 bit  words 

Table 7. Number of chosm plaintexts for the differential allacks on r-round RC5 wit,h 
64-bit words, assuming a successful key det,oc:tioii algorithm. 

4 Differentially Weak Keys 

In the following we will show that despite the high coriiplexity of the key schcd- 
tile in RC5 there exist keys that arc weaker than others, in t,he sense that, a, 
different(ia1 attack is more efficient, thari i l l  the average case. We have already 
seen examples of t,his i n  the previous sectmion, but we go on t,o show that there 
are more such weak keys, 
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‘The subkeys of r-round RC5 are &, for i = 0, .., 2r + 1. We consider t,riples 
of subkeys with certain values in thc lg(w) lcast significant bits. Assume that 
{Si,Si+l! S i + z }  =zu {zI,z~, w - z1)  and that Ri-2 =w Ri-1 =u, 0. Then 

Ri ( (  Ri-2 @ l i - 1 )  << F t i - 1 )  + Si 21, always 

Ri+i =to ( (&-I  CD R;) << Ri) + St+l  

=w ((0 izi 21) << 21) + z“ =u, 0 ,  with prob. p z  

Ri+Z ((21 CE 0) << 0) - 21 zW 0,  always 

In t,he case where z1 = 22 = 0, p z  = 1. For lg (7u)  5 z1 5 (w - I g ( w ) )  we can 
assume that  p z  = l / w ,  if Rj-2 and Ri-1 are uniformly random. In that case the 
amount added to z2 in the i+ 1st half-round will be a random value. If 21 < Ig( w )  
or 21 > (w - l g ( w ) )  the values of z1 and z2 are dependent,. E.g. if 21 = 1 then 
((21 << 21) mod w) E {2,3}. Thus, for the above to hold, ( z2  mod w) E {(w - 
a), (zu- 3 ) ) .  ‘Thcse triples of keys will be called di f ferent ia l ly  w e d  keys. Consider 
the three half-round differentmid 0. If the keys arid plaintexts for the three half- 
rounds a.re as above, 0 has probability l / w ~  as opposed to * in the general 
case. This is an improvement of a fador  of‘ about, 4.7 ror 7u = 32. Note tha.t the 
k x t s  to  be rotated in hnlf-round i + 1 have difference zero. And furthermore, 
since Ri+l =w Ri+z =20 0 the above phenomenon can be iterated if also the next 
triple of keys arc differentially weak, i.e. {S;.+3,Si+4,Sif5) =w {y1,y2, -yl} for 
values of yl , yz satisfying similar conditions as z1 , z2 above, and so on for every 
weak triple of keys. 

In the sequel we consider the vcrsioii RC5-32/12/16, that is, w = 32, r = 12,  
with a 128 bit key. A similar analysis can be made for all othcr parameters 
of RC5. For this version a simple count of all triples of keys for which the 
above holds reveals 795 such keys. If the subkeys are uniformly random, such 
a lriple of keys occurs with probability 795/215 2 2-5.37. The subkeys in RC5 
arc riot random, so we iniplernented tests to validate this estimate. For random 
keys we tested whether the triples {{&, .., S,}, (5’6, .., S88), { S g ,  .., 5’11)) were all 
differentmially weak. For ease of implernent,a.tion we tested only for triples where 
5 _< z1 5 27 for z1 as above. We evaluated the key schedule for RC5-32/12/16 
for 10 million random keys. If the subkeys were really random one would expwt 
the three triples to  he w m k  for 11 3 of these keys. Our irriplenicntation found 116 
keys to  be weak thus confirming the estimate. 

Consider keys for which the set {{&, S4, Ss}> ..., {Si3+3kq S4+3k ,  S;+3k}}  for 
k = 0,1 ,  . . .  are differentially weak triples of subkeys. We will use the key detection 
algorit,hm with the differential ( e u ! - l ,  0) to detect the values of the plaintexts 
yielding no rotations in the second and third half-rounds. We caririot split our 
algorithm into t,wo parts as in  Sect,. 3.1, sirice that, requires the use of two different 
differentials, and as can he seen, a triple of diflerentially weak keys is weak 
relatively t o  orie specific differential. Thus in thc considered case, where 27- + 
1 = 3 tn  + 1, we have to look for t,he correct, values of the two plaintext halves 
sirnul taneously. 

We cannot test, t,liis version of RC5, since it requires the computation of 
too many ciphertext pairs. Howcver, wc’ (rail simulate the basic key deteclion 
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algorithm. We choose a key detection algorithm with small Harnming weights, 
f12)3. This may not be the optimal choice, but it, enables us to estimate the 
number of wrong pairs, which will be small with the chosen Hamming weights. 
We count the pairs for which the weights in the left and right halves of' the 
ciphertext pairs are 2 and 3 ,  respectively, and for which the 5 least significants of 
the difference in the left halves is zero. Otherwise there will be different rotations 
in  the pair of the last half-roiind and the weights in the right halves will be 
random. If we assume that for the pairs not satisfying (1) and (2) the resultant 
difference in the ciphertexts will look random, wrong pairs will be accepted as a 

right pair with probability 264 
(?)x(32) 2-43 

As an example, consider t,he set of weak triples of keys where k = 1, i.e. there 
are 2 consecutive triples of weak keys. For the pairs satisfying (1) and (2) we 
need w2 = 2" pairs t,o get a right pair after the 8th half-round. We implemented 
tcsts to  estimate how many right pairs are needed after the 8th half-round to  
get a right pair after the 2r + 1 = 25th half-round. We chose random keys arid 
set the 5 least significant bits of S 3 ,  . . . ,  5'8 t,o zeros. By using plaintexts yielding 
zero rotations in the second and third half-rounds we could simulate a right pair 
after the 8th half-round using only one pair of plaintexts. Using 22g pairs in 20 
tests we obtained at least one right pair after the 25th half-round in 70% of 
the cases. In practice m e  woulcl need to do the tests for all 2'' possible values 
of the 5 least significant bits of t,he plaintext halves. For each of these values 
we will need 2" x 229 = 2'' pairs to get a right pair, totally 249 pairs. For 
a pair of values of the plaintexts not satisfying ( I )  and ( 2 )  we will get about 
239 

about 8 times with a high probability unique values are suggested in the key 
detection algorithm using a total of .L5' plaintexts. Subsequently the differential 
attack with increased efficiency is performed. In Table 8 we list the complexities 
of the key detection algorithm and of the differential attacks for various groups 
of weak keys with up to six triples of differentially weak keys. For the keys with 
one triple of weak keys, the complexity of this attack will be higher than for 
the attack outlined in the previous section, so we did not implement that test. 
The estimated plaintexts needed to get at least one right pair for the plaintexts 
satisfying (1) and (2) in the key detection was 250, 24y, 247, 246, and 244 plaintexts 

By repeating the key detection algorithm a small number of times we expect all 
wrong pairs to  be eliminated. Finally we note that estimated complexity of the 
kcy detection for the 2-10.7 fractions of the keys is the same as for the estimated 
Complexity of the key detection for all keys from Sect. 3.2. This sterns from the 
fact that the key detection here cannot b e  split into two parts. However, for these 
keys the ensuing differential attack has a lower complexity than in the general 
case. We note that similar weak keys will occur in  all versions of RC5. For RC5 
with 15 rounds, the complexity of a differential at,tack, assuming a successful key 
detection algorithm, is estirriakd to 2'" plaiiitexh for one in every 2".' keys. 
For RC5 with 18 rounds the numbers are 265 plaint,cxts for one in every 253 keys. 

- 243 N 2-4 wrong pairs with the right Hamming weights. By repeating this test 

> > I fractions of the keys, respectively. for the 2-10.7 2-16.0 2-21.5 2-26.8 and 2 - 3 2 . 2  



Fraction of keg 

.,-5.1 

.,-I0 7 

. . .  
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;ey detection 
9 5 3  

unknown 
I 

25” 
( * )  

251 ( * )  
243  ( * )  
2‘8  ( * )  
2:‘:’ i*i 

. . .  

Iifferential at,tack 

2-14 

2’0 

. . .  I 
Table 8. Number of piairLtrxts for t he  keg detection and thc differential attack on RC5 
with 12 rounds depending on the key. ( * )  Est>irnated by experiments. 

5 Concluding remarks 

W e  have shown that the known diff’crcntial attacks on RC5 are not, optimal. 
By exploiting the data-dependent rotations in H.C5 in the first few rounds, we 
were able to improve the known nt,ta.cks by a factor up to 512. Also, we showed 
that there are many weak keys for RC5, for which the differential attacks can 
be further improved. ‘The first part of our improved attack finds the values of 
the plaintexts for which the differentials have a higher probability than for ot,her 
values of the plaintexts. Due to a coriiparatively small avalanche effect per half- 
round in RC5, we were able to detect t,hese plaintexts by measuring the Hamming 
weights i n  ciphertcxt differences. A similar approach may be applicable also in 
other iterated ciphers, provided there is only a sinall avalanche effect of bit’ 
differences in each round. 
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