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Abstract. Meet-in-the-middle aaacks, where problems and the secrets being sought are 
decomposed into two pieces, have many applications in cryptanalysis. A well-known 
such attack on double-DES requires 256 time and memory; a naive key search would take 
211' time. However, when the attacker is limited to a practical amount of memory, the 
time savings are much less dramatic. For n the cardinality of the space that each half of 
the secret is chosen from (n=256 for double-DES), and w the number of words of memory 
available for an attack, a technique based on parallel collision search is described which 
requires o ( m w )  times fewer operations and O ( n / w )  times fewer memory accexses 
than previous approaches to meet-in-the-middle attacks. For the example of double-DES, 
an attacker with 16 Gbytes of memory could recover a pair of DES keys in a known- 
plaintext attack with 570 times fewer encryptions and 3.7~106 times fewer memory 
accesses compared to previous techniques using the same amount of memory. 

Key words. Meet-in-the-middle attack, parallel collision search, aptanalysis, DES, low 
Hamming weight exponents. 

1. Introduction 

Many cryptographic techniques are susceptible to meet-in-the-middle attacks. Two well- 
known examples are double-DES encryption [ S ]  and discrete logarithms with limited 
Hamming weight exponents [8]. A third example is an attack on a scheme for using an 
untrusted server to perform most of the work in an RSA computation [2]. A reduction in 
the run-time of meet-in-the-middle attacks is thus of wide-ranging interest. Such a 
reduction is possible by solving meet-in-the-middle problems using an algorithm based on 
collision search, and is the subject of this note. 

Parallel collision search [ 131 based on Pollard's rho-methods [ l l ,  121, was introduced as a 
means of efficiently parallelizing search problems. By formulating a meet-in-the-middle 
attack as a collision search problem, the run-time of the attack may be decreased. These 
ideas are explored in the remainder of this papa, organized as follows. In Section 2, a 
general meet-in-the-middle attack is described and formulated as a collision search 
problem, which is solved in Section 3 using parallel collision search. Section 4 compares 
the attack time of the collision search based technique to previous meet-in-the-middle 
methods. Section 5 concludes the paper. 

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 '96, LNCS 1109, pp. 229-236, 1996. 
0 Springer-Verlag Berlin Heidelberg 1996 
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2. Forniulating Meet-in-the-Middle Attacks as Collision Search Problems 

A general meet-in-the-middle attack involves two functions,fi andf2, for which there are 
two inputs, a and b, such thatfi(a) =f2(b). The objective is to find a and b. There may be 
other pairs of inputs which also satisfy this equation, but typically only one particular pair 
is the solution being sought. We begin by showing how one would constructfi andf2 for 
three example cryptanalytic problems. Then a single functionfsuitable for a variant of 
parallel collision search is constructed fromfi andfz. 

The fist  example is a mode of DES [3] called double-DES where data is DES-encrypted 
twice with two independent keys (kl, kd. Diffie and Hellman [5] showed that this is 
susceptible to a meet-in-the-middle attack which finds kl and IQ. Suppose that we are 
given a plaintext-ciphertext pair (P, C )  such that P maps to C under double encryption 
with the unknown pair of keys ( k l ,  k,J. In this case, function fi is encryption of the 
constant P with a DES key, andf2 is decryption of the constant C with a DES key. Note 
that fi(kl) =f2(ki); here P and C are implicit constants in fi and fi (see Section 4 for a 
discussion of previous methods for recovering double-DES keys usingfl and f2>. There 
may be other false key pairs which map P to C, but only one pair of keys is correct. One 
additional plaintext-ciphertext pair generally suffices to uniquely determine the correct 
pair of keys. 

The second example is the discrete logarithm problem in the special case where exponents 
have low Hamming weight. Given a generator a of a cyclic group and an element y = a" 
where x has bitlength rn and Hamming weight t ,  we wish to find x. This problem can be 
solved with a meet-in-the-middle attack (e.g., see Heiman [8] or Pfitzmann and Waidner 
[lo]). Observe that all possible values of x can be written as the com of two m-bit values, 
each with Hamming weight r/2 (assume t is even). Let n = ( ty2) and let h map integers in 
the interval [O, n) to rn-bit values with Hamming weight t/2. Then usingfi(i) = ah(i), and 
f207 = y/ahO (= there exist inputs a and b such thatfi(a) =f2(b). Finding inputs 
a and b (e.g., by a meet-in-the-middle attack) gives x because then x = h(a) + h(b). 
Coppersmith observed that this attack could be made more efficient by trying (until 
success) to partition the exponent bits into two groups of m / 2  bits each with Hamming 
weight t / 2 .  By the Mean Value Theorem there exists a set of m/2 contiguous bits of the 
exponent with Hamming weight exactly r/2. Therefore, the attack can be completed in at 
most m/2 trials with II = (7;;) so that each trial takes less time than the above version. 
This approach is guaranteed to give a solution in a fixed period of time, but we note that 
the expected number of trials can be reduced to significantly less than m / 2  as follows. If 
one randomly partitions the bits in  the exponent into two sets of size m/2, the probability 

executing independent h a t s  which partition the exponent bits at random, one expects to 
complete the discrete logarithm in (;I/ ( ~ / / 2 2 ) ~  = Jm ( 1 - t / m )  / 2  trials. 

The last example is a scheme for using an untrusted server to speed up RSA computations 
on a smart card [21. In this scheme, an RSA private exponent is represented as 

that each group will have Hamming weight exactly r/2 is ( m / 2  r ,2)  2 / (7). Therefore, by 
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d = X i  z ,  aidi. where di is public and ai is a small secret, for i=l,. . ..m. To compute xd, the 
untrusted server computes xdi for i= 1,. . . .m and the smart card computes ni T (8)"'. L e t  
A=(al,. . .,a,,& B=(ad2,,,. . .,a,,,), D=(dl,. . .,d,,,n), and E=(C~&~+~, .  . .,d,,,). Then 
d = A.D + B-E. For RSA, h = hed mod n, where e is the RSA public exponent. n is the 
RSA modulus, and h is some positive integer less than n. This can be rewritten as 

andf2(x) = h'-etxx'E) mod n givesfi(A) =f2(B), which allows a meet-in-the-middle attack. 

Returning to discussion of the general attack, f, and f 2  must have the same range, but need 
not have the same domain. It is not difficult to handle different domains, but to simplify 
the discussion below, we assume the domains are equal (as in all examples above). The 
problem is to take fi: D -+ R and fi: D + R and find pairs of inputs, i and j ,  such that 
fi(i) =f20 until the correct pair of inputs (a and b) is found. If many pairs of inputs give 
a collision betweenfl andfl, it may be necessary to have a test to determine whether the 
"correct" pair (a and b) has been found. In the case of double-DES. this can be done by 
verifying the candidate key pair using a second plaintext-ciphertext pair. 

h = he(A'D + B.E) mod n or he(A'D) mod n = h1-@'B mod n. Using fi(x) = he(xD) mod n 

To use parallel collision search, we require a single functionfsuch that (1) its domain and 
range are equal; and (2) there are two particular inputs tofwhich give the same output and 
which, if found, leads to a solution to the problem at hand. Let g: R -+ Dx{ 1,2) be a 
function which maps an element of the range offi (andf2) to an element of D along with a 
bit which is used to select betweenfi and fi. We assume here that lRl2 2101. Now define 
f: D x (  1.2) + D x (  1,2) asflx, i) = gcf;(x)), for i=1,2. Becausefl(a) =f2(b), it follows that 
g(fi(a)) = g(j.(b)) andAa, 1) =f(b, 2); this is the collision which is sought. 

3. Solving the Collision Search Problem 

In this section we show how to use parallel collision search to solve the collision problem 
constructed from the general meet-in-the-middle attack in Section 2. An important point 
about this use of parallel collision search in the three applications given earlier is that there 
are many pairs i.j such that f ( i ,  1) =fi. 2), but among them is a unique collision pair, 
fla. 1) =Ab, 2) solving the meet-in-the-middle problem Typically, a very large number of 
collisions in f must be found in order to find the one particular meaningful collision that is 
sought. which we call the golden collision. For the example of double-DES, the collision 
sought isfTk1, 1) =fib, 2) for the correct key pair (k,, 4. In contrast, for the hashing and 
discrete logarithm' applications of parallel collision search considered by van Oorschot 
and Wiener [13], there were many collisions which solved the original problem and 
typically a useful collision was found after only a small number of collisions. 

For reference, we briefly describe parallel collision search before considering how it 
should be modified to find a golden collision. Given a function f: S + S, choose a 

This previous paper mnsidere.d the general problem of finding a discrete logarithm in a cyclic group as 
opposed to the Section 2 example of the special case of exponents with restricted Hamming weight- 
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distinguishing property' which distinguishes a proportion 8 of the elements of S (e.g.. 
6 = 2-l' when elements with 10 leading zero bits are distinguished). Choose an element 
xo E S and produce the sequence (trail) of points xi for i = 1.2, ... until a 
distinguished point xd is reached. Store the triple (xo, xd, d )  in a table. Repeat this process 
for many xo Values. The occurrence in the memory of two triples with the same xd Value 
indicates their trails have collided. By stepping the trails forward again from their 
respective xo values, one can find two inputs, u and u, tofsuch thatflu) =f(v). Let N =  Ifl. 
One expects to perform -2 iterations of f (possibly spread across multiple 
processors) before one trail collides with another [13]. As the available memory fills, the 
probability of finding a collision grows and the number of collisions found grows 
quadratically. Finding kcollisions is expected to take , . / m 2  iterations off [13]. 

Solving the meet-in-the-middle problem requires finding the golden collision out of the 
many available collisions. Because there are (;) = N 2 / 2  pairs of inputs and the 
probability that both inputs are mapped by f to the same output is 1 in N (iff behaves 
randomly), one expects that there are about N / 2  collisions for a given random functionf. 

One may incorrectly reason that collisions will be found at random (with replacement) and 
that, on average, about k = N / 2  collisions are required before locating the golden 
collision, requiring . . / m 2  = N / 2  iterations off. However, this faulty analysis 
ignores two important facts. The first is that although the expected time between detected 
collisions drops as the memory fills, the expected time required to locate each detected 
collision by stepping the two trails forward to the collision point does not decrease. The 
second is that, generally, not all collisions are equally likely to occur; thus some collisions 
will be found many times while others will never be found. 

To understand this latter point, consider a directed graph whose vertices are the elements 
of the set S, with a directed edge from each vertex x to the vertex corresponding to element 
Ax). A collision is a pair of elements whose edges end at a common third element. The 
likelihood that a particular collision will be detected is a function of the sizes of the 
predecessor trees of the pair of elements involved in the collision. There is considerable 
variation in the sizes of predecessor trees in random mappings; see majolet and Odlyzko 
[7]. In the worst case, the elements a and b involved in the golden collision may have no 
predecessors at all. The probability of this occurring is about 1/e2 = 14%. In this case, 
the golden collision will not be detected until both a and b are selected as starting points 
for trails and both are in memory at the same time. 

A solution to these complications in practice is to limit the number of collisions sought 
using a particular function f. If the golden collision is not found after a fixed period of 
time, construct a new version offknown to contain a golden collision andrepeat. Because 

?he idea of using a distinguishing property was atrributed to Rivest by Denning [4, p.100) as a means of 
improving Hellman's time-memory trade-off for attacking block ciphers 191. 
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f was constructed with a mapping g, one could simply choose a new mapping g to make a 
new version off. 

It remains to be determined what proportion 8 of points to distinguish, how long to 
continue using each version of J and how long it is expected to take to find the golden 
collision. Another important statistic in highly parallelized attacks is the number of 
memory accesses required. Proposition 1 gives an empirical result for these parameters. 

Proposition 1 (heuristic): Let n be the cardinality of the domain of functions fi and f2 

above, so that the cardinality of the domain and range off is N = 2n. For a memory which 
can hold w triples, the (conjectured) optimum proportion of distinguished points is 
8 = 2.25 m N ,  and one should generate about low trails per version off. The expected 
number of iterations off required to complete a meet-in-the-rniddle attack using these 
parameters is 2.5N3f2/w”2 = 7n3f2/w1n, and the expected number of memory accesses 
is 4.5N = 9n. 

Justification: Let us begin with a simple, but flawed, run-time analysis. If the memory is 
full with w distinguished points, then the total number of points on the trails leading to 
those distinguished points is about w/8. For each trail point generated with f in the space 
of sizeN, the probability of producing a point on one of the existing trails is w/(NB). The 
required number of generated points per collision found is then NWw. To locate a 
collision, each trail involved must be retraced from its start to the colliding point requiring 
a total of 2/0 steps on average. The total cost per collision detected is (NWw) + (218) 
steps. This is minimized at steps when 0 = Jm. The expected number of 
collisions generated before the golden collision is found is N / 2  giving a total run-time of 
( N / 2 )  -/= = function evaluations. 

The flaws in this analysis are as follows. The memory for holding distinguished points is 
empty at the start of the algorithm, and thus not full all of the time. Not all collisions are 
equally likely to occur. Not all distinguished points in the memory are equally likely to 
produce a collision. However, we may hypothesize from the flawed analysis that 
8 = c m N  is the optimum proportion for some constant c, and that the overall run-time 
is O ( m )  function evaluations. This hypothesis was confirmed empirically. For 
various values of 8, w, and N, simulations were performed to determine the number of 
distinct collisions found when using a version off for various lengths of time. (These 
simulations were for the general technique as opposed to the specific examples of 
Section 2.) For multiple simulations with the same parameters (but different random 
input), the results showed very little variation. The number of evaluations offper distinct 
collision found was a minimum for 8 = 2 . 2 5 m N ,  and l o w  trails generated per version 
off Because low triples are written to a memory which can hold only w triples, after h e  
memory fills up, triples are simply overwritten. Using the parameters above in 
simulations, for 21° 5 w I N / 2 l o  the expected run-time to find the golden collision was 
found to be 2.5N3f2/w”2 iterations of J and the expected number of accesses to the 
memory was 4.5N. 0 
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For double-DES, n is the size of the DES key space (n = 256). For limited Hamming 
weight exponents, n = ( for the preliminary version, and n = (7;;) for the improved 
version. For the case of speeding up RSA computations using an untrusted server, n is the 
size of the space that the half-secret A (or B)  is chosen from. Typical values of w depend 
on available memory. (Table 1 in Section 4 considers attacking double-DES with values 
of w implying memory size ranging from 2” to 244 bytes.) 

4. Comparison to Previous Techniques 

A simple approach to performing a meet-in-the-middle attack proceeds as follows. 
Computef,(x) for all x E D and store the (fi(x), x )  pairs in a table (using standard hashing 
on thefi(x) values to allow lookup in constant time). For each y E D, computefi(y) and 
look it up in the table. If there is a match, then the candidate pair of inputs x and y are 
tested to see if they are the correct inputs (a and b). This method requires, on average, 
1.51 function evaluations and memory for n pairs, where n = IDI. For double-DES, this is 
(1.5)256 DES operations and 256 stored pairs. Obviously, this is not a practical amount of 
memory. Suppose that available memory can hold only w pairs (fl(x), x). The attack can 
be modified as described by Even and Goldreich [6] (Amirazizi and Hellman [ l l  also 
consider this problem). Partition the space D into subsets of size w. For each subset, 
compute and store the pairs (fi(x), x) for all x in this subset. Then for each y E D, 
computef2(y) and look it up. The expected run-time for this memory-limited version of 
the attack is (1/2)(n/w)(w + n) = n2/(2w) function evaluations. A memory access is 
required after each function evaluation, and so the expected number of memory accesses 
is also about n2/(2w). 

Comparing the run-time of this previous technique to 7n3/2/w1/2 function iterations and 
9n memory accesses (Proposition l), the parallel collision search method of performing a 
meet-in-themiddle attack requires 0.07 times fewer function evaluations and 
n/(18w) times fewer memory accesses. 

For concreteness. consider attacking double-DES where n=2s6 and the amount of memory 
needed for each triple in memory is 16 bytes. A comparison for Merent memory Sizes is 
shown in Table 1. 

Table 1. Example Improvement of Parallel Collision Search Method over Previous Techniques 

Memory Size Ratio of Encryptions Ratio of Memory Accesses 

previous techniques I new method previous techniques I new method 

~ 2 ~ ’  (2% bytes) 

w=2= (229 bytes) 

d35 (239 bytes) 

291 I 276.8 = 18000 

1 274.3 = 3200 

276 I 269.3 = 100 

29’ I 259.2 = 3.8~10~ 

286 I 259.2 = 1.2~108 

276 I 259.2 = I.DX+ 

~ 2 ~ ’  (2% bytes) 281 I 271.8 = 570 281 I 259.2 = 3 . 1 ~ 1 0 ~  

~ 2 ~ ’  (2M bges) 271 I 266.8 = 18 211 1 2s9.2 = 3 . 6 ~ 1 0 ~  
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When a small number of processors is used, the total run-time is determined by the 
number of encryptions required as per Proposition 1. However, for a high degree of 
parallelkm, the main limitation becomes accessing the memory which is common to all 
processors (particularly for the previous techniques which require a memory access after 
every function evaluation). Optimum performance for a given investment requires a 
balance between the memory size and number of processors; for larger memories, more 
processors should be used. Finding such an optimum for a given budget and fixed costs of 
processors, memory, etc., requires a detailed engineering design tailored for a particular 
problem, and is beyond the scope of the present paper. 

For smaller memories, the amount of improvement is determined by the number of 
encryptions required; for large memories, the amount of improvement is determined by 
the number of memory accesses required. For the case where ~ 2 ~ ’  (or 16 Gbytes, which 
is considerable for an amateur, but not for a determined effort), the new method will be 
somewhere between 570 and 3 . 7 ~ 1 0 ~  times faster depending upon the type of processors 
and memory used to mount the attack. 

5. Conclusion 

Meet-in-the-middle attacks involve splitting an operation into two halves with a different 
secret quantity involved in each half of the operation. If each secret is chosen from a set 

of size n, and w memory elements are available to mount an attack, then a parallel 
collision search based method can be used to complete the attack in an expected heuristic 
time of 7n3’2/w’n operations. This is 0.07- times faster than previous techniques 
for meet-in-the-middle attacks. For the illustrative case of double-DES and an attacker 
with available memory for + d 3 0  entries, the new method is between three and six orders 
of magnitude faster. 
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