
How to Protect DES Against
Exhaustive Key Search

Joe Kilian’ and Phillip Rogaway2

NEC Research Institute. 4 Independence Way, Princeton, N J 08540, USA.

Department of Computer Scienre., University of California at, Davis, Davis,
E-mail: joeQresearch.nj .nec.com

C 4 95616, USA. E-mail: rogawayQcs . ucdavis . edu

Abst rac t . Thc block cipher DESX is tiefined by DESXk.k l .ka (~) =

k2 a) DESk(51 @ P) , where cfi denotes bitwise exclusive-or. This con-
struction was first suggested by R.on Rivest as a computationally-cheap
way to protect DES against exhaustive key-search attacks. This pa-
per proves, in a formal model, that the DESX coIistruction is sound.
We show that, when F is an idealized block cipher, FXk.kl.ka(x) =
52 cfi Fb(5l @ x) is substantially more resistant to key search thaii is
F . Iri fact, our analysis says that FX has an effective key length of at
least IE. + TI - 1 - lg m bits, where IF, is t,he key length of F , n is the block
Icngth, arid ‘rrL bounds the numbpr of (P , F X K (P)) pairs the adversary
can obtain.

1 Introduction

The susceptibility of DES to exhaustive key search has been a concern and a
complaint sirice the cipher wa.s first madc public; see, for example, [6]. Careful
analysis by Wiener [15] indicates that, the problem has now escalated to t,he
point that for $1 million onc could build a DES key search engine which, given a
(plaintext, ciphertext,) pair, would rccovcr the kcy in about 3.5 expected hours.

Many people have suggested overcoming the tlireat of exhaustive key search
by using DES in some appropriate way. One approach is to construct a DES-
based block cipher which employs a longer key. Triple DES (typically in “EDE
mode”) is the best-known algorithm in this vein. It seems to be quite secure,
hit efficiency considerations make t,riple DES a, rather painful way to solve the
exhaustive key-search problem. This paper analyses a Iniich cheaper alternative.

We recall an e1ega.nt suggestion of Ron Itivest [ll]. He proposes an extension
of DES, called DESX, defined in the following simple manner:

DESXk k l . k 2 (~) = k 2 (!I DESn,(kl & 2)

The key K = k . k l . k2 (here . denotes coricatenation) is now 56 + 64 + 64 =
184 bits. Compatibility with DES is maintained by setting k l = k2 = 064.
Existing UES CSC hardware can be gainfully employed by first masking the
plaintext, computing the DES CBC, and then masking the ciphertext. Most

N. Koblitz (Ed.): Advances in Cryptology - CRYPT0 ’96, LNCS 1109, pp. 252-267, 1996
0 Spnnger-Verlag Berlin Heidelberg 1996

253

significantly, the computational cost has hardly been increased over ordinary
DES. Yet, somehow, DESX seems 110 longer susceptible to brute-force attacks
of anything near 256 time.

It is unintuitive that one should be a.ble t,o substantially increase the difficulty
of key search by something as simple as a couple of X0R.s. Yet working with the
DESX definition for a while will convince the reader that undoing their effect is
not so easy.

Does the “DESX trick” really work to improve the strength of DES against
exhaustive key search? This papcr will give a strong positive result showing th;t.t,
it does.

1.1 Our model

Key-search strategies disregard the algebraic or cryptanalytic specifics of a cipher
and treat it as a black-box transformation, instead. Key-search strategies can be
quite sophisticated; recent, work by [14] is an example. We want a model generous
enough to permit sophisticated key-search strategies, but, restricted enough to
permit only strategies which should be regarded as key search. We a.ccomplish
this as follows.

Let K be the key length for a block cipher and let ‘rb be its block length. We
model an ideal block cipher with these parameters as a random map F : {0,1}” x
{0,1)” + (0 , l) ” subject to the constraint that, for every key k E (0, l}”, F (k , .)
is a permutation on (0, A key-search adversary is an algorithm which is given
the following two oracles: one which, on input (k , ~) , returns F (k , x) ; and one
which, on input (k , y), returns F-’ (k , y) . T h r last expression names the unique
point x such that F (k , s) = y.

A key-search adversary tries to perform some cryptanalytic task which de-
pends on F . She can perform complicated and subtle computations, use as much
time or space as she sees fit, but her only access to F is via the F/F-’ oracles.
We look at the adversary’s rate of success in performing her cryptanalytic task
as a fiinctiori of the amount, of computation she performs.

To apply t,he above to DESX, we begin by gencralizing the DESX construc-
tion. Given any block cipher F we can define FX : (0, x (0, 1)” -+ (0, l In
by setting FX(k . k l . k2 , x) = k2 @ F (k , k l @ x). For both F and FX we shall
sometimes write their first argument, (the kev) as a subscript, F k (z) and FXK(X),
where K = k.kl.k.2.

To investigate the strength of FX against, key search we consider a key-
search adversary A with oracles for F and F-’, and determine how well A can
play the following “FX-or-7r?” game: given one of two types of “encryption
oracles” -an oracle which computes FXr<(.) , for K a random string of length
K, + 271, or else an oracle which computes T (.) , for T (.) : (0, l}” + (0, a
random permutatioii- guess which type of encryption oracle you have. The
FX construction “works” if the resoiirces which are necessary to do a good job
in winning the above game &I-e substantially greater than the resources which
are sufficient to break F .

254

1.2 Our main result

We show that, if key-search adversary A can make only a “reasonable” nurn-
ber to queries to her encryption oracle, then A must, ask an excessive number of
F / F - l queries in the FX-or-r? game, and therefore A must run in an excessively
long time. More specifically, we prove the following. Let m bound the number
of (x, F x ~ (z)) pairs which the adversary can obtain. (This number is usually
under the control of the security architect,, not the adversary.) Suppose the ad-
vcrsary asks a total of at most t queries to her F / F 1 oracles. (This number is
usually under the control of the adversary, not the security architect.) Then the
adversary’s advantage in winning the FX-or-i.r? game is at rnost mt . 2-n-nS1.
In other words, the adversary’s advantage is at most t . 2-K-n+1+’gm, so the
effective key length of FX, with respect to key search, is at least K. + n - 1 - lg n~
bits.

To understand the above formula, let’s think of a block cipher F with 55-bit
keys and a 64-bit block size.3 Key-search adversary A is going to attack F X .
Suppose A can obtain up to m = 2”’ blocks of enciphered data. Suppose A runs
in time at rnost T . Then A has advantage of at most T . 2-s5p64+30f1 = T 2Ts8
of just knowing if the enciphered data really was produced by F X , and not, a
random permutation.

Because our main result, indicates the infeasibility of key search even when we
ignore the adversary’s space requirement , this “omission” only strengthens what
we are saying. Similarly, “good” adversaries may, necessarily, use an amount of
time, T , which far exceeds their number of F/F-’ queries, t. So focusing on the
query complexity makes our results all the more meaningful.

1.3 Related work

Even and Mansour [7] construct, a block cipher PX : {0,1}2” x (0 , l)” +
{O,l}’L from a random permutation P : { O , l } n -+ {O, l}’L by PXkl .k2(x) =
k2 @ P (k 1 f6 x). Clearly this is a special case of the FX construction, where
K, = 0. Whilc their motivation for looking at PX was quite different from our
reasons to investigate FX, our model and methods are, in fact, quite similar.
Our main result can be seen as a natural extension of their work.

The modeling of a block cipher by a family of random permutations has its
roots in [13].

Ron Rivest, had invented DESX by May of 1984, but the scheme was never
described in any conference or journal paper 1111. It was implemented within
products of RSA Data Security, In(:., and it is described in the documentation
for these products [12]. DESX has also been described at conferences organized
by RSA DSI, including [16].

Encryption methods similar to DESX have been invented independently.
Blaze [3] describes a DES mode of operation in which the i th block of plain-
text, zi, is ericrypt,ed using 112-bit key k .k l hy E k . k l (xi) = si @ DESk(si @ x),
’ See the first reInark at the end of Section 3 if you’re thinking the first number is

probably a typo.

255

where sls2 . . . is a stream of bits generated from k l by, say, s i = DES,'I ((O G 4) .

Here DES(i) denotes the i-th iterate of DES.
Many authors have suggested methods to increase the strength of DES by

changing its internal structure. Biham and Biryukov [I] give ways to modify DES
to use key-dependent S-boxes. Their suggestions improve the cipher's strength
against differential, linear, and improved Davies' attacks, as well as exhaustive
key search. Ciphers constructed using their ideas can exploit existing hardware
exactly in those cases where the hardware allows the user to substitute his own
S-boxes in place of the standard ones.

1.4 Discussion

UNDERSTANDING OUR. RESULT. It may be hard to understand the ramifications
of our main theorem, thinking it means more or less than it does. Let us try to
clarify one important point right away.

DES, of course, is not a family of random permutations, and we can not con-
clude from our theorem that there does not exist, a reasonable machine M which
breaks DESX in say, 260 steps, given just a handful of (plaintext, ciphertext)
pairs. What, we can say is that, such a machine would have to exploit structural
properties of DES; it couldn't get away with treating DES as a black-box trans-
formation. This contrasts with the sort of machines which have been suggested
in the past for doing brute-force attack: they do treat the underlying cipher as
a black-box transformation.

We note that while remarkable theoretical progress has been made on the
linear and differential cryptanalysis of DES (see [2, lo]), thus far these attacks
require an impractically large number of plaintext-ciphertext pairs. To date,
the only published practical attacks against DES remain of the key-search vari-
ety. The DESX construction was not intended to improve the strength of DES
against differential or linear attack, or any other attack which exploits structural
properties of DES.

gorithmically trivial it can be to get, extra bits of strength against exhaustive
key-search attack. The impact, of these extra bits can be especially dramatic
when the key length of the block cipher had been intentionally made short.

Consider, say, a block cipher F with a 40-bit key and a 64-bit plaintext. (Some
products using such block ciphers has been granted U S . export approval.) With
these parameters, our results guarantee an effective key length (with respect to
exhaustive key search) of at least 40 + 64 - 1 - lg m = 103 - 1g m bits. Under
the reasonable assumption that m < 230, say, the 40-bit block cipher has been
modified, with two XORs, to a new block cipher which needs at least 273-time
for key exhaustive key search.

Allowing weak cryptography to be exported and strong cryptography not to
be is a policy which can only make sense when it is impractical, for the given
system, to replace the weak mechanism by a strong one. Our results indicate
that this impracticality must cover algorithmic changes which are part,icularly
trivial.

ON EXPORT CONTROJS TIED TO KEY J,ENG'I'H. Our rcsults indicate how al-

256

1.5 Out l ine of the paper

In Section 2 we define some basic: notation and define what comprises a suc-
cessful attack in our iriodel. In Section 3 we s t a k and prove our main theorem
on the security of the DESX construction. Section 4 is a discussion. Section 5
demonstrates t,hat the analysis underlying our main result is tight. In Section 6
we give some conclusions and open questions.

2 Preliminaries

Let, F : (0, l}" x (0 , l) " -+ (0, l}" be ii block cipher. This means that for every
k E (0, l}", F (k , .) is a permutation on {U, l},. We interchangeably write Fk(x)
and F (k , z).

Given a block cipher F as above, the block cipher F - : (0, l}k x (0, l}" +
{ O , l } % is defined from F by F - ' (k , v) being the unique point x such that
F (k) x) = y. We interchangeably write +'L1(p) and F ' - - l (k ,y) .

Given hlock cipher F as above, the block cipher FX : (0, 1}KE+2n x (0,l)" +
(0, l}" is defined from F according t,o FX(K,z) = k2 @ F k (k 1 @ x), where
K = k.k l .k2 , Jk) = R and J k l l = Jk2) = 1 1 . We interchangeably write FXjy(z)
and FX(K,x).

Given a partially defined function F from a subset of {0,1}" to a subset of
{ O , 1)" wc denote thc domain and range of F by Dom(F) and Range(F), and
define Dom(F) = (0, l}" - Dom(F) and R.ange(F) = (0, l}" - Range(F).

__

Let Fn denote the space of all (a ") ! permutations on 1%-bits.

Definition 1. A key-search adtiewary is an algorithm A with access to three
oracles, E(.) , F.(.) and F.-'(.). Thus, A may make queries of the form E t P) ,
Fk(x) or FC' (y) . An (m,? t) key-search adversary is a key-search adversary that
makes rn queries to the E (-) oracle and a total of t queries to the F.(.) and
F.-' (.) oracles.

Note that A supplies the valiie of k as part of its queries to the F. (.) and Frl (.)
oracles.

We are now ready to define. what it means for a key-search adversary A
to have an attack of a certain specified effectivcness. We begin by choosing a.
random block cipher F having &bit keys and n-bit blocks. This means that
we select a random permut,ation Fk & P, for each n-bit key k . Thus each Fk
is chosen indeperidently of each F k (, for k # k ' . Then we give A t,hree oracles.
One oracle computes F. (.). Another oracle computes F.-' (.). The final oracle is
one of the following: reaZ-e,ncry~tl,on-based-on-F: the oracle computes FX jy (.)
for a random key K of 6 + 2n. bits; ideal-encryption,-independent-of-F: the oracle
computes n(.), for a random permutation 7r E 'PTt. The adversary's job is to
guess which type of encryption oracle she has. The adversary's advantage is her
probabilit,y of guessing right, normalized so that 0 indicates a worthless strategy
and 1 indicates a perfect, stmtegy.

257

Definition2. Let I C , ~ 2 0 he iiitegers, and let t 2 0 be a real number. Key-
search adversary A is said to €-break t,he FX-scheme with parameters R , 72 if

A d v ~ '%if Pr for each k E (0 , l) " do Fk c P,, od; K 6 (0, l}Kit272 :

ll -
A F X " (' i ' I ? . [.) , F,-".) ~

for each k E (0 , l)" do Fh & P,, od; 7r 4 'PIL :

A"")' F . (.) . F ; - l (.) __

[

- l l
2 c .

The above clefinit,ion iisw a very liberal riotion of adversarial success. We are
not demanding tha.t,, say, A recover I<; nor do we ask A to decrypt a randoin
FXK(S); nor to produce a not-yet-asked (x , F X ~ ~ (x)) pair. Instead, we only
ask A to make a good guess a t,o whether the (plaintext, ciphertext) pairs she
has been receiving really are FX-encrypt,ions (as opposed to random nonsense
unrelated to F) . The liberal notion of success is chosen to make our main result
stronger: an adversary's inability to succeed becomes all the more meaningful.

3

We now prove a bound on the security of FX agairist key-search attack.

Theorem 3. Let A be an (m, t) key-seurch adversary that €-breaks the F X -
scheme with p a m m e t e r s R, n. Th,en F 5 7nt . 2-"--IL+l.

Proof. By a standard argument we may assume that A is deterministic (not,e
that, A may be computationally unboiirided). Wc niay also assume that A always
asks exactly m. queries of her first oracle, which we shall call her E-oracle. (In
the experiment which defines A's advantage, E was instantiated by either an
FXK-oracle or a 7r-oracle.) We may assume that, A always asks exactly t queries
(total) to her second and third oracles, which we shall call her F- and F - ' -
oracles. We may further assume that A never repeats a query to an oracle. We
may assume that if F (k , z) returns an answer y: then there is no query (neither
earlier nor later) of F - ' (k , y) . All of t,he above assumptions are without loss
of generalit,y in the sense that> it, is easy to construct a new adversary, A', that
obeys the above constraint,s and has thc same advantage a,s A.

We begin by considering two different gaincs which adversary A might, play.
This amounts to specifying how to simulate a triple of oracles, (E, F, F- ') , for
the benefit of A.

A FIRST GAME. The first game we consider, Game R (for 'ira~idom"), will exact)ly
correspond to the experiment which defines the second addend in tjhe expression
for the advantage:

Security of the DESX Construction

AT(') . E ' . (.) , F.- ' (.) -
- ll

258

The definition of Game R will be defined to contain several extra (and seemingly
irrelevant) steps. These steps aren’t needed in order to behave in a manner
which is identical (as far as A sees) to the Inanner of behavior defining Pn; these
steps are used, instead, to facilitate our analysis. To identify these “irrelevant”
instructions we put them in italics. Game R is defined in Figure 1.

Initially, let F. (.) and E (.) be undefined. Flay bad i s ini t ial ly u n s e t . R a n d o m l y choose
k’ t (0, l}&, k;, k; t (0, l}” . Then answcr each query the adversary makes as follows:

IEc,l On oraclc query E (P) :

R R

1. Choose C t (0 , l) “ uniformly from Range(E)
2. Zf Fk* (P @ k :) i s def ined, t h e n set bud.

IfFG’(C @ k ;) is defined, t h e n se t bad.
3 . Define E (P) = C and return C.

jFol On oracle query ~k(a):

1. Choose y E (0 , l) ” uniformly from R.ange(Fk).
2. Zf k = k* and E (z @I k;) is defined t h e n se t bad.

3 . Define a (z) = y and return y .
Zf k = k* and E-’(y @ k ;) as defined t h e n set bad.

-1 On oracle query ~ ; l (y) :
~

1. Choose z E (0 , l) ” uniformly from Dorn(Fk).
2. If k = k* and E-’(y @ k;) i s defined t h e n set bad.

If k = k’ and E (x @ k;) is defined t h e n set bad.
3 . Define F (z) = y and return 2.

Fig. 1. Game R

Let Prn[.] denote the probability of the specified event with respect to Game R.
From the dcfinition of Game R we can see that:

Claim 3.1 PrR

A SECOND GAME. Now we define a. second game, Game x. It will exactly (:or-
respond to the experinlent which defines t,he first term in the expression for the
advantage:

[ALS,F,F-’ = 1 = p, 1

[-
px = pr A P X K . (.) > F . (.) > F.-’(.) -

Once again, the definihri of Game X will be defined t,o ront,ain some irrelevant^"
instructions, which, for clarity, are indicated in italics. Game X is defined in
Figure 2.

The int,iiit,ion hehind Game .X is as follows. We t ry to behave like Game R,
choosing a random (not-yet-provided) answer for each E (P) , and a random (not-
yet-provided for this k) answer for each Fk(x), F’L1(y). Usually this works fine
for getting behavior which looks like the experiment dcfining Px. But soinc-
times it doesn’t work, because an ”iriconsistency” would be created between

259

the FX-answers and the F/F-’-answers. Game X is vigilant in checking if any
such inconsistencies are being created. If it finds an inconsistency about to be
created, it changes the value which it had “warited” to answer in order to force
consistency. Whenever Game S resorts to doing this it sets the flag bud. In
the analysis, we “give up” (regard the adversary as having won) any time this
happens.

Let P rx [.] denote the probability of the spwified event with respect, to Game
X . The definition of Game X looks somewhat, further afield from the experiment
which defines Px. Nonetheless, we claim the following:

Initially, let F.(.) and E (.) be undefined. Flag bad as initially unset. Randomly choose
k* & { O , l } & , k ; , k; (0, l}n. Then answer each query the adversary makes as lollows:

JEo(on oracle query E (P) :
1. Choose C E (0, l}” uniforrnly from Range(E).
2. If Fk* (P (1) k y) is defined, then C t Fk* (P Q3 k ;) @ k; and set bad.

3. Define E (P) = C and rctiirri C.
Else if FG’(C

1-1 On oracle query ~k(z):

k ;) is defined, then s e t bczd and goto Step 1.

1. Choose y E {0,1}” uniformly from R,ange(Fk).
2. If k = k* and E (x @ k ;) is defined then y t E (z C€? k ;) 8 k ; and set bud.

Else If k = k* and E-’(y 8, k ;) is defined then set bad and goto Step 1.
3. Define Fk(x) = y arid return y . Wl On oracle query F; (y):

__.

1. Choose z E (0, l}n uniforrnly from Dom(A) .
2. If k = k’ and E-’(y @I k ;) is defined then z t E-’(y 6? k,*) C f f k: and set

bad.
Else if k = k* and E (z @ k ;) is dcfined then set bud and goto Step 1.

3. Define F k (z) = y and return z.

Fig. 2. Game X

Claim 3.2 Prx AE*E,F-’ = 1 = P x .

The proof of this claim is in the appendix.

BOUNDING THE ADVANTAGE B Y PrR [BAD] In nther Game R or Game x, let
BAD be the event that, at some point in time, the flag bud gets set. Games R
and X have been defined so as to coincide up until event BAD. That is, any
circumstance that causes Game R arid Game X to execute different instructions
will also cause both games to set bud. The following two clairris follow directly
from this fact,.

1 1

Claim 3.3 PrR [BAD] = Prx [BAD]

What we have shown so far allows us to bound the adversary's advanhgt. by
PrR [B A D] .

Claim 3.5 AdvA 5 Prli [BAD].

The argument is quite simple:

AdVA = Px - PK

(C1aam.s 3.1, 3.2)

= Prx [A = l/BAD]Prx [BAD] + Pr,y [A = 11BADIPrx [B A D] -

P r R [A = lJBAD]Prn [BAD] - P r R ['4 = ~ J B A D I P ~ R [B A D]

= Prn [B A D] (Prx [A = l / B A D] - Prn [A = l (B A D])

5 PrR [B A D]

(Clazms 3.3, 3.4)

A THIRD GAME. we have reduced ouI analysis to hounding PrR [BAD]. TO
bourid PrR [BAD] , let us imagine playing Game R a little bit differently. Instead
of choosing k * , k ; , k;?* at the beginning, we choose them at the end. Then we set
bad to be true or false depending on whether or not the choice of k*, k;, k;
we've just made woiild have caused bad to be set t,o true in Game R (where
the choice was made a.t the beginning). The new game, Game R', is described
in Figure 3. From t,he definition of Game R' we see that:

Claim 3.6 I '~R [B A D] 1 Prn, [B A D] .

COMPLETING 'THE PROOF. Now that wc have sufficiently manipulated the games
a simple calculation suffices to bound PrRt [BAD], and, thereby, to bound AdvA.

After having run the body of Game R', not, having yet, chosen k*, k; , k;, let
11s simply count how many of t,hc 2r;+2'1 choices for (k ' , k f , k;) will result in bad
getting set.

Fix any possible values for E and E' which can arise in Game R'. Let IEJ
denote the number of defined valiics E (P) , and let lFJ denote the numbcr of
defined values Fk(s). Note that [El = 711. and IF1 = t . Fix E arid F . Call
(k ' , k,', kf) collision-inducing (with respect to E and F) if there is a some defined
y = Fk(x) and some defined C = E (P) such that

k* = k arid (P 03 k ; = .T or C CB k; = y) .

Every choice of (k * , k ; , k ;) which results in setting bad is collision-inducing, SO

it suffices to upper boiind the riiimber of collision-inducing (k*, k:, k;) .

Claim 3.7 Fix E , F , whew (El = 771 u71d IF/ = t . There are at most 2mt .
collision-inducing (k * , k ~ , k ~) E (0 , l) " x (0, l},, x { O , l } n .

261

Initially, let F. (.) and E (.) bc undefined. Answer each query the adversary makes as
follows:

On oracle query E (P) .

1. Choose C uniformly from RaIige(E)
2. Define E (P) = C and return C.

IF(.)j on oracle query F~(Z):
~-

1. Choose y uniforInly from Range(Fh.)
2. Define F k (z) = y and return y. -1 On oracle query F;I(~):

_ _
1. Choose 2 ~iniformly from Dom(Fk).
2. Define Fh(z) = y and return 5 .

Af te r all the queries have been a,nswered:
Flag bad is initidly unset.
Randomly choose k' $ (0, l}", k : , 1; 8 (0, l } I i

If 3 y such that FG1(y) and E- ' (y GI k i) m e both, defined then set bad.
If 3 z such that Fb* (z) and E (z k;) are both dt~fintd 6he71, set had.

Fig. 3. Game R'

The reason is as follows: for each defined (F , E (P)) , (k , x , F k (x)) t,here are a t
most 2 '2'l points (k ' , k ; , k z) which induce a collision between these two points:
they arc thc points (k * , k T , k ;) E { k) x {x CE P } x { O , l } ' L } u {k} x { O , l } n x
{y @ c}}. Now there arc only mt pairs of such points, so the total number of
collision-inducing (k* , k; , k;) is as claimed.

Finally, in Game R' wc choose a triple (k', k:, k ;) at random, independent of
E and F , SO the chance that the selected triple is collision-inducing (for whatever
E and F have been selected) is at most 217it. 2rL/2n+2n = mt . 2-n-n+1. Pulling
everything together, this probability bounds i \ d v ~ , and we are done.

4 Discussion

HEALTH WARNINGS. We emphasize that when F is a concrete block cipher, not a
random one, its internal structure can interact. with the FAX-construction in such
a way as to obviate the construction's benefits. As a trivial example, if F already
has the structure that it XORs plaintext and ciphertext with key material, then
doing it uyain is certainly of no utility.

Our model considers how rnudi FXl.: (,) looks like a random permutation
(when key K is random and unknown). It should be emphasized that some con-
structions which use block ciphers --particularly hash function constructions-
assume something more of the underlying block cipher. The current results im-
ply nothing about the suitability of FX in constructions which are not based on
F X K (.) resembling a. rmdom permutation when K is random and unknown.

STRUCTURE I N T H E BLOCK CIPHER F WHIZN F = DES. Therc is one striictural

262

property of DES which has been suggested to assist, in brute-force attack: the
DES key-complementation property. This property comprises a significant, sense
in which DES is riot behaving like a family of (independent) random permu-
tations. To “factor out” the key-complementation property just think of DES
as having a single key bit fixed. Then one can conclude that if this is the only
structural property of DES to be exploited by a key-search attack, DESX will

CHOSEN-CIPHERIEXT (:K. The definition we used models a chosen-plaintext
attack. One could easily allow, as [7] did, a chosen-ciphertext attack: simply pro-
vide A an oracle for FX-’ (.), in addition t,o her oracle for FX(.) . In that case
ni would count the sum of the number of queries to the FX and FX-’ oracles,
and Theorem 3 would continue to hold. The proof would change very little.

SETTING k l = k 2 . It is easy to see that constructions FXpk.(x) = Fk(x CH k l)
and FXiyl, (x) = k 1 @ Fk(z) don’t, improve F’s strength against key search. But
what about FXk,kl (x) = k l @ Fk(z @ k l) - is it OK to use the same key inside
and out? In fact this does work, in the sense that Theorem 3 still goes through,
the proof little changed.

NICER KEY LENGTHS. A minor inconvenience of DESX is its strange key size.
In applications it would sometimes be preferable t,o ext,end the definition of
DESX to use arbitrary-length keys, or else to use keys of some fixed but more
convenient length. Standard key-separation techniques can be used. For example,
when IKI # 184, we might define DESXK(X) to be equal to D E S X K ~ (~) where
K‘ is dcfincd as follows:

still limit the at,tack’s advantage t,o trn . 2--55-64-t1 - - trn. 2-118.

If IKI = 56 then K‘ = K.0l2’,

0 Otherwise, K‘ = k . k l . k2 , where k 1 = SHA-l(Cl.K)1,..64, and
k = SHA-l(C.K)1,..56,

{ k2 = SHA-l(C2.K)l . . . 6 4

Here, SHA-1 is the map of the NIST Secure Hash Standard, X I . . .p denotes the
first l bits of X , and C, C1 and C2 are distinct,, equal-length strings that are
part of the DESX specification.

DIFFERENTIAL AND LINEAR CRYPTANALYSIS. OPERATIONS BESIDES XOR. w e
emphasize that the DESX construction w a never intended to add strength
against differential or linear cryptanalysis. The attacks of [2 , 101 do not rep-
resent a threat against DES when the cipher is prudently employed (e.g., when
a re-key is forced before an inordinate amount of text has been acted on), so we
were content that the DESX construction does not render differential or linear
attack any easier.

Nonetheless, the proof of Theorem 3 goes through when G? is replaced by
a variety of other operations, and some of these alternatives may help to de-
feat attacks which were not addressed by our model, including differential and
linear cryptanalysis. In particular, an attractive ;tlternat,ive to DESX may be
the construction DESPk.kl,kz(z) = k2 + DESk(k1 + z), where LR + L’R’ ef
LqL’ . RqR’, where IL(= IRI = IL’I = IR’I = 32 and 4 denotes addition

263

modulo 232. Burt, Kaliski has suggested such alternatives, and he has gone on to
analyze their security with respect to differential and linear attack [8].

5 Our Bound is Tight
We have shown that the adversary's advantage is at most t . 2-n-n+1+'gm. We
now show that for a wide rangc of m (comprising all m that would be considered
in practice), an attacker can, with probability very close to t . 2-K-7a-4f1g (the
exact bound is Section 5 . 3) , recover a key K = k.kl.k2 that is consistent with
the encryptions under FX of m plaintexts chosen before any oracle queries are
made. For reasonable values of m, this at, least as strong as simply distinguishing
FX from a purely random permutation,

To motivate our attack, we can view the FX block cipher as choosing a
random key k and then applying the Even-Mansour construction to the func-
tion Fk. We can t,herefore adapt Daemen's chosen plaintext attack [5] on the
Even-Mansour construction [7] . Unfortunately, we don't know the value of k , so
we instead try all possible ones. For completeness, we describe the attack and
calculate the amount of work required to have probability t of recovering the
key.

5.1 Preliminaries

Assiime that rrb is even, m 5 2q1, and f < i. Fix a constant, C E {0,1}" - { O n) .
For any function G, define G"(z) = G(z CD C) ~ 3 3 G(z). Given an oracle for G
one can compute Gn by making two c:alls. Let the secret key K = k . k l . k 2 . Let
E by a synonym for F X . By our definitions and simple algebra we have

E&) = Ft(Z u) Icl) = F k (Z @ c cf, k l) .

5.2 The basic attack

The attacker chooses x l , . . . , x,p E (0 , l}" such that q,. . . , zrr+, 2 1 &, C, . . . ,
2,p @ C are distinct. She computes E A (r z) , for 1 5 i 5 m/2. This operation
requires m calls to E. Let e = . The attacker then chooses random
T I , ra , . . . ,re E (0, l}", tcsting each ri as follows. She searches through all pos-
sible k' E (0 , l) " and 1 5 j <_ m / 2 , looking for promising puzrs- values (j , k ')
such that F E (r i) = E $ (z j) . At this point, the attacker hopes that k' = k and r
is equal to either xJ fB kl or z3 fB C CB k l . If so, then k l must be either xj Cl3 ri
or zj &, C @ ri. Given candidate values (k ' , k l ') for (k , k l) , a guess k2' can be
determined by, say, k2' = F p (s 1 81 kl ') CE Elc(zl). A set of candidate values
k ' , k l ' and k2' can be tested by checking whether they give the correct values
for each of E ~ c (n) , . . . , EK(z,), E K (~ CE C) , . . . , Eh'(zm12 @ C). If they pass
this test, the attack returns the candidate k'.kl' .k2' and halts.

- 2 ' ' ' " J ~ E 1 7

5.3 Analysis of the attack

Due to space limitations, we omit an analysis. See the full version of this pa-
per [91.

264

6 Open Problems and Conclusions

ANALYSIS OF OTHER MUL,’rIPLE ENCRYPTION SCHEMES. The model we have used
to upper bound the worth of key-search applies to many other block-cipher based
constructions. For example, it would be interesting to apply this model to bound
the maximal advantage an adversary can get for triple DES with three distinct
keys, or triple DES with the first and third keys equal. It would be interesting
to demonstrate t,ha,t some construction has a better effective key length then
DESX (e.g., k + n - 1 hits).

USE IT! Work within some standards bodies continues to specify encrypt,ion
based on DES in its most, customary rnode of operation. We recommend DESX
(or one of its variants, as in Section 4). DESX is efficient, DES-cornpat,ible,
patent-unencumbered, and resists key-search attack. In virtually every way
DESX would seem to be a better DES than DES.

Acknowledgments

Mihir Bellare was closely involved in the early stages of our investigation Burt
Kalisla, Ron Rivest,, and anonymous refclrees provided useful comments and in-
formation.

References

1. E. BIHAM ANI) A . BIRYUKOV, “How to strengthen DES using existing hardware.”
ildvancc in Cryptology- ASIACRYPT ’94. Springer-Verlag (1994).

2. E. BIHAM AND A. SHAMIR, Differential Cryptana1,ysi.s of the Data Encryption Stan-
dard. Springer-Vcrlag (1993).

3. M. BLAZE, “A cryptographic file system for UNIX.” 1st ACM Conference on Com-
puter and Communications Security, 9--16 (November 1993).

4. n. COPPERSMITH, D. JOHNSON A N D M. MATYAS, “Triple DES cipher block chain-
ing with output feedback masking.” These proceedings.

5. J . DAEMEN, “Limitations of the Even-Mansour construction” (abstract of a rump-
session talk). Advances in Cryptology-- ~- ASIACRYPT ’91. Lecture Notes in Corn-
puter Scicnce, vol. 739, 495498, Springer-Vcrlag (1992).

6. W. DIFFIE A N D M. HELLMAN, “Exhaustive cryptanalysis of the NBS Data Encryp-
tion Standard.” Computer, vol. 10, no. 6, 74-84 (June 1977).

7. s. EVEN A N D Y. MANSOIJII, “A construction of a cipher from a single pseudoran-
dom permutation.” Advances in Cryptology ~ ASIACRYPT ’91. Lecture Notes in
Computer Science, vol. 739, 210-224, Springer-Verlag (1992).

8. B. KALISKI, personal cornmunicntion (April 1996).
9. J . KILIAN AND P. ROGAWAY, “How t,o protect DES against exhaustive key search.”

Full version of this paper. http://wwwcsif.cs.ucdavis.edu/-rogawayl
10. M. R/IA’~srrr, “The first experimental cryptanalysis of the data encryption stan-

dard.” Advances in Cryptology-- CRYPT0 ’94. Lecture Notes in Computer Sci-
ence, vol. 839, 1--11, Springer-Verlag (1994).

11. R. RIVEST, personal commrinication (1995, 1YYci).
12. RSA Data Security, Inr.. Product clocumrntation, “Mailsafe Not,e #3.”

265

13. C. SHANNON, “Communication theory of secrecv systems.” Bell Systems Technical
Journal, 28(4), 656-715 (1949).

14. P. VAN OOKSCHOT A N D M. WIENER, “Parallel collision search with cryptanalytk
applications.” Manuscript. (December 19, 1995). Earlier version in 2nd ACM Con-
ference or1 Computer arid Communications Security, 210-218 (1994).

15. M. WIENER, “Efficient DES key search.” Technical Report TR-244, School of Coin-
puter Science, Carleton University (May 1994). Reprinted in Practical Cryptogra-
p h y for Data Internetworks, W. Stallings, editor, IEEE Computer Societ,y Press,

16. Y. YIN, The 1995 R.SA Laboratories Seininar Series, “Future directions for block
ciphers.” Seminas proceedings (p a p 2 3) for a talk given in Redwood Shores, Cali-
fornia (August 1995).

31-79 (1996).

A Proof of Claim3.2
We first define a new game, denoted Game X‘, which matches more directly thr
definition of the experiment defining Px. G a m r X ‘ is defined in Figure 4.

First, Iiot,e that no adversary can distinguish between playing Game X ’
and playing with orades (F X K (,) , F. (.), E.-’(.)) drawn according to the exper-
iment defining Px . Indeed t,hc only difference bctween these
Game X’ generates values for E (.) and F.(.) hy “ l a ~ y evaluation,” whereas the
experiment, defining Px would generate tliese values all at the beginning. Thus

- 1 = P x .

1 = Prx, AE$I . ’ , I . ’ -~ = 1 : no

adversary A can distinguish whether she is playing Game X or X’. Wc emphasize
that A’s ability to distinguish betwccn Games X a.nd X’ is based strictly 011 the
iIiput/output behavior of the oracles; the adversary can not see, for example,
whether 01- riot the flag bud has been set.

We will show somet,hing even stronger than that Ganies X and X‘ look iden-
tical to any adversary. Observe that both Game X and Game X’ begin with
random choices for k * , k ; and k5. We show that, for any particular values of
k’, k; arid k z , Game X with these initial values of k* , k; and k: is identical, to
the adversary, from Game X ’ with these sa.me initial values of k * , k; and kz . SO,
for the remainder of’ the proof, we consider k * , k ; m d k; to have fixed, arbitrary
values.

A basic difference between Games X and X‘ is tha.t Game X separately
defines both E and F p while Game X’ only defines F p and computes E (P) ,
in response to a query P , by F p (P @ k ;) @ k;. Thc essence of oiir argument) is
that Game X can also be viewed as answering its E (P) queries by referring to
F p . But, strictly speaking, it’s riot really Fk* which can be consulted. We get,
around this as follows.

Givcn partial furictions E and F , * , these functions having arisen in Game x,
define the partial function Fke by

1 prx, [A E , F , F - ’ -

I [1 Now we what to show that Pr,y

FA-* (x)

iindcfined othrrwisc.

if Fk. (z) is defined,
E (z @ k r) @ ka if E (x irj k ;) is defined, and

266

Initially, let F.(.) be undefined. R.andomly choose k'
answer each query the adversary makes as follows:

(0, l}K, k ; , k; c (0, l}n. Then

On oracle query E (P) :
1. If F k * (P @ k ;) is defined, return F k * (P @ k ;) @ k,:.
2. Otherwise, choose y uniformly from Range(Fk*), define Fk*((P C€ k ;) = y and

IF.(.)l d',":::cYe:::ry Fk(2):

1. If Fh (z) is defined, return Fk (z).
2. Else, choose y € (0,1}" uniformly from Range(Fk), define F k (2) = y and

~ ~ ~ ~ ~ r ~ i l e query Fil (y):

1. IfFi- ' (y) is defined, return F;l(y).
2. Else, choose z E (0 , I}" uniformly from Dom(Fk), define F k (z) = y and return

2.

Fig. 4. Game X '

Thus, in executing Game X , defining a value for E or F p can implicitly define
a new value for F p .

At face value, the above definition might bc inconsistent- this could happen
if both F p (z) and E (x @ k:) are defined for some z, arid with "clashing" values
(ie., values which do not differ by kg). Before we proceed, we observe that this
can never happen:

Claim A . l Let E 2nd Fk. be partial functions which may arise in in Game X .
Then the function F p , as described above, i s well-defined.

The proof is by induction on the number of "Define" steps (Steps E-3, F-3,
or F-l -3) in the definition of Game X , where points of F k * become defined
as Game X executes. The basis (when E and F-' are completely undefined) is
trivial. So suppose that, in step E-3, we set E (P) = C. Is it possible that this def-
inition of E (P) will cause p k , to become ill-defined? The only potential conflict
is between the new E (P) value and a value already selected for Fp (P 63 k;). So
if F,p (I' @? k ;) was not yet defined, there is no new conflict created in Step E-3.
If, on the other hand, Fk* (P c4 ki) was already defined, then its value, by virtue
of Step E-2, is E (P) @ kz . This choice results in F p remaining well-defined The
analysis for the cases corresponding to Steps F-3 and F-'-3 is exactly analogous,
and is omitted. 0

The function Fk*, as defincd for Game X , also makes sense for G ~ I I E X', where
Fk- (z) = Fk* (z). Our strategy, then, is to explain the effect of each E (.) , Fk* (.),
and FG1(.) query strictly in terms of FA*, We then observe that Game X' re-
sponds to its oracle queries in an absolutelg identical way. This suffices to show
the games equivalent.

h

267

Case 1. We first analyze the hehavior of Game X on oracle query E(P) . To be-
gin, note that Game X never defines the value of E (P) unless it, has received P
as a query. So since A never repeats queries (see the assumptions just following
the theorem statement) E (P) must be Undefined at the timc of query P. Conse-
quently, at the time of query P, pp (P ci3 k;) will be defined iff F p (P a k ;) is
defined, and F k * (P Ic;) = F (P @ k ;) . Case l a . When F k * (P 8 k t) is defined,
then Game X returns the value of C = $p (P @ k ;) CB kz . In this case, setting
E (P) = C leaves F k e unchanged. Case l b . When F k * (P @ k ;) is undefined, then
G is repeatedly chosen uniformly from Range(E) until FG1 (C @ k;) is undefined.
By the definition of Fk* it follows that y = C I% k; is uniformly distributed over
Range(Fk*). In this case, setting E (P) = C sets Fk* (P (0 k ;) = y.

Now compare the above with Game X ' on query E (P) . When F p (P tii k ;)
is defined, then C = Fk* (P &i k ;) g, k; is rctiirned and no function values are
set. When F k * (P cf3 k ;) is undefined, y is chosen uniformly from Range(Fp),
Fp (P G3 k ;) is set to g (and implicitly pp (P @ k!) is set, to y), and C = y 8 k;
is returned. Thus, the behavior of Game X' on query E (P) is identical to the
behavior of Game X on query E (P) .
Case 2. We will bc somewhat briefer with our analyses of the F.(.) and F.-'(.)
oracles, which are similar to the analysis above. Gust: 2u. On oracle query Fh (x),
when k # k* then the behavior of Game X is clearly identical to Game X ' . Case
2%. When k = k* then FA.* (x) is defined iff a query of the form E (x @ k;) has
been made. This holds iff F p (z) is defined (since Fk*(z) would not havc been
queried before). By it straightforward argument thr value 'y returned from the
query ~ (z) will then be y = ~ (x IC;) CH k; = Fk*(x) in both games. Case
2c. When Fk*(x) is undefined, then in bot,h games y is uniformly chosen from
Range(Fk*) and F'k* (2) is defined to be y. Thus, in all cases, Game X hehavcs
identically to Game X ' .
Case 3. Finally, on oracle query F i ' (y) , the case k # k* is again trivial. When
k = k' , then FG1(y) will be defined iff E-'(y @ k;) is defined, in which case
x = E-'(y @ k,*) (i) k ; = gG1(y) in both games. When FG'(y) is undefined,
then in both games z is chosen uniformly from DoIn(Fk-) and p k * (z) is defined
to be y. Again, Game X behaves identically to Game X ' .

-n ,-.

n

- h n

- -

	1 Introduction
	1.1 Our model
	1.2 Our main result
	1.3 Related work
	1.4 Discussion
	1.5 Outline of the paper

	2 Preliminaries
	3 Security of the DESX Construction
	4 Discussion
	5 Our Bound is Tight
	5.1 Preliminaries
	5.2 The basic attack
	5.3 Analysis of the attack

	6 Open Problems and Conclusions
	Acknowledgments
	References

