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Abstract. There are well-knowri tcchniques for message authentication 
using nniversal hash functions. This approach scc:ms very promising, as 
it provides schemes t,hat, arc: both efficient and provably secure under 
reasonable assumpt,ions. This paper contributes to this line of research 
in two ways. First, it analyzes the basic constructioii and some variants 
under more realistic and practical assumpt,ions. Second, it shows how 
these schemes can be efficiently implement,ed, arid it reports on the re- 
sults of empirical performance tests that demonstrate that these schemes 
arc competitive with other commonly employed schemes whose security 
is less well-established. 

1 Introduction 

Message Authentication. Message authentication schrmcs are an important 
security tool. A s  more and more da t a  is bcing transmitted over networks, the 
need for secure, high-speed, software-based message authentication is becorning 
more acutr. 

The  setting for message aut,hentication IS the following. Two parties A and 
B agree on a secret key a. A message authent,ica.tion scheme corisists of two 
algorithms S arid V .  If A wants to scnd a message z to D ,  then A first computes 
the rriessage authentication code, or M A C ,  a = S,(z), and sends the pair (z, a )  
to B.  When B receives a pair (x, a ) ,  I3 evaluatts V,(z, a ) ,  which returns 1 if the  
MAC is valid, and 0 othcrwise. 

Security for message authentication schemes can be formally defined, as in 
Bellare e l  nl. [4], essentially along the same liries as for digital signattiires [8]: wc 
say tha t  an adversary forges a MAC if, wlieri givcn oracle access to S, and Val it, 
obtains I /n(z,a) = 1 for some message s that, was never given to the oracle for 
S,; a message authenticat,ion scheme is secure if' it  is computationally infeasible 
to forge a MAC. 

Common Approaches to Message A u t h e n t i c a t i o n .  One of the most widely 
used message aut,hent#ication schemes is built  using a block cipher, typically the 
Data  Encryption Standard (DES), and applying it, to the message in Cipher 
Block Chaining (CBC) mode. Only recently has this schemc been shown t)o 
be secure [4], iinder a reasonable assumption about, DES, alt.hoiigh the level o f  
security provided by this scheme degrades quit,e quickly as the number of queries 
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or the message length increases. Moreover, as 11% is applied t,o every block of 
the message, t<his scheme is quite slow, especially in software. 

Another coniniori practice today is t,o use a cryptographic hash function h ,  
such as MD5, and set S,(z) = h(u  . c . u ) ,  where “.” denotes concatenation. 
Many variations on this scheme have heen proposed as well (see [16])). These 
schemes arc t,ypically much faster t h a n  t,he CHC-LIES scheme; unfortunately, 
the securit>y of these schemes is not well-eshablished; to obtain m u c h  confidencc 
in the  security of this approach, onc must assume a good deal more about t)he 
properties of h than seems warranted (but, see [2] for some progress in t8his area). 

The Universal-Hash Construction. The  problem of message authentication 
was studied early on in an informat,ion-t,hcoretic setting, first by Gilbert e t  al. 
[7], and later by Wegmari arid Carter [18]. Wegman and Carter’s universal- 
hash constructzon was later placcd in a ~rypt~ograyhic  setting by Brassard [ C i ] ,  
Krawczyk [12], and R,ogaway [17]. ‘I’his constmiction uses a 2-universal family H 
of hash functions, arid a pseudo-raridorri family F of functions. Assume that the 
outputs of both types of functions arc bit strings of Ihe same length, say I .  The 
secret, key for such a scheme consists of a pair ( h ,  f ) ,  where h E H and f E F 
are chosen at, random. The  MAC for a message z is ( r ,  f ( r )  @ h ( z ) ) ,  where the 
“tag” value r is a counter that, is incrmwnt,eti with rach application of algorithm 
S. 

Actually, one does riot iiced a Zuniversal family of hash functions, but rather, 
a family of hash functions satkfyiiig t,he following property for suitably small 
F >_ 2-‘: for any pair of inputs x1 # x2 and for any l-bit string z ,  for a random 
h E H ,  the  probabilit,y t,ha.t /?,(XI) 6) h ( r 2 )  = z is no more than t. In this c.ase, 
we say H is an  t-AX17 (almost exclusive-or universal) family of hash functions. 

The  main theorem concerning the security of the basic universal-hash con- 
struction is the following (see [17] and [12] for more details arid references). 

Thcoreinl. A S S U T I ~ ~  H is c-A.XU, and that F is replaced b y  the truly randoin 
family R of functzons.  In this cast, af an adversary makes  41 queries l o  S and 
q 2  queries to V ,  l h e  probabilzty of forging a M A C  is at mos t  q z t .  

If in passing from R t,o F t,he forgery probability should significantly increase, 
this would give us a stat,ist,ical test, to distinguish I;’ from R. tha t  makes q1 + q z  
queries to the test function. 

Our Contributions. We coritribuk to this line of research in two ways. In 
the first par t ,  §§2-3, we analyze t,hc basic construction and some variants under 
more realistic and p rx t i ca l  assumptions. In the second par t ,  334-7, we show 
how schemes based on universal hashing can he efficient,ly implemented, and we 
report on t,he performarice of these implementat,ions. 

NEW Analyszs and C o n ~ l r ~ r c t i o n s .  Clorisider the choice of the family E’ of 
pseudo-random furictions b’. Since f is evaluated at just  a single counter value 
per message, one can usually afford to employ a. function with strong security 
properties, but which may bc somewhat slow t,o evaluate. A block cipher such 
as DES secms like a very good choice. 
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There is, however, an irritating probleni with using DES in conjunction with 
Theorem 1: namely, DES is a permut,at,ion (on 64-hit8 strings). The  level of secu- 
rit,y implied by Theorem 1 decreases quadratically with q1 + 9 2 ,  and as 91 + 9 2  
nears 232, Theorem 1 says nothing at a l l  about the srcurity of the message au- 
thentication scheme. This is because with close tto 2'' queries t o  a test function, 
we cun already dist,inguish DES from a random fiiriction, since DES will not yield 
any collisions, unlike a random function. 

There are several cryptsographic const,ructions in the litcrature (e.g., [ 3 ,  11) 
tha t  suffer from the same problem. 

In $2, we analyze the security of thc universal-hash construct,ion using pseudo- 
random permutsa,t,ions, arid show that, it, i s  in fact, more seciire than implied by 
the above theorem. We also give a small modification t,o the universal-hash 
construction with even better security properties. 

Another potential problem with tmhe basic universal-hash construction is that  
algorithm S is not stateless. This might be inconvenient, in certain situations 
where reliably maintaining state is difficult, or where many part,ies are authen- 
ticating with the same key. In $ 3 ,  we show a modification to  the basic construc- 
tion tha t  is stateless and efficient, whilc st,ill being just  a.s secnre as the  basic 
universal-hash construction. 

Fust Implementations. The most critical aspect of the universal-hash con- 
struction in terms of performance is the family H of hash functions. We need tlo 
be able to generate random elements of H reasonably quickly, and more impor- 
tantly, we need to be able to apply functions in H t o  messages very quickly. 

We discuss three types of hash funclions based on polynomials over finit,e 
fields. We show how these tjhree types of hash fiinctioris can be efficiently imple- 
mented in software, and we report on the performance of these implementations. 
In 54 we present the three hash functions under consideration, and summarize 
our empirical results. In fj5-7 we discuss our implerrieritations of these functions, 
as well as some possible alternative iniplenientations. Our results indicate that 
on typical workstations and personal corriprit,crs, the perforrriancc of these hash 
functions is compet,itive with that of ot,her commorily employed authentication 
schemes whose security is less well established. 

Some of our  techniques may be useful in  other contexts as well, such as our 
method for constructing a randoni irreducible polynomial of given degree over 
GF(2). 

2 Using a Pseudo-Random Family of Permutations 

As mentioned in the introduct,iori, tmhc eshblished theory on the universal-hash 
construction is riot adcquate to explain what happens when pseudo-random per- 
mutations are used in skad  of pseudo-random fiiiiclioris. The following theorem 
is useful in that regard. 

Theorem 2. I n  thP basac unzvcrsal-hash ronstrucizon, auppose H 2.5 t - A X U ,  a n d  
that F 2s replaced b y  t h e  truly random f a m r l y  P of pcrrnu ta f ions  on 1-bzt strings. 



Suppose  t h a t  t h e  adversary  m a k e s  q1 qutrws l o  S and  (12 qutraes l o  V .  T h e n  
prov ided  q: 5 1 1 6 ,  the probabili ty th,ut lh,e adversary  forges a MAC is a2 m o s t  
ILQ:!E.  

This tlieorcni is proved in the  Appendix A .  
As usual, if in passing fro111 I' to a pseudo-random family F of permutations, 

the  forgery probabilit,y incrcases significantly, we get, a statistical test distin- 
guishing F from I-'. 

T h e  usefulness of t,his theorem depends on  the c;  for long messages, there 
is usually a trade-off between the efficiency of the hash function and  I / ( .  This 
motivates the  following const,ruction . 

Let F be a family pseudo-random permutations on 1 bits. Let HI be an  
cl-AXU family of hash funct,ions, and H:! an r2-AXII family of hash functions. 
Assume these functions have l-bit outputs and that funct,ions in H I  have /-bitj 
inputs . 

A s  in the basic universal-hash const,ruction we use a tag value r that) is a 
counter increniented with cach invocation of S. 'I'he secret key for the MAC 
consists of f E F ,  hl E HI ,  and h:! E 112, chosen randomly. The  MAC for a 
mcssage r is ( r ,  f(r) @ h , l ( r )  63 h2(z)) .  

Theorem3. Suppose  that  P as replaced by  Ih.c truly r a n d o m  f a m i l y  P of  per-  
m u t a t i o n s ,  and  t h a t  a n  adversary  m a k e s  ql queries t o  ,S and  q2 querics do V .  
Then provided q: 5 l / c l ,  th,e probabili ty t h a t  t h e  adiwrsary forges a MAC is a t  
m o s t  2q2cz .  

This theorem is also proved in appendix A .  
As an example, slippose we a.re using DES and 1 = 64. Since hl is applied to 

a short st,ring, we can afford to use a family HI with ( 1  = 1/2"'. The  theorem 
says we should use algorithm S no more than 232 times, at which point we 
should switch the MAC key. But riot,e that  iintil this poinl is reached (if ever), 
the security degrades only very little. 

3 Using a Random Tag 

Consider the  basic universal-hash conslruct,ion. Letr W be an t-.4XU family of 
hash funct-ions, and F' a pseudo-raildoin family of functions, all functions may- 
ping t<o !-bit, st8rings, and t h t  t,he furictions i r i  +' have 1-bit inputs. To make 
S stateless, instead of a countcr, we might use a random l-hit tag. However, 
the security in this case can degra.de w r y  rapidly. A f k r  0(11/2) queries to t,he 
S-oracle, it  is likely that t,wo tag values c~ollide. Depending on the family of hash 
functions, this event can comproiiiise the scheme completely (this is certainly 
t,rue for the hash functions discussed in this paper). 

One solution is tmo double the length of the ra.ndorn tag. IIowever, we t,heri need 
a pseudo-random function from 2l to d bit,s. If we want, to base the security on 
DES, wit,h 1 = 64, we could use the general consLruct,iori of Aiello and Venkatesan 
[l] to build a pseudo-random function from 21 to  1 bits. However, tha t  would 
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require 6 DES applicat,ions. For the particular sitiiatiori a t  hand, it turns out, 
t,hat two DES applications are sufficient. We outline this construction. 

The  secret key for t,he message authentication scheme consists of f l g  E F ,  
h E H ,  and two elements C Y , ~  E GF(2'). All of these are chosen at r m d o m .  
To comput,e a MAC for the message 2, t,he algorithm S generates two random 
elements r ,  s E GF(2'). The  MAC: is ( P ,  s, f ( r a  + s) @ g(rP + s) @ h ( z ) ) .  

Theorern4. Suppose t h a t  F is replaced hy the fum.ily 13 of truly random func- 
tions from 1 bats t o  1 bits, and [hut un adversary makes 41 queries l o  S and 92 
queries t o  V ,  where q1 < 2 l - l .  Then 1h.e prohabi l i ty  th,ut the udversary forges u 
MAC zs ai most q;2-2'+' + q z ( t  + Z-'-'). 

The  proof is iri Appendix B. 
As usual, if in passing from R t,o F we gct a. significant increase the forgery 

probability, we get, a statist,ical test to distinguish F from R. 
It  still remains to prove an analogous theorem for permuhtions; nevertheless, 

DES, or some simple construction based on i t ,  still seems like a good candidate 
for F .  

4 Three Types of Hash F'unctioiis 

In the rerriainder of this paper, we deal wit,h the choice and irriplemenlation of 
a n  t-AXU family of hash functions. 

In this section, we present the three types of hash fuuct,ions under consider- 
ation. We assume tha t  messages are broken up  into 7 1  blocks, each containing 1 
bits. The  oiit,put of the hash functions is 1 bibs. 

The Evaluation Hash. The rvnluntion hush views the input as a polynomial 
M ( t )  of degree less Lhan n over GF(2'). The hash key is a random element cu in 
GF(2'). The  hash value is M ( a )  . c1' E GF(2'). This faniily of hash functions is 
c-AXU with c w n / 2 ' .  

The Division Hash. The  division hash views the input as a polynomial m(z) of 
degree less tjhan 711 over GF(2). The  hash key is a random irreducible polynomial 
p(x) of degree 1 over GF(2). The  hash value is m ( x ) . z '  mod p(zj. Since the  total 
number of irreducible polynomials of degree I is M 2' /1 ,  it  is easy to see tha t  t h i s  
family of hash functions is t-AXU with 6 x n1/2'. 

The Generalized Division Hash. The third hash function a c t d l y  includes 
each of the first, two as special cases. Suppose tshat k I I .  The generalized division 
hash views the input as a polyriomial m ( z )  over GF(2k) of degree less than  
n l / k .  The  key is a random monic irreducible polynomial p ( z )  of degree l / k  over 
GF(2'). The  hash value is m(z)z' / '"  mod p ( z ) .  It  is ca.sy to show t,hat this is 
c-AXU with 6 M n l l k2 ' .  

The  division hash was first suggested for i isc in message authentication by 
Krawczyk [la] 'I'he other two are obvious variants, b u t  havc somewhat differcrit 
performance arid security propertie3 



An output length of 1 = 64 should provide an  adequate level of security for 
the above three hash functions. Note tha t  from the point of view of message 
authentication, MD5’s output length of 128 is really “overkill”--this outjp~lt> 
length was chosen to make finding collisions hard, another problem entirely. 

We have irriplemenkd t,he evaluation and division hashes with 1 = 64. One 
disadvantage of the division hash is that we have to generate a random irreducible 
polynomial of degree 64 over GF(2) whenever we generate a hash function. This 
can he  somewhat time consuming. Moreover, with the  division hash, one effec- 
tively has 6 bits less security t8han wit>h the evaluation hash (i.e., E increases 
by a factor of 2‘)). However, the division hash runs somewhat, faster than t h e  
evaluation Iiwh. We have also implemented the generalized division hash with 
I = 64 and k = 8. We have found t,liat with this method, hash function genera- 
tion is much faster than with thc division hash, while hashing speed is identical 
to that, of thc division hash. Also, onc has only 3 bits less security than with the 
evaluation hash. 

We briefly summarize some of c u r  eiiipirical results; more details can be found 
later in the paper. The  timings are based 011 a C implementation using gcc on a 
Sun Sparc- 10 workstatiori with a 70MHz clock. The  Sparc- 10 has a very t8ypical 
32-bit RISC architecture. 

One implementation of the generalized division hash uses one 8KB table for 
each hash function. The  sct-up time (the t,inie to generate the hash functiori 
and pre-compute the associated table) is about 25511s. The hash function itself 
achieves a bit ratme of 50-75Mbps ( lo6  bit,s per second). 

Cache Behamor. Because of the  relatively large h b l e  size, cache behavior 
can heavily influence t,he speed of the hash function. We performed a number 
of experiments to try to measure this influence, and where the speed seerried to 
rely heavily on cache behavior, we report) this speed as an  interval. T h e  highest 
speed in this interval represents an ideal sitjuat8ion, where a huge amount of da ta  
is hashed before pushing the table out of cache. ‘I’he lower speed represents a 
situation where only 2KB of data are hashed before pushing the tablc out, of 
cache. We still need to  gain more practical expcrience with cache behavior. 

lJsing a. h b l e  of just, 2KB, the evaluat,ion hash can be implemented so that, 
it  has a set-lip time of just  30ps, and runs at 34-36Mbps. Note the much smaller 
variance in running t,itne due to cache effects. 

We have not included in the above the cost of the pseudo-random function. 
Using one of the fast,er DES irriplementations, buill by How [lo], the set-up t h e  
is about 75ps ,  and the tinie for one DES operation is about 1O.Sps. 

We compare the above with a standard C implementatiori of MD5 on our 
machine, for which gcc produces quite good code. M D 5  achieves a top speed 
of 41Mbps. T h i s  measures the speed of the internal compressiori luIlciion; deal- 
ing with word-alignment and byte-ordering prohlems can reduce MD5’s speed 
somewhat,. Cache effects do  not seem to affect, t,he speed of MD5 significantly. 

I t  is clear from the above running tiriles lha t  CBC-DES is very slow, running 
at only 6Mbps. 
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As anot,her example. we compiled our code for t,he generalized division hash 
on a 90 MHz Pentiurn, rurinirig linux and using gcc. Because of the very small 
register set on the Pentium, the gcc compiler was not, able t,o generate w r y  good 
code, and so we hand optimized t,he asscmbly code. The  set-up t ime was was 
220ps, arid the hash function runs at 85-100Mbps. 

We compare this to the hand-ophriized asscmbly implementation of MD5 
by Bosselaers, Govaerts, and Vandewalle [5]. ’l’his runs at, 113Mhps. 

Also, How’s implementation of DES 011 our Pentium has a set-up time of 
9 4 p ,  and one application takes 1 1 . 5 ~ ~ .  This implies A rate of about 6Mbps for 
CBC-Ill%. 

5 The Evaluation Hash 

To implement the evaluation hash for GP’(2’4), we select an irreduci ble poly~lo- 
mial f(a) E GF(2)[a] of degree 64, and reprcscrit GF(264) as GF(2)[z]/(f(z)). It 
is convenient, especially on 32-bit machines, t o  select f(a) of the form zG4+f0(z), 

where deg fo(a) is small, for example J ( z )  = zG4 + z4 + z3 + z + 1. 
To evaluatc a polynomial in C;F(264)[1] at, a point n E G17(2G4), we use 

Homer’s rule. Thus,  t,he critical operation is the inap [I li CY . /3 ( p  E GF(264)). 
Since CY remains fixed for many such rriultiplications, we can speed things up 
considerably by performing a I.’re-comput,a.tioii. 

Suppose cy = a(.) mod f(z), where u ( z )  E GF(2)[2], with dega (z )  < 64. 
For a given b(z)  E GF(2)[2], with degbjz)  < 64, we want, to compute a,(.) . 

b ( x )  mod f(x). We discuss two methods to d o  this. 

Method 1. We itssiiine tha t  we have performed a pre-conipiltat*ion that, allows 
us t,o compute t.he map v ( z )  H u ( z )  zG4 mod f(z) (deg(v(z) < 8) by table- 
lookup. This table will have 256 cnt,ries, and because of the special form of J ( z ) ,  
each cntry will be only 16 -b i t~  wide, for a total of 0.5KR. This table is fixed once 
arid for all. 

Given u ( z )  we can perform a pre-cornpiit,at,iori tha t  allows us to compute the 
map  ?j(z) ++ ~ ( z ) .  u ( x )  mod f(a) (deg .(x) < 8) by t8a.ble-lookup. This table will 
also have 256 entries, but each entry will be 64-bits wide, for a total of 2KH. 

To compute u(x) . b(z )  mod f ( x ) ,  WC’ writ,e h ( x )  = Ciy0 bi(z)zsi ,  initialize 
r ( z )  to zero, and do t,he following: 

7 

for i - 7 down t,o 0 do  r ( z )  + r(z)zX + b i ( x ) u ( z )  mod f(x) 

Assuming a 32-bit machine, polynomials of dcgrec less than 64 are repre- 
sented by a word-pair. Suppose ~ ( z )  is represented by t,he word-pair (hi, lo) .  In 
this algorithm, the compiitat,ion of r ( z ) z 8  mod f ( r )  is performed by extracting 
the high-order byte of hi, performing a t , ab l~- look~ip ,  performing a left-shift, of 
8 bits on (hi, l o ) ,  and replacing l o  by the exclusive-or of itself and the result of 
the table-lookup. To compute bi (z )a(z )  mod f ( x ) ,  we ext,ract t,he appropriate 
byte of b(z) ,  perform a tablc-lookup, oht,aining two words. We then exclusive-or 
these two words into (h i ,  lo). 
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Timiny resd ts .  In our Sparc- 10 irriplement,atiori. the pre-computation step 
for a given a(.) t,akes ;3Ops. The  hash funct,ion then runs at about about 34- 
36Mbps. The  number of machine inst,ructions executed per byte is about 14. One 
particular bottleneck is the double-word shift---t,his alone takes 4 instructions. 

Method 2. In t>his riiet,hod to compute u ( z )  b(r) mod f(x), simply to perform 
a pre-computation t,hat allows us to compute, for 0 5 i < 7, the  maps  w(x) H 
v(x);csia(z) mod f(x) (deg TI(.) < 8) by t,able-lookup. This will requirc 8 tables, 
each with 256 64-bit entries, for B total of 16KB. With t,hese tables, we can carry 
out the multiplication by N using 8 table look-ups and exclusive-ors. 

Timing results. In our  Sparc-10 implenientation , this method requires 240,~s 
for the pre-computation, and runs at 32-54Mbps. The  iiiimber of machine in- 
structions executed per byte is about 7. The very large table seems to cause a 
significant performance degradation. 

For both of these methods, t o  achieve these hash rates one must process the 
message word-by-word, and not byte-hy-byte, that  is, each word of the message 
is read from memory as a wliolc, and then exclusive-ored into a register. Any 
byte-ordering problems can he dealt with at virtually no cost 

6 The Division Hash 

We now consider the division hash. There arc two problems that need to be dealt 
with: how to apply the hash Eunct,ion given t,he polynomial p ( x )  E GF(2)[z] of 
degree 64 tha t  defines i t ,  arid how to generate a random irreducible polynomial 
over GF(2) of degree 64. We deal with these problems in  t,urri. 

6.1 Hash Function Application 

Assume we have the polyriomial p ( z )  defining the hash function. Tf tmhe input to 
t,he function is m ( z )  = Cyzi 1 i i i ( 2 ) 2 ~ ~ ” ~ ,  we initialize ~ ( 2 )  to zero, and do the 
following: 

for i +- 71 - 1 down tJo - I  cto r ( z )  t- 

where m - 1 ( ; c )  is defined to be zero. 

p(x) (deg o(x )  < 64). We describe two mct,liods to implement this map.  

Method 1. In this method, we perform a prc-comprit~at~ion tha t  allows us to 
compute O(Z) H ~(z)z~~ mod p(z) (deg ~ ( x )  < 8) by table look-up. This will 
require a table of 256 64-bit erit,ries, for R total 2KH. Given this table for 8-bit 
reduction, wc c . a ~  easily compute the 64-bi0 reduction using 8 lable lookups, 
shifts, and  exclusive-ors. 

Timing resvlfs. In our Sparc- I0 irnpleinentation of this met,hod, the  pre- 
computation step takes about 3 0 p ,  and achieves a rate of 35-38Mbps. The  
number of machine instructions executed per byt,e is about, 10. 

+ m i ( x )  modp(s ) ,  

The critical operation is the 64-bit redriction map V(Z) w 7 / ( 2 ) ~ ~ ~  mod 
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Method 2. Thc double-word shifts requircd in the above method are quitc 
costly on 32-bit machines. On siicli niachines, the following avoids lliese shifts, 
and yields better pipeline ut,ilization as well. In this method, we perform a 
pre-computation tha t  allows us to compute, for 0 5 i < 4, the maps v ( x )  - 
1 / ( ~ ) 2 ~ ~ + ~ a  mod p ( x )  (deg ~ ( x )  < 8) .  This requires 4 tables, each with 256 64-bit 
entries, for a total of 8KB. With these tables, we can perform a 32-bit reduction 
with just, 4 table look-ups and exclusive-ors. We repeat this twice to get a 64-bit 
reduction. 

Timing results. For this metthod, t h e  pre-computation step takes 120/*s, and 
achieves a rate of 50-75Mhps. The number of riiacliirie inst,ruct#ions ~xecii t~ed per 
byte is about 6. 

A s  In the evaliintion Iiash, for reasons of efficiency, the message should be 
proccsscd word-by-word, instcad of byte-by-byte 

6.2 Generating an Irrcducihle Polynomial 

We now consider the problem of generating a random irrcducible polynomial of 
degree 64 over GF(2). One way is t,o generate polynomials at random and test 
for irreducibility. This is quite t,ime consuming, and requires a lot of random 
bits. 

A much better way t,o proceed is t,hr following. We can assume tha t  we 
already have one irreducible polynomial of degree 64, defining the extension 
field GF(264). Given this, we generate a random element, in GF(264) and then 
compute t,lie minimal polynomial of this element. This procedure is also nice 
since we only need 64 random bits. 

With this procedure, the probabilit,y lhat, we get a polynomial whose degree is 
less than  64 is 1/232 (the probability of choosing an element in GF(232)). While 
Ihis is small, it  cannot be ignored. If t>liis happens, one could repeat the above 
procediire. Howevcr, it, is a.ct,iia.lly bct,t,cr from both an efficiency and security 
standpoint to do t,he following: if we get, an irreducible q(z)  of degree less than 64, 
then simply define the hash function by the polynomial p(x) = 
Although perhaps counter-intuitive, it is riot difficult to show t.hat the security 
of this hash function is jus t  as good as that of t'he original (we leave this to the 
reader to verify). 

So we have reduced our problem to the following, which we state in more 
general terms. Let K be a field arid f(x) E I < [ x ]  a rnonic, irreducible polynomial 
of degree d.  We are given a polynomial g(z) E K [ z ]  of degree less than  d ,  and we 
want to compute its minimal polynomial modulo f(x), i.e., the rnonic polynomial 
h ( z )  E K [ z ]  of least degree such tha t  h , ( g ( z ) )  0 mod f(x). 

We describe three ways t o  solve t,his problem. 

Method 1. This rnet,hod, due  to Gordon [ ! I ] ,  applies only to a finite field K = 
GF(q). We compute the sequence of polynomials g(x)9 '  mod f(x) for 0 5 i 5 m ,  
where 772 is the smallcst positivc intcger such that y(x)qm g(z) mod f(x). 
Note tha t  m I d. We then comput,e h ( x )  = ~ ~ ~ ~ ' ( J :  - g ( x ) q ' )  mod f ( x ) .  When 



m = d ,  we replace h ( x )  with h ( z ) + f ( z ) .  'l'lris nirthod iises O(d310gq) arithmet,ic 
operations in Ii. 

Now consider tahe situation whcre 1; = GF(2) and d = 64. We have to  do 
63 squaririgs and multiplies modulo f(.c). There arc  a variety of ways to make 
the squaririgs fast with a pre-computed table. However, since the operands in 
the mult,iplies are difYererit every t,irne, we cannot perform a pre-compiitat>ion to 
speed this up, making t,hese miiltiplications q u i k  slow. 

Timing r e s u h .  In our Sparc-10 implrinentation ~ t,his method t8akes about 
8 2 0 ~ s :  35ps for the squarings, and 785ps  to do the mult,iplications. 

Method 2. One of the most obvious and well-known methods is to compute 
powers of g(z) rnodiilo f ( z ) ,  and t,hrri find a linear relat,ion using eliminat>ion 
t,echniyues. This will in  general take 0 ( d 3 )  arit,hnietic operations in I<. 

Consider the situat,ion where I< = GF(2) arid d = 64. To compute the se- 
quence of powers of g(z) niodulo f ( z ) ,  we first, build a table to make multipli- 
cation by y(z)  modulo f(z) fast,. For this, we use t81ie t,ecliniqiie of mct*hod 1 
in 55. Now we have a matrix M E GF(2)"x"4, arid we want to find a vector 
v E GF(2)IX6" satisfying ~ J M  = 0. One way to do this is standard Gaussian 
elimination; however, when we build t,hc mat.rix, tslie ruws are represented as 
word-pairs, but to perform Gaussian elirninat~ion, we need to  perform c o l i ~ m ~ i  
operations. Convertmirig this matrix to  a form that, makes Gaussian elimination 
efficient is quite time consuming. A rriuch bet,ter approach is that  of Parkinson 
and Wunderlich [15] (see also Lenst,ra and Manassc [In]) which finds a solution 
using row operations. 

Timing results. In our Sparc-10 implementatiori, this method requires about 
570,~s: 30ps to  build the multiplicat,ion look-up t,able; 1 2 5 p  to compute the 
powers of g(z); and 4 1 5 ~ s  to perforni the Parkinson- Wunderlich algorithm. 

Method 3. Consider the sequence of polynornialsg~(z), yl(z),  . . ., where yi(z) = 
g(z)' mod f(z). This is a linearly generated sequence over Ii with minimal poly- 
nomial h(z ) ,  i .e. ,  it satisfies a 1inea.r recurrence whose cocffkients are those of 
h ( z ) .  Borrowing a simple idea from Wiedernann [19], we consider the projected 
sequence a0 = yo(O), 01 = g](O), . . ., i.e., we sirriply take the constant terms of 
the polynomial sequence to get a seqiierice over I<. This latter sequence is also 
liriearly generated over A'; in general it,s minimal polynomial will divide h ( z ) ,  
but since h ( z )  is irreducible, and since the projected sequence is nonzero, the 
minimal polynomial of the projectled sequence is also h ( z ) .  

So now we have the following problem. We have a sequence of elements 
ao7 a l , .  . . in A' t,hat is linearly generated over I< with minimal polynomial of 
degree at. niost d. The first, 2d clenients of this sequence fully determine its mini- 
mal polynomial, and t>his can be very efficiently computed using the Berlekamp- 
Massey algorithm (see Massey [I41 and also Kaltofen and Saunders [ll]), which 
iises O(d2)  arithinet,ic operations in Ti. 

Consider now the sit,uation where li = GF(2) and d = 64. We compute the 
powers of g(z) as in method I ,  and pack the constant-term hits into 4 machine 
words. Uy keepirig elements of GF(2) packed into words, wit,h some care t81ie 
Berlekamp-Massey algorithm can be iniplenientcd so as to be quit,e efficient. 
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‘t‘irnzng resul ts.  In our Sparc- 10 iiriplt‘mpiit,atiori~ the tot,al lime t o  compute 
a rninimal polynorriial wit,h this niethod is about 36011s: 3Ops t,o build the mul- 
tiplication look-up table; 250ps to compute the sequence of powers; and 80ps to 
perform the Berlekamp-Massey algorithm. 

7 The Generalized Division Hash 

‘I’he generalized division hash achieves a hit-rate identical to that  of the division 
hash, but, has the advantage t,hat the required irreducible polynomial can be 
generated much faster. 

The generalized division hash works over the field A‘ = GF(28). To generate 
the hash function arid required tables, we have to perform arithmetic in li’. To 
do this, we use the standard technique of using exponentiation and logarithm 
tables so that  a miiltiplication in K takes one additsion and three table look-ups. 
To avoid special cases involving multiplication by 0,  we set t,he logarithm of 0 
to -255, and the exponentiation table is then indexed from -510 to  508. The 
t,otal size of these tables is 2KB. 

7.1 Hash Function Application 

Suppose we have a polyriornial p(x) E K [ x ]  defining the hash function. We can 
carry out division with remainder in  milch the same way as in $6. In fact, once 
we pre-compute t,he necessary tables, the algorithms for division with remainder 
are identical to those in SG. One difference is that const,ructing the tables takes 
just a little more time: 35ps (instead of 3Ops) in t h e  1-kable method, and 140,~s 
(instead of 1 2 0 p )  in the 4 t ab le  met,hod. 

7.2 Generating an Irreducible Polynomial 

We generate a random irreducible polyrioriiial over I i  as follows. We fix an ir- 
reducible polynomial j ( x )  t I<[x] of degree 8. For efficiency purposes, f ( x )  is 
chosen to  be of the form 2’ + fo(z), where degfo(x) < 4. We choose a ran- 
dom polynomial g(z) € K [ z ]  of degree less t#haii 8 ,  arid compute its minimal 
polynomial. This is done using t,he Berlekamp-Massey algorithm, as in the last 
section. This  requires tha t  we compute g(z)* mod f(x) for 0 5 i < 16. These 
multiplications are d a l e  by a method analogous to method 1 in 55. Again, the 
special form of f(x) makes these multiplications more efficient. Also as in SG, if 
we get an irreducible polynomial of degree less t,han 8, we use it anyway. 

Tinizng results. In our Sparc-10 implemcntation, the total time required to 
generate a random irreducible polynomial is 11 5ps: 35ps to build the multiplica- 
tion look-up table; 30ps t,o compute t h e  sequencc of powers; and 55ps to  perform 
the Herleka.mp-Massey algorithm. 
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8 Conclusion 

Our expcrierice indicat,es tha t  a message authentication scheme based on ei- 
ther the generalized division hash or t hc  evaluation hash, along with DES, is 
an att,ractive alternat,ive to  scherries based on MD5, or similar cryptographic 
hash functions: one can obtain a much higher degree of provable security, while 
attaining reasonable perfwmance. 

We summarize our empirical results here. Iktails  of how these estimates 
were obtained are contained in the  body of the  paper. The  scheme based on the 
generalized division hash requires 120 random bits to generate an instance of 
the scheme. It  uses one 8 K H  h b l e  per instance. Given the 120 bits defining the 
instance, there is a set-up cost. On a 70MHz Sparc-10, the total set-up t ime is 
3 3 0 p ,  and on a 90MHz Pentiuni, 315~s .  As  t o  speed, it runs al 50-75Mbps on 
a Sparc-10, and 85-lO0Mbps on a, Pent,iurri. There is also the  cost of one DES 
application per message: about 1 lps on both machines. 

In contrast, consider a scheme based on the  evaluation hash. It also requires 
120 random bits to generate an instance of t8he scheme, but uses one table of 
2KH per instance. On a Sparc-10, the tot,al set,-up cost is just 105ps, and runs at 
3 4 - 3 6 ~ s .  We have riot, irriplementkd this on the Pentium. Because of the smaller 
set-up time, and because the smaller tahlc places less presslire on the cache, this 
scheme could be preferable t,o t.he generalized hash scheme in some situations. 
This requires more cxperirrientation. 

We compare the above to  MD5 and CkK-DES. 
MD5 has no significant sct-up time or storage requirements. It runs at 

41Mbps on a Sparc-10, and at l l3Mbps  on a Pentium. 
CBC-DES has a set-up time of 75ps on t,he Sparc-10, and 94ps on the Pen- 

t ium. The storage requirements are not. significant. It runs at about 6Mbps on 
both machines. 

We note that our hash techniques complement the buc,ket,-hash technique 
developed by Rogaway [17] very nicely. For high-speed authentication of very 
large files, orie would reduce the input, size by a factor of, say, 10 using a bucket 
hash, and then apply, say, a, generalized division hash to this shorter string. 

Appendix A: Proof of Theorems 2 and 3 

To prove Theorem 2 ,  without loss of generality, we assume tha t  the adversary 
is deterministic, and that all S-queries are made hcfore all V-queries. We are 
assuming that f is a random permutation. For 1 5 i 5 91, the  adversary obtains 
strings I U ,  = f ( i ) @ h ( r 7 ) .  where each message xa is some function of w1,. . . , w - 1 .  

Let w = ( ~ 1 , .  
~ u ' ~ , ) .  

Lemma5. L e t  h E H be an  arbz trary  hash  functzon, a n d  let  w be an arbz trary  
5eyueiice of strangs that can appear  Q S  outputs f r o m  ihP S-oracle wzfh nonzero 
probabzlzty. Thm uif have Pr[hlw] 5 2 Pr[h] 
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Theorem 2 follows Lrivially from this lemma, using the standard argument 
for the security of the basic universal-hash const,ruction with the fact, that H is 
c-AXU. 

To prove Lemma 1, we use Bayes' theorem. 

We want to bound the quantity 

from below. 
Fix g E H ~ and let u, = w, @ g ( x z )  for 1 5 i 5 41. Then we have 

It follows that, T is just nyLi'(2' - i)-' times the probability that for a 
random g E H ,  the sequence v = (Q, . . . , 7 i q l )  contains no duplicates. NOW, fix 1: 
arid j with 1 5 i < j 5 yl .  If, OII the one hand, zi = z j ,  then by the assumption 
that w appears with nonzero probability, arid the fact that f is a permutation, 
it follows that  wi # wj, and so va # ' u j .  On the other hand, if zi # xj: then 
by the fact that  H is 6-AXU, it follows that vi = v j  with probability at most C .  

Thus, the sequence v contains duplicates with probability a t  most q t t / 2 ,  and SO 

41 -1 

Prom this it follows that  Pr[hlw] 5 Pr[h]/(  1 --p:~/2). ' rhe lemma then follows 

Tha t  proves Theorem 2. For Theorem 3,  the key lemma is the following. 

Lemma6. Le t  hl , h2 E HI  x HZ be a n  arbz trary  pazr  of hash f u n c t z o n s ,  a n d  
let w be a n  arbz trary  sequence  of s t rzngs  tha t  c a n  appear  a s  o u t p u t s  from the 
S-orac le  wzth n o n z e r o  probabzlzty. T h e n  we h u u e  Pr[hl, hzlw] 5 2 Pr[h l ,  hz].  

from the assumption that qf 5 l / c .  

The proof of this lemma is quite similar to  the proof of Lemma 1, arid wc 
leave the details to  the reader. 

Appendix B: Proof of Theorem 4 

The proof borrows ideas from [l] arid [3]. Without loss of generality, we assume 
that the adversary is deterministic, and makcs all S-queries before all V-queries. 
We are assurning that f and g are random fi~nct~ions on &bit strings. 
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First of all, note that  the contiit,ional probability of forging a MAC given 
Q = /? is at most yf /2 '+ '  + ty2. This follows by a sta.ndard argument. We 
shall show that the conditional probabiiit,y of forging a MAC given ry # @ is 
~7/2~' + q 2 ( c  + l/2'+'). The theorem t,hen follows by a simple calculat,ion. 

For 1 5 i 5 q1+y2, associat,cd with query i are ta.g values ~ i ,  si E GF(2') and 
a message 2;; for 1 5 i 5 41, the t,ags are independently generated random values, 
while for q1 < i 5 q1 + 4 2  they are chosen by t,he adversary. For 1 5 i 5 q1 t 4 2 ,  

let ui = Q T ~  + . ? a ,  vi = Pri + s;, and I I ) ~  = f ( u , )  CF, g ( u i ) .  
Define a matrix M over CF(2) wit,h q1 $ 4 2  rows and 2'+' columns as follows. 

The columns of A4 are split into two halves, and within each half, columns are 
indexed by elements of GF(2'). For any row i, we p1ac.c a 1 in the column in 
the first half indexed by ui ,  and in t,hc column in the second half indexed v;; a 
0 is placed in all other columns. Consider t h e  vect,or space W spanned by the 
first y1 rows of M.  We say that t,herta is a s p o n t a n e o u s  d e p e n d e n c y  if W has 
dimension less than 91. For ql < i _< q 1  + 4 2 ,  we say that row i of M is a coerced 
d e p e n d e n c y  if it lies in W ;  we call this coerced dependency n o n t r i v i a l  if does not 
appear among the first y1 rows of M .  Notice that if there are no spontaneous 
dependencies, then for 1 5 i 5 q l ,  the random variables w; are just random bit 
strings, nol correlated with any others seen by the adversary, or with h ,  a ,  or p. 
The conditional forgery bound follows from the following three lemmas. 

Lemma 7. T h e  probabi l i ty  t h a t  t h e i t  i s  a s p o n t a n e o u s  d e p e n d e n c y  is h o u n d e d  
by E j & I / 2 W ( 2 j )  I y : P 2 ' .  
Proof. This is proved using a count.ing argunient, as in [l], iriakirig use of the 
fact, that  the map that sends ( T ,  s )  t,o ( N T  + s , , !?~ + s) is one-to-one, and the 
fact for 1 5 i 5 41, t>hat the values ri,, si are generatfled a.t random. We ornil the 
details. 

Lemma 8. T h e  prohahi l i ly  t h a t  t h m ?  zs n o  spon laneom d e p e n d e n c y ,  h u t  t h e r e  
is a n o n t r i v i a l  coerced depen,den.cy i s  bounded b y  y2/(2' - 1) ~ j ~ 1 ( q 1 / 2 ' ) 2 ~ + 1  5 
422-1-2 .  

Proof. It suffices t,o bound the probability of creating a coerced dependency in 
a modified interaction where for 1 5 i 5 41, the random variables wd are siniply 
defined t o  be random strings. One t,hen makes a similar counting argument, 
using of the additional fact t,hat N arid /? are chosen a(, random, subject, to  
a # p. Again, we omit, t8he details. 

Lemma 9. Giwn tha t  th,pre are n o  s p o n t n n  eous or  n o n t r i v i a l  coerced d e p e n d e n -  
c i e s ,  t h e  c o n d i t i o n a l  prohahi l i ly  of a, f o r y e r y  ts at iriosl q2c .  

Proof. Consider any fixed i ,  with q1 < i 5 (11 + q 2 .  On thc one harid, suppose row 
i is equal to  some row j ,  with 1 5 j 5 q l .  Finding a valid MAC for xi in this case 
is tantamount to  finding h ( z j ) $ h ( z i ) .  This can happen with probabilit,y a t  most 
c ,  since H is E-AXU, and-as there were no spontaneous dependencies--h is not 
correlated with any random variables seen by the adversary. On the other hand, 
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if row i does not appear among the first y1 rows, then since t,liere are no nontrivial 
coerced dependencies, the value wi is just, a random bit string, not correlated 
with any random variables seen by the adversary. Therefore, the probability of 
finding a valid MAC in this case is 2-'. So i n  eit,her case, the probabilit,y t ha t  
this a t tempt  at forgery succeeds is at, most, f . 'I'he overall probability of a forgery 
is thus q z c .  
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