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Abstract. The linear complexity of an /V-periodic sequence with com-
ponents in a field of characteristic p, where A' = np" and gcd(ra,p) = 1,
is characterized in terms of the nl' roots of unity and their multiplicities
as zeroes of the polynomial whose cofficients are the first N digits of the
sequence. Hasse derivatives are then introduced to quantify these multi-
plicities and to define a new generalized discrete Fourier transform that
can be applied to sequences of arbitrary length Ar with components in a
field of characteristic p, regardless of whether or not gcd(Ar, p) = 1. This
generalized discrete Fourier transform is used to give a simple proof of the
validity of the well-known Games-Chan algorithm for finding the linear
complexity of an /V-periodic binary sequence with N = flv and to gener-
alize this algorithm to apply to Ar-periodic sequences with components
in a finite field of characteristic p when N = pv. It is also shown how
to use this new transform to study the linear complexity of Hadamard
(i.e., component-wise) products of sequences.

Keywords: discrete Fourier transform, 1)F'I\ Gomes-Chan algorithm, Hadamard
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1 Introduction

The main purpose of this paper is to provide a convenient framework for the
study of the linear complexity of periodic sequences with an arbitrary period. In
particular when the sequence is an A/-periodic sequence with components in a
field of characteristic p and N — np" where gcd(«,p) ^ 1, we seek a formulation
that is as convenient as that for the usually studied case when gcd(A/,p) = 1.
In Section 2, we give such a formulation in terms of the n,lh roots of unity and
their multiplicities as zeroes of the polynomial whose cofficients are the first N
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digits of the sequence. This leads naturally to the use of the Hasse derivative as
described in Section 3 to characterize linear complexity.

Another purpose of this paper is to introduce a new generalization of the dis-
crete Fourier transform that admits application to sequences of arbitrary length
N. This is done in Section 4, where it is further shown that the linear complexity
of an Ar-periodic sequence with components in a finite field of characteristic p
is equal to the appropriately denned "weight" of its generalized discrete Fourier
transform.

To illustrate the usefulness of the approach in this paper, we give in Section
5.1 a simple proof of the validity of the well-known Games-Chan algorithm for
finding the linear complexity of an iV-periodic binary sequence with N = 2V, and
we generalize this algorithm to apply to TV-periodic sequences with components
in a finite field of charactcrisitic p and N — p". Finally, in Section 5.2, we show
how our techniques can be used to study the linear complexity of Hadamard
products of sequences.

2 Linear Complexity of Periodic Sequences

The linear complexity, £(s), of the semi-infinite F- ary sequence s — so, .si, s-2, • • •
where each s, lies in the field F, is the smallest nonnegative integer L for which
there exist coefficients c\, c->, • • •, C-L m F such thai

Sj + ciSj-i + • • • + ('!,»]-1. - 0 for all j > L

or, equivalently, such that

P ( D ) = ( s u + S l D + s 2 D - + ••• ) C ( D ) , ( 1 )

is a polynomial of degree strictly less than L where C(D) = 1 + cj I) + cnD +
• • • + C.JJD

L. In engineering terms, £(s) is the length L of the shortest linear
fee,dback shift- register (LFSR) that can generate s when the first L digits of s
arc initially loaded in the register; the polynomial C(D) is called the connection
polynomial of the LFSR.

Suppose now that the sequence s is A'-periodic, i.e., ,s,; = fti+N for all i > 0.
Then the formal power series ,sn + s-\ I) + .s^/J)2 + • • • can be written

.so + .s1/; + .s.,/;2 +•• • =sN(D)(\+ON + D'2N + ••• )

where sN(D) = SQ + s\D + S2D2 -\- • • • + .s,v_]Z)A is the polynomial of degree
less than N determined by s'v = [,s(), .si, • • • , .s,v-i], and hence

(.<>u + ,s, D + .s, D2 + ••• ) (I - Ds ) = sN (D).

Multiplying by 1 - DN in (1) thus gives P{D)(\ - DN) = sN{l))C(D), which
ensures that deg(f'(/J)) < deg(C(D)). It follows that the necessary and sufficient
condition for C(D) = l + ciD + e^D2 + • • +cjDL, with coefficients in F and with
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CL ^ 0, to be the connection polynomial of the shortest LFSR that generates s,
and hence for L = deg(C(D)) to be the linear complexity of s, is that

sN(D)C(D)= P(D)(l-DN) (2)

where P(D) is a polynomial satisfying

gcd{P{D),C{D))=\. (3)

The zeroes of 1 — DN are iVth roots of unity by definition and in general lie
in some extension field E of F. When a primitive A'11' root of unity [i.e., one
which is not also an n"1 root of unity for some ??. with 1 < n < N] does not exist,
then the distinct zeroes of 1 — DN will have multiplicity greater than f. Suppose
now that -y is a zero of 1 — DN with positive multiplicity k. It follows from (2)
and (3) that j is a zero of C(D) with positive multiplicity m if and only if y is a
zero of sN(D) with multiplicity //, = k - m > 0. But (2) and (3) also imply that
•y can be a zero of ('(D) only when •) is a zero of 1 — DN, and hence we have
proved the following useful lemma.

Lemma 1. Let C(D) be the connection polynomial of the. shortest LFSR that
generates the F-ary N-periodic sequence s. Then a zero, y, of 1 — D with
positive multiplicity k is a zero of (J{D) with positive multiplicity m if and only
if 7 is a zero of sN(D) with multiplicity j.i such thai 0 < \i < k, m which case
m — Ic — fj,. Moreover, C{D) has no zeroes other than those determined in this
manner.

Consider now the case where the field F has characteristic p so that N may
be written as TV = up" where gcd(»,/>) — 1. Then there exists a primitive nth

root of unity, a, in some extension field of F so that ft', / = 0, 1, • • • , n. — 1, are
the n distinct roots of unify. Moreover.

I - DN = ( 1 - Dnf"

and hence a* is a zero of 1 — DN with multiplicity p" for i = 0, 1 , - - • , « — 1.
Using these facts together with Lemma 1 yields the following result.

Proposition 2. Let C(D) be the connection polynomial of the shortest LFSR,
that generates the F-ary N-periodic sequence s, where F is a field of prune
characteristic p and where N = up" with gcd(n,p) — 1, and let a be a primitive
n root, of unity in F or some extension of F. Then a'', where 0 < i < n,
is a zero of C(D) with positive multiplicity rn, if and only if a1 is a zero of
sN(D) with multiplicity fi{ less than p". in which case rrn ~ p1' — fii. Moreover,
these are all the zeroes of C(D) so that the linear complexity of s is C(s) —
m 0 + mi + • • • + "> n - i •

Note that [i{ -= 0 or m, — 0 in the proposition indicates that a' is not a zero
of s (D) or (J(D),, respectively. The usefulness of this proposition is that it
characterizes the linear complexity of the TV-periodic sequence s entirely in terms
of the multiplicities of the n roots of unity as zeroes of sN(D), a polynomiai
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directly available from the sequence s. 01' course, as the lemma states, this is
equivalent to determining the multiplicities of the nlh roots of unity as zeroes
of C{D) or, again equivalcntly, of the reciprocal polynomial of C(D), which is
often called the characteristic polynomial of the sequence. Determining the linear
complexity of an iV-periodic sequence by ''counting zeroes" of its characteristic
polynomial is a technique that has been used by many authors, cf. [8], [13] and
particularly [15], p. 78, but the emphasis on "counting zeroes" in sN(D) appears
to be novel. To proceed further with such zero-counting, we require the derivative
described in the next section.

3 Hasse Derivatives and Hasse Matrices

Let i'\D\ denote the ring of polynomials in the indeterminate I) with coefficients
in a field /•' and let a(D) = J2iaiD' b e a polynomial in F[D}. The j t h formal
derivative of a(D) is defined to be the polynomial

£ ; ) * " - ' •

The usefulness of the formal derivative m a field of prime characteristic p is
greatly limited by the fact that a(j)(L>) = 0 for all j > p because then j \ = 0. Of
greater utility in such fields is the j l h Hasse derivative [7] (sometimes called the
j t h hyperdcrivative [9], and, particularly when extended to rational functions,
the Hasse-Teichmuller derivative [6], [16]). which is defined as

Note that aiJ'(D) - (j\)a^(D) and hence it, is always true that a{]){D) -
(^'(D). Hasse derivatives in any held havt̂  the same connection to repeated
factors of a polynomial as do formal derivatives in fields of characteristic 0,
namely (cf. [3]):

T h e o r e m 3 . If h(D) is irreducible m F[D] with h[l](D) / 0 and if m is any
positive integer, then [li(D)]m divides a( I)) if and only if h(D) divides a(D) and
its first m — 1 Hasse derivatives.

Remark. If F is a finite field or a field of characteristic 0, then every h{D) that
is irreducible in F\D] satisfies h{^(D) ^ 0.

Invoking Theorem 3, we immediately obtain the following corollary of Proposi-
tion 2.
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Corollary 4. Lets be an F-ary N -periodic sequence, where F is a finite field of
characteristic p and where N — np" with gcd(n,p) = 1, and let a be a primitive
n t h root of unity in F or some, extension of F. Then the linear complexity of s
is £(s) — mo + m[ + • • • + 'f»Tj-i where

0, if sN(ai) = s
p" - min{j :

= 0
0}, otlierwise

Example 1. Consider the binary (i.e., F — GF(2)) 12-periodic sequence s with
s12 = [0,0,1,0,1,0,1,0,0,0,0,0]. Then N - 12 and p = 2, which gives n = 3
and v = 2. Taking rv as a primitive third root of unity in an extension of GF(2)
requires that a be a zero of x1 + x + 1 and hence that n1 — a + 1. From
the sequence s12 we obtain immediately the polynomial slI(D) = D2 + iJ4 +
D6. Taking Masse derivatives gives the p" — 1 = 3 polynomials required to
be considered in Corollary 4, namely .s12!1^/)) - 0, sv^l\U) = 1 + DA, and
.s12[3J(D) = 0. Direct subsitution of ft' in these polynomials gives

()

.s '-(a) = 0, s12[1]('») - 0, s12[2](r.v) = 1 +a

, s r V 2 ) = 0. . s r J ! l l (« 2 ) = 0, «1 2 ( 2 l(a2) = »•

from which, by applying Corollary 4, we find

•niQ — 4, mi — 2, riio = 2.

It follows that, the linear complexity of s is £(s) = WQ + mi + ??7.2 — 8. Because,
by Proposition 2, m, is the multiplicity of a' as a zero of the minimum degree
connection polynomial C(D), we can compute this polynomial as

C(D) ._ I) 2)'2

but we have no need to make this calculation if our interest is only in the linear
complexity of s.

We now introduce a matrix that wo will find useful in connection with the
generalized DFT in the next section.

Definitions. The Hasse matrix Hk{D) over a field /•' is the k x k matrix whose

(i, j)-entry is I . D->~!, the (i - 1)"' Hasse derivative of the monomial DJ~l

in F[D).

Example 2. In a Held F of characteristic '2.

1 D D2 D3

o i o n ' 2

0 0 1 D
0 0 0 1
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Because a Hasse matrix is upper triangular with l's on the main diagonal, it
is invertible. The inverse matrix is easily obtained.

L e m m a 6 . The inverse of Ike Hasse matrix Hk(D) is [[^( — D).

Proof: The lemma follows immediately from the binomial expansion

Kk
( • ; > - " • = °

applied to the off-diagonal terms in the product Hk(I))Hu{ — D).

Remark. The lemma implies that in fields of characteristic 2, where — 1 — +1 ,
the matrix Flh(D) is self-inverse.

4 A Generalized Discrete Fourier Transform (GDFT)

We first review the conventional discrete Fourier transform (OFT). Suppose now
that sN — [s», s\, • • • , .s/v_-i] is an arbitrary Ar-tuple with components in a field F
and that there exists a primitive Nth root of unity, a, in F or some extension of
F. Then, the Discrete Fourier Transform (DFT) of the "time- domain" JV-tuple
sN is defined to be the "frequency-domain'" A'- tuple, SjV = [SQ,SI, • • • ,Sjv-t],
given by

where as before

N -so + s i D + * • > ! ) ' + • • • + . s . v - i / ^ " 1 .

The time-domain /V-tuple s"'v can bo recovered from its UFT S^ in the manner
that

where
SN(X) = .% + S\X + S-,X" + ••• + S V - i - V ^ - 1 .

Here, N denotes the element of the field F given by the sum of N 1 's. In par-
ticular, if the field F has prime characteristic p, then N is taken modulo p. We
will write

SW = l)FT,,(s'V)

to emphasize the dependence of the DFT on the choice of the primitive N^ root
of unity, a.

Again let s denote the N-periodic seim-infinite sequence

s — . s ' n , s \ , • • • , .'••iv - 11 A f i • - s ' ! . • • •

obtained by endlessly repeating the A'-tuplo sA . [Note that the period of s may be
a proper divisor of Ar.] The DFT possesses many properties that are useful in the
analysis of such A1-periodic, sequences, cf. [11], in particular "Blahut's Theorem",
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which asserts that the linear complexity of s is equal to the Hamming weight of
DFT«(sA) .

Of particular interest in cryptography is the case where F is the finite field
GF{q) — GF(jf). The necessary and sufficient condition for GF(q) to contain
a primitive /V'-th root of unity is that N and p be relatively prime, i.e., that
gc,d(N,p) = 1. The usual DFT is thus useful in the analysis of TV-periodic g-ary
sequences just when gcd(N,p) = 1. Several authors, [2], [5], [12], have pro-
posed generalizations of the DFT that permit its application to TV-tuples with
gcd(TV,p) -£ 1. One purpose of this paper is to propose a new such generalization
of the DFT that was inspired by that in [5] but is somewhat simpler.

Let s = [SQ, ,i], • • • , SJV_I] be an arbitrary A'-tuple with components in a
field F of prime characteristic p and suppose that N = np" where gcd(n,p) = 1.
Let a be a primitive nth root of unity in /•" and let, sN^(D) denote the i t h Hasse
derivative of .s;V(iJ).

Definition 7. The generalized discrete Fourier transform (GDFT) of the ;V-
tuple s w = [*,,, s\, • • • , s/v_i], where A' = np" and gcd(n,jp) = 1, is the p" x n
matrix S ! '"xn given by

gp xn =

s'v(a)

(a'
i - i

.

When v — 0, the GDFT reduces to the usual DFT. We will soon see that
the GDFT is indeed an mvertible transformation, as is always demanded of a
"transform."

ExampleS. Continuing Example I, we see that to compute GDFTa(s1 2) ac-
cording to its definition, we require the following additional evaluations of Hasse
derivatives:

This gives

12 \
GDFT,v(s^) =

I 0 0
0 0 0
0 1 + a a
0 0 0

We now interpret Corollary 4 in terms of our GDFT. Toward this end, we make
the following definition.

Definition 8. The Giinthcr weigh!, of a rectangular array is the number of its
entries that are non-zero or that lie below a non-zero entry.
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The multiplicity, m,, of ex' as a zero of (J(D), as defined in Proposition 2, is
specified in Corollary A in a manner that is seen to be just the number of entries
that are non-zero or that he below non- zero entries in the (i + l) s t column of
the GDFT Sp x " of the TV-tuple aN obtained from the /V-periodic sequence s.
The immediate consequence is the following very useful result.

Theorem 9 (Giinther-Blahut Theorem). Thf linear complexity of the, F-
ary N-periodic sequence s = . s u , s ^ , • • • . s ^ v - i , SQ, • • • . S2JV-I1 *0i • • • ,. where F is

a finite fi.e.ld of characteristic p and where N = up" with gcA(n,p) — 1, is the
Giinther weight of the GDFT Spl/><" of the N-tuple sN = [s0, s{, • • • , S J V - I ] -

When v — 0 so that n - N and the GDFT array Sp> x" reduces to a one-
row matrix, then the Giinther weight of S'7 x" is just its Hamming weight.
Thus this theorem is a natural generalization of Blahut's theorem for the usual
DFT. We have called this generalization the "Gunther-Blahut Theorem" [and the
corresponding generalization of Hamming weight the "Giinther weight"] because
its content is equivalent, to a result given by Giinther in [5], who derived it
from properties of the somewhat, different, generalization of the DFT that, he
introduced there.

Example/,. The GDFT array GDFTa(s1 2) = S 4 x a of Example 3 is seen to
have Giinther weight 8, which shows that the 12- periodic sequence s has linear
complexity 12, in agreement with the computation of Example 1.

More insight into the GDFT can be obtained by first writing sN (D) in the
form

sN(D) = ,s" (Dp") + Ds" (I)''") + • • • + / ) ( P " ~ 1 V " , , , ,«(Z)P")

where
s'(i)(D) = Si + si+r*l) +••• + sl+{n_l]rD

n- '

is the polynomial associated with the n-tuple s'JV — [.s,, s,:+p.-, • • •, i>,+(„_!),,-,.']

obtained by taking every (p")th digit of s'v starting with st. i.e., s"- is the i t h

phase of the decimation of sjV by p". Next, we define the "time-domain" array

sp> xn to be the p" x n matrix

* ' ( n - 1 );>"

Now let jj be another and |)ossibly diU'erent » lh root of unity in F or some
extension of F and define the matrix DKTrf(s

p"X11) to be the p" x n matrix
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whose (i+ 1)M row is the conventional DF'l1 with respect, to ft of the n-tuple
Taking Hasse derivatives in the expression

for sN'(!)) gives d i r ec t ly

We. now choose /̂  = aJ' and note that, because gc.d(n,pl/) = 1, (i is indeed a
primitive n th root of unity. It, follows that

«"(<*')

(4)

The vector on the left in this equation is just, the (i-\- l ) s t column of the matrix
Sp"xn _ GDFT a(sN) . while the vector on the right is just the (i + l ) s t column
of the matrix DFT/:i(s

p' x n ) . Because the matrix Hp.<(a') is invertible, it follows
that one can recover I)FTJ,j(s

p"x") from GDFT,K(sN) and of course one can then
recover s^*" , and hence also sN from DFl>(si '"x"). It follows that the GDFT
is indeed invertible.

U' 5. Continuing with !{, we have the \f x n = 4 x 3 time- domain array

4x3

Noting that f) — <v!' = a4 — a, we obtain

0 1
0 0
1 1
0 0

lin

DF'l
DF'l
DF'l
DF'l

0
0
0
0

;A
«(
\A

[0,1
[0,0

[ U
[0 ,0

0 ] ) '

0])
0])
0])

' 1

0
0
0

a

0
Q

0

f

1

+ a
0
+ a
0

Pre-multiplying each column of s / |x ' ! by the corresponding one of the following
matrices:

/-/„(!) =

1 1
0 !
0 0
0 0

1
0
1

0

1"
1
1
1

, HA{<\) =

" 1 a

0 1

0 0

0 0

+ f>
0
1
0

1
1 +n

a
1

.,
, H4(t\ ) =

" 1 1 + a » 1
0 1 0 a
0 0 1 1+a
0 0 0 1
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gives again the matrix

1 0 0
0 0 0
0 1 + a a
0 0 0

= S4x ; t = GDFT,,

in agreement with the computation in Example :j.

5 Applications of the Generalized DFT

5.1 The Games-Chan Algorithm and its generalization

The theory of the GDFT presented in the previous section specializes in an
interesting way to the case we now consider where the components of the A;-
periodic sequence s lie in a finite field of characteristic 2 and N = 2V so that
n — 1. The time-domain array sJ x l is now just the transpose of the 2"-tuple
s2' = [so, *!,•••, .s^-i]- Because a — 1 is the only first root of unity, the DFT for
length n ~ 1 is just the identity transformation so that DFTi(s2 x l ) = (s2 ) T

where, here and hereafter, the superscript T denotes transposition. The GDFT
also reduces to a single column that, according to (4), is given by

The matrix lbw{ 1) lias an especially simple form.

Lemma 10. In any field of characteristic i! and for any integer v > 1,

H • » , ( [ ) =
ff._,„_,( 1) //._,„_,( 1)

0 / / 2 — ' ( 1 )
(6)

Proof. By the definition of the llasse matrix, the entry in row i-\~ 1 and column
j + 1 of Hw(\) is (•',). To prove the lemma then, it suffices to show that

for 0 < i < 2"~> and 0 < j < 2IJ~]. But, by a theorem of Lucas [101 (cf. also
[1], p. 113), for any prime p, any positive integer u, and any integers i and j
satisfying 0 < i < pv and 0 < j < p",

n (mod

where [ j v - i , • • • , j i ,jn}p arid [iu-\
and j , respectively. For p — 2 and for 0 < / < 2"
representations of j and 2 " " ' +j are [(),.;'„_ i, • • •

, i\. iu]r are the radix-p representations of i
and 0 < j < 2 ; /~ [ , the radix-2
• io]-> and [ l , j ^ _ 1 , • • • , j \ , jo] a,

respectively. Similarly, the the radix-2 represen ta t ions of i and 2 " " 1 + i are

[0, z,,_i, • • •, ?'i, i(\}2 and [1 Av- i, • • • , ;>\, /(i];>, respectively. T h e equal i t ies claimed

in t he l e m m a now follow immedia te ly from (7) and t he fact t h a t (0) = (()) —

(i) = i
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We now split the time-domain sequence into its left and right halves in the
manner s J = [sf : s f ] where s'f ' = [sn, st, • • •, so* - i_ i ] and s f =
[s-j^-i , •<*2"-1 + i i • • • . - S L« '~ I ] - W e can t h e n wr i t e

and hence

(;DFT(S- ) =

CDF'l (s2 ) =

/ / , , - , ( I )
(sf

- i . T

(8)

Because the llasse matrix H-,v-i(\) is non-singular, it now follows from the

Giinther-Blahut Theorem that: 1) if s'f + s f = 0, then the linear complexity

of the 2"- periodic sequence £(s) of s is the same as that of the 2""1-periodic

sequence having s f as its first 2""1 digits; but 2) if s f + s f ^ 0, then £(s)

is 2v~l plus the linear complexity of the 2"~J-periodic sequence having s£ +

s f as its (irst 2"" ' digits. These considerations immediately establish the

validity of the following simple algorithm for determining the linear complexity

of the 2"-periodie sequence s.

Algorithm 1 (Games-Chan) tinier v and Ike first 'I" digits s2 oj the 2"-
periodic sequence s with components in a finite field of characteristic 2.
Set L := 0
REPEAT

Split the sequence sJ into its left and right halves
s"i and sft , a. spec lively.

IF sf"' + s ' f = 0 THEN replace sL'' by sf ~'

ELSE set I, := L + 2"""J and replace s~' by s'f + s}'{
Decrement v by 1.

UNTIL // = ().
IF sl ^ 0 777/',W set I. :- L+ 1.
Output L, the linear comptenty £(s) c /s .

This algorithm is precisely the well-known Games-Chan algorithm [4], cf. also
[14], which was originally formulated for binary sequences. The argument from
the GDFT given here shows that the algorithm can be used unchanged for
sequences over any finite field of characteristic 'I.

It is now also an easy matter to generalize the Games-Chan algorithm to
//-periodic sequences with digits in ;\ finite field of characteristic p, as we now
explain for the case /> = ;S. For this case, tin.1 recursion (6) becomes

0 //,,— , (I ) 2 / / , , , - i ( l )

0 ' 0 77?,.-,(l)

It follows that when the first ',VJ digits s''' of the 'V- periodic sequence s are split
into their left, middle and right thirds s)1 and s'^ , respectively, then
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in place of (8)  one obtains 
Y -  I 

Y-.  1 

H:3”-l(l)(s;,”-‘ + s& + sg -y  
R [ Hpl ( l ) ( s ; ; - ’  )‘T 

c ; D F T ( ~ : ~ ” )  = + Z ~ ; ~ ” - ’ ) T  

Because the Hasse matrix ( I )  is non-singular, it, now follows from the 
Giinthcr-Blith~1t Theorem t,hat,: 1) if‘s;,”-’ + s ~ ~ - ‘ + s ~ - ’  = 0 arid s i r  +2sZ- ’  = 
0, then Lhe linear coinplexity C(S) of tlie 3”-periodic stxliience S is t,he sarnc 
as that of t,he 3”-‘-pcriodic, sequence hnviiig s ; ~  as it.s initial segment; 2) if 
s:,”-’ + s5-I  + s5-l = 0 but, 5;i-l -t ‘2sg-I # 0, t,hr:n C(S) is 3”-’ plus thr 
linear complexity of t,hc, 3’- I -periodic sequence having s i  +2s$-l its it,s i n i h l  
segment; and finally 3 )  if s L  + sf;-‘ # o tkieii L ( S )  is 2 x 3”-’ plus 

as its inilial segment, The necessary modification of the Games-Chsn algorithm 
is now obvious arid its description will be oinit,ted. For ail arbitrary prime p ,  the 
arialogoiis argurncnt shows t,hat sriY c m  Iw split into p disjoirit subsequcnces of 
length p u p ’  and the linear complexity of t,he p”-periodic sequence S dcterniiiicd 
from ,u linear cornt~ina.t,io~~s of these sequericcs. /\gairi WI: omit, the obvious clctails. 

Y -  I 

u - .  1 

:3L,- I + 
t8he linear complexitmy ot’ tlie 3”-1-periotlic sequence having s;,~-’ + s;i-’ + s;”-’ 

5.2 

We now show t,he utility of t,he GDFT for t.he aria.lysis of sequences obtained hy 
merrioryless non1inea.r combining of periodic scqiiences, an operation often per- 
formed in the running-key generators of additive stmam ciphers. Such operatioris 
can always be exprcsswl as a 1inea.r combiristion of various Hadarnard products 
of t,he input  scquenc~s, where by a I ladaninrd  p m f u c t  is meant a componentwiso 
niultiplicat,ion of t8hc seqiiences, which we dcnok tby A .  

I& t arid ii be q-ary A’-periodic S I ~ ~ I I ~ I I C P S  where (I = y ” ,  N = np’ and 
gcd(n, y )  = 1 and lct S h e  the IIadarrritrtl p r o d u c t ,  t A ii. Tlwn sN is also the 
Hadnmard prochiclr t N  A u” of t“ arid LI“’ . H u t  it is a.lso t,rue for siibst.quences 
thal 

wlierc tyi, = [ ~ ~ , ~ j t ~ , ~ ~ ” . ~ ~ , + ~ ~ , , - l ) ~ , ~ ]  iitltl u;:, = [ t l ; ,  u,+~,”:’. ? ~ i + ( ~ , , - l ) ~ y ] .  BY 
tshe corivolution proprrt,y of t,h? (usual) DF‘I’o for lcngt,h n ,  d. [ I l l ,  the DF‘T 
Sril of syi) is A tirrics t,he circu1a.r convo luhn  IT;,, @T7I of the length-n 1)FTp’s 
T;;) mid Uyi, oft::.) and 

Application to Hadainard prodiicts of seqiiences 

siJi) = [ s ~ ,  . s , . + ~ Y , .  . . ~ ~ ~ + ( , , - ~ ~ ~ u ]  1 t;ii A 

( 7 )  

resyecl i~urly .  Hence, we haw 

I 
i j ( s p v “ r ’ )  : - -T’  , U ($1) 

I 1  

where LVC have i trt,rotlut iot,itlioii for a r r a y s  
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This formulatioil togcthet wi th  (4), iiiipliw t h a t  ttir theory of liiiedr complexity 
for Hatlhmartl pioducts of A-periodic w q u e n c ~ h  for grrieral N can hc ohtairied 
directly from Ihc theory f o r  t h e  wc~ll-st udied s p m a l  rase whcrc gcd jN ,p )  = 1 
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