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Abstract. The linear complexity ol an N-periodic sequence with com-
ponents in a field of characteristic p, where N = np” and ged(n,p) =1,
is characterized in terms of the n'™ roots of unity and their multiplicities
as zeroes of the polynomial whose cofficients are the first N digits of the
sequence. Hassc derivatives are then introduced to quantify these multi-
plicities and to define a new generalized discrete Fourier transform that
can be applied to sequences of arbitrary length N with components in a
field of characteristic p, regardless of whether or not ged(N, p) = 1. This
generalized discrete Fourier fransform is used to give a simple proof of the
validity of the well-known (Games-Chan algorithm for finding the linear
complexity of an N-periodic binary sequence with N = 2" and to gener-
alize this algorithm to apply to N-pcriodic sequences with components
n a finite field of characterisitic p when & = p". It is also shown how
to use this new transform to study the linear complexity of Hadamard
{i.c., component-wise) products of sequences.

Keywords: discrete Fourter transform, DF'T. Games-Chan algorithm, Hadamard
product, Hasse derwvative, hyperdcrivative, hnear complezity, stream ciphers

1 Introduction

The main purpose of this paper is to provide a convenient framework for the
study of the lincar complexity of periodic sequences with an arbitrary period. In
particular when the sequence 1s an N-periodic sequence with components in a
field of characteristic p and N = np” where ged(n, p) # 1, we seek a formulation
that is as convenient as that for the usually studied case when ged(N,p) = 1.
In Section 2, we give such a formulation in terms of the a*! roots of unity and
their multiplicities as zeroes of the polynomial whose cofficients are the first N
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digits of the sequence. This leads naturally to the use of the Hasse derivative as
described 1n Section 3 to characterize linear complexity.

Another purpose of this paper is to introduce a new generalization of the dis-
crete Fourier transform that admits application to sequences of arbitrary length
N . This is done in Section 4, where 1t Is further shown that the linear complexity
of an N-periodic sequence with components in a finite field of characteristic p
1s equal to the appropriately defined “weight” of its generalized discrete Fourier
transform.

To illustrate the usefulness of the approach in this paper, we give in Section
5.1 a simple proof of the validity of the well-known Games-Chan algorithm for
finding the linear complexity of an N-periodic binary sequence with N = 2 and
we generalize this algorithm to apply to N-periodic sequences with components
in a finite field of characterisitic p and ¥ = p¥. Finally, 1n Section 5.2, we show
how our techniques can be used to study the linear complexity of Hadamard
products of sequences.

2 Linear Complexity of Periodic Sequences

The linear complezity, £(§), of the semi-infinite /- ary sequence s = sq, 51,82,
where each s; lies in the field I, is the smallcst nonnegative integer L for which
there cxist coefficients ¢, ¢a, -, ¢p in F such that

sitesjoi+ - +eps;—p =0 Jorall j> L
or, cquivalently, such that
P(DY = (so+ 1D+ 5217 + -+ )C(D), (1)

is a polynomal of degree strictly less than L where C(D) = 141D + coD? 4
4 ep D In engineering terms, £(3) is the length L of the shortest linear
feedback shift- register (LFSR.) that can generate s when the first L digits of s
are initially loaded in the register; the polynomial (D} is called the connection
polynomial of the LISR.

Suppose now that the sequence § is N-periodic, Le., s; = s;4n for all ¢ > 0.
Then the formal power series sq + 51/ + 542 + -+ can be written

so+s1D s+ =N +DV+ D 4

where sV (D) = sq + 510 + s9D% + -+ + sy_1 DV is the polynomial of degree
less than N determined by s = [sq.s1.- - .sy_1], and hence

(so+ 51D +5 D%+ (1= DNy =N (D).
Multlplymg by 1 — DN in (]) thus giVCS P([))(l B [);\,) _ GN(/))C,'(D)’ which

ensures that deg( P(12)) < deg((*(D)). 1t follows that the necessary and sufficient
condition for C(D) = 14+¢ D4eoD*+- -+, DV with coefficients in F and with
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cr, # 0, to be the connection polynomial of the shortest LFSR that generates s,
and hence for I, = deg((C’(D)) to be the linear complexity of 3, is that

sNDYC(D) = P(D)(1 - DV} (2)
where P(D) 1s a polynomial satisfying
ged(P(D), (D)) = 1. (3)

'The zeroes of 1 — DV are N'® roots of unity by definition and in general lie
in some extension ficld £ of . When a primitive Nt root of unity [i.e., one
which is not also an n'" root, of unity for some n with 1 < n < N] does not exist,
then the distinct zeroes of 1 — DV will have multiplicity greater than 1. Suppose
now that v is a zero of 1 — DY with positive multiplicity k. It follows from (2)
and (3) that v 1s a zero of C'(D) with positive multiplicity m if and only if v is a
zero of 5™V (D) with multiplicity ¢ = & —n > 0. But (2) and (3) also imply that
v can be a zero of (/(D) only when = is a zero of 1 — DV and hence we have
proved the following useful lemma.

Lemmal. Let (/(D) be the connection polynomial of the shortest LFSR that
generates the F-ary N-periodic sequence §. Then a zero, v, of 1 — DV with
positive multiplicity k s a zero of C'(1) with positive multiplicity m if and only
if v is a zero of sN{DY with multiplicity p such that O < p < k. in which case
m =k — p. Morcover, (D) has no zeroes other than those determined in this
manner.

Consider now the case where the field 7 has characleristic p so that N may
be written as N = np” where ged(n,p) = 1. Then there exists a primitive n'"
root of unity, ¢, in some extension field of 7 so that o, =10,1,---,n— 1, are

the n distinct roots of unity. Moreover,
j - DY =(1- Dy’

and hence o' is a zero of 1 — DV with multiplicity p* for i = 0,1,---,n — L.
Using these facts together with Lemma 1 yields the following resull.

Proposition 2. Let C(1)) be the connection polynomial of the shortest LFSR
that generates the F-ary N-periodic sequence 8, where F is a field of prime
characteristic p and where N = np” with ged(n,p) — 1, and let o« be a primative
n'™ root of wnity in I or some extension of F. Then of, where 0 < i < m,
is a zero of C(ID) with positive multiplicity m, if and only if o is a zero of
sN (D) with multiplicity p; less than p” . in which case my = p* — p;. Moreover,
these are all the zeroes of C(D) so thatl the linear complexity of s is L(8) =
mg -+ mq 4+ -y .

Note that p; = 00 or m; = 0 in the proposition indicates that o' is not a zero
of sN(D) or €(D), respectively. The usefulness of this proposition is that it
characterizes the linear complexity of the N-pcriodic sequence § entirely in terms
of the multiplicities of the n'® roots of unity as zeroes of sV(D), a polynomial
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directly available from the sequence s, Of course, as the lemma states, this is
equivalent to determining the multiplicities of the n'" roots of unity as zeroes
of C(D) or, again equivalently, of the reciprocal polynomial of (D), which is
often called the characteristic polynomaal of the sequence. Determining the linear
complexity of an N-periodic sequence by “counting zeroes” of its characteristic
polynomial is a technique that has been used by many authors, cf. [8], [13] and
particularly [15], p. 78, but the emphasis on “counting zeroes” in s™V( D) appears
to be novel. To proceed further with such zero-counting, we require the derivative
described 1n the next section.

3 Hasse Derivatives and Hasse Matrices

Let £'[D] denote the ring of polvnomials in the indeterminate 1) with cocfficients
in a field I and let a(D) = Y, ¢; D" be a polynomial in F[D]. The ™" formal
derivative of a( D) is defined to be the polynomial

dD(Dy = ili~ 1) (i~ j+ Da; D'

4! Z (;) a; D'

The usefulness of the formal derivative in a ficld of prime characteristic p is
greatly limited by the fact that «)(D) = 0 for all j > p becausc then j! = 0. Of
greater utility in such fields is the j'" Hesse derwative [7] (sometimes called the
J™ hyperderivative [9], and, particularly when extended to rational functions,

the Hasse-Tewchmaller derivative [6], [16]), which is defined as

Bly oy = < i > il
a ) = g L .
(D) Z ;

1

Note that al)(1) = (j1)all(D) and hence it is always true that (D) =
alJ(D). Hasse derivatives in any ficld have the same connection to repeated
factors of a polynomial as do formal derivatives in fields of characteristic 0,
namely (cf. [3]):

Theorem 3. If h(D) s irreducible v F[D) with KDY # 0 and of m 15 any
positive inleger, then [h( D)™ divides a( 1)) of and only of h(D) divides a(D) and
ws first m — | Hasse dervalives.

Remark. I[ T is a finite field or a field of characteristic 0. then every A(/2) that
is irreducible in #[D] satisfies A{D(D) # 0.

Invoking Theorem 3, we immediately obtain the following corollary of Proposi-
tion 2.
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Corollary 4. Let s be an I"-ary N-periodic sequence, where F' is a finile field of
characteristic p and where N = np” with ged(n, p) = 1, and let « be a primitive
n' root of unity in F or some extension of #'. Then the lnear complezity of §
is L(8) =mg +my + -+ my,_1 where

e — g, 1if .SN(CW-) = S‘Nm((yz) = ...z sN[pV_l](az") =0
STl pY —mindj sVl at) £ 0}, otherwise.

Ezample 1. Consider the binary (i.e., F' = GF(2)) 12-periodic sequence s with
si?2 =10,0,1,0,1,0,1,0,0.0,0,0]. Then N = 12 and p = 2, which gives n = 3
and v = 2. Taking o as a primitive third root of unity in an extension of GF({2)

requires that o be a zero of 22 + r + 1 and hence that a®> = « + 1. From
the sequence s'? we obtain immediately the polynomial s'2(D) = D? + D* +
D®. Taking Hasse derivatives gives the p” — | = 3 polynomials required to

be considered in Corollary 4, namely s2[10(D) = 0, s'23(D) = 1 + D, and
sP2B( D) = 0. Direct subsitution of ' in these polynomials gives

from which, by applying Corollary 4, we find
mo =4, my = 2, my = 2.

1t follows that the linear complexity of § is £(8) = mqg + m| + ma = 8. Because,
by Proposition 2, m; is the multiplicity of o' as a zero of the minimum degree
connection polynomial C'([J), we can compute this polynomial as

CUY =1+ D0 +a+ D) (a+ D) =1+ D)1+ D+ D?)?

but we have no need to make this calenlation if our interest is only in the linear
complexity of s.

We now introduce a matrix that we will find useful in connection with the
generalized DI'T in (he nextl section,

Definition 5. The Hasse matriz Hp (1)) over afield I is the k x & matrix whose
(i,7)-entry is (J] ) ) DI the (i - )™ Hasse derivative of the monomial D7 ™!
in F[D].

Frample 2. In a field F of characteristic 2.

LD ?
01 0 D7
Dy=140 1 b

00 0
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Because a Hasse matrix i1s upper triangular with 1I’s on the main diagonal, it
is invertible. The inverse matrix is easily obtained.

Lemma 6. The muverse of the Hasse malriz Hp (1)) s (=~ D).

Proof: The lemma follows immediately from the binomial expansion

(1~ 1) :Z (ﬂ(w)‘ =10

1<k
applied to the ofl-diagonal terms in the product Hy(/))Hp(—D).

Remark. The lemma implies that in fields of characteristic 2, where —1 = +1,
the matrix H(D) is self-inverse.

4 A Generalized Discrete Fourier Transform (GDFT)

We first review the conventional discrete Fourier transform (DFT). Suppose now
that s = [s9, %, -, sny_1] s an arbitrary N-tuple with components in a field F
and that there exists a primitive N root of unity, o, in F or some extension of
f'. Then, the Discrete Fourier Transform (DF'T) of the “time- domain” N-tuple
sM is defined to be the “frequency-domain™ N- tuple, S¥ = [S4,.51, -+, Sv-1].
given by

/

SV = [N, sV (a) sV (VT

where as belore
SN(I)) = S0 —+ «511,) -+ S0 [,):" + - + .SN_II.)N_l.

The time-domain N-tuple s can be recovered from its DIV S¥ in the manner
that

. .
sV = —[sNy, SV (o™ h),

N (N1
= SN (o= (V=1

0
’

where
SVX) = So4+ S X +Sox 4 Sy XV

Here, N denotes the element of the field I given by the sum of N 1’s. In par-
ticular, if the field /" has prime characteristic p, then N is taken modulo p. We
will write
SN = DPT,(sVY)
to emphasize the dependence of the DI'T on the choice of the primitive N* root
of unity, a.
Again let § denote the N-periodic semi-infinite sequence

S = 50,851, SN Sa-S

obtained by endlessly repeating the N-taple s™  [Note that the period of § may be
a proper divisor of N.] The DFT possesses many properties that are useful in the
analysis of such N-periodic sequences, ¢f. [11], in particular “Blahut’s "Theorem”,
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which asserts that the linear complexity of § is equal to the Hamming weight of
DET,(sV).

Of particular interest in cryptography is the case where F' is the finite field
GI(q) = GF(p"). The necessary and sufficient condition for GF(¢) to contain
a primitive N-th root of unity is that N and p be relatively prime, 1.e., that
ged(N,p) = 1. The usnal DFT is thus useful in the analysis of N-periodic ¢-ary
sequences just when ged(N,p) = 1. Several authors, [2], [5], [12], have pro-
posed generalizations of the DF'I' that permit its application to N-tuples with
ged(N,p) # 1. One purpose of this paper is to propose a new such generalization
of the DFT that was inspired by that in [5] but is somewhat simpler.

Let sV = [50,81, - ,sn_1] be an arbitrary N-tuple with components in a
field # of prime characteristic p and suppose that N = np” where ged(n,p) = 1.
Let a be a primitive 2" root of unity tn £ and let SNM(D) denote the i Hasse
derivative of s™ (D).

Definition 7. 'T'he generalized discrele Fourier transform (GDFT) of the N-
tuple sV = [sg,51,---,sy_1], where N = np” and ged(n,p) = 1, is the p¥ x n
matrix 8?7 %" given by

sN(1) sN(a) o sV h
3 , SN sV ) o sN(en
§P X = (IDFT,(s™) =
(;N[Pu"”( D NP () oo sNPT=1 (g

When v = 0. the GDFT reduces to the usual DFT. We will soon sce that
the GDFT is indeed an invertible transformation, as is always demanded of a
“transform.”

Frample 3. Continuing Example 1, we see that to compute GDFL,(s!?) ac-
cording to its definition, we require the following additional evaluations of Hasse
derivatives:

sy = 0.5 = 0, 1By =0
0

‘T'his gives

0o 0 0
014y ex
0 0 0

GDET,. (st?) = 8§V =

We now interpret Corvollary 4 in terms of our GDET. Toward this end, we make
the following definition.

Definition 8. The Gunther weighl of a rectangular array is the number of its
entries that are non-zero or that lic below a non-zero entry.
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The multiplicity, m;, of &' as a zero ol (1)), as dcfined in Proposition 2, 1s
specified in Corollary 4 in a manner that is seen to be just the number of entries
that are non-zero or that lie below non- zero entries in the (i + 1)St column of
the GDFT 827" of the N-tuple s¥ obtained from the N-periodic sequence §.
The immediate consequence 1s the following very useful result.

Theorem 9 (Ginther-Blahut Theorem). The linear complexity of the F-
ary N-periodic sequence § = Sq, 81, -, S§y—1.80, ", SaN_1,50, - , where F is
a finite field of characteristic p and where N = np? with ged(n,p) = 1, 15 the
Giinther weight of the GDEFT SP™%" of the N-tuple sV = [s0,81,- -+, sn-1)-

When v = 0 so that n = N and the GDFT array S*"*? reduces to a one-
row matrix, then the Giinther weight of 77 is just its Hamming weight.
Thus this thcorem is a natural generalization of Blahut’s theorem for the usual
DFT. We have called this generalization the “Giinther-Blahut Theorem” [and the
corresponding generalization of Hamming weight the “Giinther weight”] because
its content is equivalent to a result given by Giinther in [5], who derived it
from properties of the somewhat different generalization of the DFT that he
introduced there.

Ezample §. The GDFT array GDFT,(s'?) = S of Example 3 is seen to
have Giinther weight 8, which shows that the 12- periodic sequence § has linear
complexity 12, in agreement with the computation of Example 1.

More insight into the GDFT can be obtained by first writing s™ (D) in the
form
sV(DY = 7 (DP ) 4 DsP (D0 ) 4 DTS (DY)
where
S P) = si 4 Siqpe D Sipnonype D7 '
is the polynomial associated with the n-tuple st = (Siy Sitprs s Sid(neL)pv)

obtained by taking every (p”)"

it of oV wiart] Gh o s th
digit of 8" starting with s;, 1e., Sy 18 the i
phase of the decemation of ™ by p”. Next, we define the “time-domain” array

s %" {0 be the p¥ x n matrix

U
(o) S0 Spy T S{n -1)p
LTt . . e
S S S14(n-1pv
Be! . . .8
b(]),,__]) bPu,>l b],x/_ L pv ")1'“_1*‘1”‘—1%’”

Now let 7 be another and possibly dilferent n™ root of unity in F or some

extension of # and deline the matrix DFT4(sP ") 10 be the p¥ x n matrix
DETs(s],,)

L DETa(s)) )

DELg(s? *)y = 1 ‘

DETs(s )



366

whose (74 1)®" row is the conventional DFT with respect to £ of the n-tuple S?i)‘
Taking Hassc derivatives in the expression

MDY = s, (D) + Dsp(DF ) 4+ 4 DT Py (DP)

for sN (D) gives directly

sN(D) 5y (D7)
sV D) s;%i)(m")
= Hu(D) |,
N =11 ) szap"v_l;}(j)pu)

We now choose 7 = o and note that. because ged(n,p*) = 1, 3 is indeed a

primitive 2" root of unity. it follows that
Nay o)
SR DU RGN "
N ) (8

T'he vector on the l(fL in this equation is just the (i 4 1)% column of the matrix
SP7xn — GDIT,(sN), while the vector on the right is just the (7 + 1)°* column
of the matrix DFT;(sP”*"), Bec ause the matrix H,-(a") is invertible, it follows
that one can recover DFTy(s sP7FM from GDFT,(s") and of course one can then
recover s %" and henee also sV from DFT4(s?"*"). It follows that the GDFT
is indeed invertible.

Krample 5. Continuing with 3, we have the p¥ x n = 4 x § time- domain array

010

ax3 _ 000

110

000

4

. i .
Noting that ¢ = o = a® = «, we obtain

DET,.(
DET
DFT,(
DI,

0
.0
0

D lal+«
Dy _ 100 0

Dl 7 10al+aw
1)

(0,1
DET4(s7%) = DFT,(s"7) = Ff(l)
[0,

3

0,0 00 0

Pre-multiplying each column of s**? by the corresponding one of the following
matrices:

1111 lev |+ 00 1 ll4+aa 1
Cloror] ot 0 14 o 101 0 a

Hal=Tgg Bt =1000 1+ & ["HD=10 o 114a
0001 00 0 1 0 0 0 1
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gives agaln the matrix

L0 0
0 U 0 _o@iIx3 g K
Gldaa| =S T=GDIT.(s7)
0 0 0

in agreement with the compntation in Example 3.

5 Applications of the Generalized DFT

5.1 The Games-Chan Algorithm and its generalization

The theory of the GDFT presented in the previous section specializes in an
interesting way to the case we now consider where the components of the N-
periodic sequence § lie in a finite field of characteristic 2 and N = 2¥ so that
n = 1. The time-domain array s* %! is now just the transpose of the 2“-tuple
§¥ = [s0,81, . $2v_1]. Because o = 1 is the only first root of unity, the DF'L for
Jength n = 1 is just the identity transformation so that DETy(s2"%") = (s2)7T
where, here and hereafter, the superscript T denotes transposition. The GDTT
also reduces o a single column that, according to (4), is given by

GDFT(s*) = Hy (1)(s*)T (5)
The matrix [f2(1) has an especially simple form.
Lemma 10. In any field of characleristic 2 and for any wmteger v > 1,

[ Hape (D) Haei (1)
HL’"(J)‘{ 0 11;,,_.(1)]'

Proof. By the definition of the Hasse matrix, the entry in row ¢ + 1 and column
J+1of Hy (1) is () To prove the lemma then, it suffices to show that

Y _ (2N (T
i) i ' (z + i

for 0 < ¢ < 27" and 0 < j < 27! But, by a theorem ol Lucas [10] (cf. also
[1], p. 113}, for any prime p, any positive integer v, and any integers i and |
satislying 0 <2 < p¥ and 0 < j < p*,

. v—=1 .
({) = H <'{i> (mod p) (

k=0

(6)

-1

where [j,o1, -, 1, jolp and [i,_y, -+ iy o]y are the radix-p representations of i
and j, respectively. For p = 2and lor 0 <7 < 2" Vand 0 < j < 2771 the radix-2
represeutations of j and 27V jare (0,4, (- . ji Jole and [L, 5,1, -, Ju, dole,
respectively. Similarly, the the radix-2 representations of ¢ and 27! + i are
[0y, - i1, dgle and [1.é,_1, -+ 41, in]s, respectively. The equalitics claimed
in the lemma now follow immediately from (7) and the fact that (g) = (1) =

(=1 “
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We now Spllt the time-domain se quence into its left and right halves n the
Py - e 3 —1
manner s* = [s7  :s% ] where s7 = [$0,81, - ,sw1_| and s% =
[sov—1, 89014010 8o (). We can then write

DF(s ) = | e Haemnt D) (5T
GDFI(s )~[ 0 Hou-i (1) (S?{AJ)T
and hence

Howor(D)(s], sk >T] (8)

GDEL(s™ ) = {ugu«l(l)(s% i

Because the Hasse matrix H,v-1(1) 1s non-singular, it now follows from the
Giinther-Blahut Theorem that: 1)1f s‘;)f/_‘ +s%:_L = 0, then the linear complexity
of the 2¥- periodic scquence L£(s) of s 1s the same as Lhat of the 2"~ !-periodic
# 0, then £(s)

- . . . . A R . yv—1
is 2/7! plus the linear complexity of the 2/~ periodic sequence having 87 +

)V 1

. v —1 . - Y — - PR i —
sequence having 83, asits first 2771 digits: but 2) i( s

s:;;gl as its first 2971 digits. These considerations immediately establish the
validity of the following simple algorithin for determining the linear complexity
of the 2V-periodic sequence 5.

Algorithm 1 (Games-Chan) Enter v and the first 27 digits 82" of the 27-
periodic sequence 8 with componcents in « finile field of characteristic 2.

Set L:=10

REPEAT
Split the sequence s2° into s left and right halves
pr—1 Gu—1 .
st and s¥, . respectively.

Ir S%‘l—l + S‘f:” =0 THEN replace 87 by s‘f;_l
ELSE set 1 := L+ 2" and replace s°7 by q;’ RS q;{ -
Decrement v by 1.

UNTIL v =0

IF st #0 THEN set =L+ 1

Quiput L, the lincar complearty £(s) of s.

This algorithm is precisely the well-known Games-Chan algorithm [4], cf. also
[14], which was originally formulated for hinary sequences. The argument from
the GDFT given here shows that the algorithm can be used unchanged for
sequellces over any finite field of characteristic 2,

It is now also an easy matter to generalize the (yames-Chan algorithm to
p”-periodic sequences thh digits in a finite feld of characteristic p, as we now
explain for the case p = 3. For this case. the recursion (6) becomes

Hyoos (1) Hyoo i (1) Hypoe (1)
Hoo(l) = 0 Hyr (1) 2H,0 (1)
0 n Hypor (1)

It follows that when the first 3% digits s*° of the 3¢~ pPIIOdlC sequence § are split

into their left, middle and right thirds .s,l o SMH and hR respectively, then

)
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in place of (8) one obtalns

Hapor (N2 4637 48277
GDFT(s*) = ng_l(l)(s,{,; + 28 ‘)T
Hav- (1)(s3, )7

Because the Hasse matrix Hgzv-i(1) is non-singular, it now follows from the
Giinther-Blahut Theorem that: 1) ifs3 ™ 483, ' +s% ' = 0and s}, +2s% =
0, then the linear complexity £(8) of the 3“-periodic sequence § is the samce
as that of the 3“~!-periodic sequence having s% ' as its initial segment; 2) if
ST 83T 463 =0 but s34 28 # 0, then £(8) is 37 plus the
Jinear complexity of the 3V ! ~periodic sequence having s +2s% 7" asits initial
segment; and finally 3) if 877" + 837 + % # 0 then £(3) iq 2 x 3”_] plus
the linear complexity of the 3”~!-periodic sequence having sr} T+ b]\; + sg}_]
as its initial segment. The necessary modification of the Games-Chan algorithm
is now obvious and its description will be omitted. For an arbitrary prime p, the
analogous argument shows that s?” can be split into p disjoint subsequences of
length p*~! and the linear complexity of the p”-periodic sequence § determined
from p lnear combinations of these sequences. Again we omit the obvious details.

5.2 Application to Hadamard products of sequences

We now show the utility of the GDFT for the analysis of sequences obtained by
memoryless nonlinear combining of periodic sequences, an operation often per-
formed in the running-key generators of additive stream ciphers. Such operations
can always be expressed as a lincar combination of various Hadamard products
of the input sequences, where by a Hadamard product is meant a componentwisc
multiplication of the sequences, which we denote by A,

Let t and @ be g-ary N-periodic sequences where ¢ = p¥, N = np” and
ged(n,p) = 1 and let § be the Madamard product t Aw. Then sV is also the
Hadamard product tV Au™ of ¥ and u”™. But it is also true for subsequences
that

s(iy =[S Supr o Sitin—ipr) = 6 A agy)
where b, = (i tipr, - Hip(n_1ypv] and L L N v]. By
the convolution property of the (usual) DFTs for length n, cf. [11], the DFT
Sty of s}y is t1m< s the circular convolution Ug @ T, of the length-n DFTg's
T?z) and U7 oft y and ugy,, respectively. Hen(e we have

v, |
DFT4(sP ¥y = nT i U (4)

where we have introducted the notation for arrays
n o T

U[(l) T(m
k23 P 7

T U Uy, o T,
n ©y Tn

Up”—l & rp”‘ll
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This formulation, together with (4), implies that the theory of linear complexity
for Hadamard products of N-periodic scquences for general N can be obtained
directly from the theory for the well-studied special case where ged{N,p) = 1.

6
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