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Abstract. Siegenthaler inequality shows the existence of a tradeoff be- 
tween the correlation-immunity order and the nonlinearity order of a 
Boolean functions. We generalize this result to correlation-immune func- 
tions over any finite field. We then construct a family of correlation- 
immune functions achieving this bound; these functions are notably well- 
suited for combining linear feedback shift registers. We also apply this 
result to the cryptanalysis of any cryptographic primitive based on boxes 
connected by a network. Schnorr and Vaudenay have previously recom- 
mended that these boxes should be multipermutations; we here refine 
this condition since we show that each binary component of these mul- 
tipermutations, seen as a Boolean function, should have low degree. 
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1 Introduction 

Correlation-immune functions were first introduced by Siegenthaler as a class of 
suitable functions for combining the outputs of several linear feedback shift regis- 
ters: they lead to the  construction of running-key generators for stream ciphers 
which resist the correlation attack [12]. Several other applications afterwards 
emerged and  correlation-immune functions (or resilient functions) a re  now pre- 
ponderant objects in cryptography. Schnorr and Vaudenay [lo] notably pointed 
out  their importance in the design of conventional cryptographic primitives, such 
as hash functions. Maurer and Massey [6] developed the related concept of perfect 
local randomizer for constructing additive stream ciphers which are provably- 
secure under the  restriction tha t  the enemy can only obtain a limited number 
of plaintext digits. Both of these applications often consider correlation-immune 
functions over finite fields since most of the cryptographic primitives d o  not deal 
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with bits but with rn-bit words according to  the characteristics of the used elec- 
tronic components. Nevertheless considering the correlation-immunity order of 
a function is usually not sufficient for obtaining good cryptographic properties. 
For designing good running-key generators, for example, the Berlekamp-Massey 
shift register synthesis also requires the combining function to  be non linear. Un- 
fortunately this condition can be incompatible with a high correlation-immunity 
order since Siegenthaler proved in [12] the existence of a tradeoff between the 
correlation-immunity order and the nonlinearity order of Boolean functions. We 
here generalize Siegenthaler's work as we give a similar result for correlation- 
immune functions over any field. 

Section 2 briefly recalls the equivalence between correlation-immune func- 
tions over any finite alphabet and orthogonal arrays. Then we study the prop- 
erties of the algebraic normal form of correlation-immune functions over a finite 
field and we give an upper bound on their nonlinearity, notion that  has to  be 
defined. We then construct in section 4 a family of t-resilient functions with 
optimal nonlinearity ovcr some finite fields, which can be used for combining 
LFSRs. We exhibit in section 5 a similar result for q-ary functions which are 
correlation-immune with respect to Fqk. Section 6 applies these results t o  the 
functions used for designing cryptographic primitives: Schnorr and Vaudenay 
give in (101 a general method for cryptanalyzing any cryptographic primitive 
based on boxes connected by a network; they therefore recommend that all the 
boxes should be multipermutations Over F2*. We here show that  every binary 
components of these rnultipermutations, considered as Boolean fnnctions, should 
have low degree. 

2 Correlation immune functions and orthogonal arrays 

Let 3 denote a finite alphabet with p elements ( q  2 2) and let E be a finite set. 
Let f : F" + E be a function and let {Xi, Xz, ..., X,} be a set of random input 
variables assuming values from F with independent equiprobable distributions 
( i e .  every input vector occurs with probability 4). 

0 f is balanced if its output is uniformly distributed. 
b f is correlation-immune with respect t o  Ihe subset T c {I ,  2 , .  . ., n} if the 
probability distribution of the output is unaltered when (Xi ,  i E T }  is fixed and 
{ X ;  , i $! T }  is a set of independent equiprobable random variables. 
b f is t - l h  order correlation-immune if for every T of cardinality a t  most 2 ,  f is 
correlation-immune with respect to  T .  

f is 2-resilzent i f f  is t-th order correlation-immune and balanced. 

tures introduced by Rao as orthogonal arrays [7]. 

B 
The  function f may satisfy the following properties: 

Correlation-immune functions are closely related to the combiriatorial struc- 

D e f i n i t i o n l .  An orthogonal array A of size m, n constraints, strength 2 and 
index X over the alphabet, 3 (or with q levels) is an m x n array of which rows are 
the vectors from a subset M of Fn such that [MI = rn which has the property 
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that  in any subset o f t  columns of A ,  each of the q* vectors of 3' appears exactly 
X times as a row. Such an array is denoted by (m, n, q ,  t ) .  Clearly m = Xqt.  

The  equivalence between correlation-immune functions and orthogonal arrays 
was first proved in [3] for the Boolean case, and in [4] for functions over any 
finite field. In fact characterizing the t-th order correlation immune functions 
in terms of orthogonal arrays is merely translating the probability definition 
into an enumeration definition. This characterization then holds for any finite 
alphabet F, 
Proposition2. If the independent equiprobable random variables Xi,. , . , Xn 
are defined on a finite alphabet F, then f ( X 1 , .  . . , Xn), which has its values in 
a finite set El is  a t - th  order correlation immune function with respect to  the 
alphabet 3 i f  and only if Vy E E ,  f- '(y) consists in the rows of an orthogonal 
array of strength t over 3. 

Additionally, f is t-resilient ZfVy, y' E E ,  lf- ' (y)\  = lf-'(y')l. 

3 
correlation immune functions over any finite field 

Algebraic normal form and nonlinear order of 

Parallel to  the order of correlation-immunity, the order of nonlinearity of a func- 
tion is a fundamental parameter in cryptography. In particular when the function 
is used for combining the outputs of some linear feedback shift registers, it com- 
pletely determines the linear complexity of the resulting running-key generator 
(see [S, 51). For Boolean functions, this nonlinearity order is directly obtained 
from the algebraic normal form of the function as the degree of the correspond- 
ing binary polynomial. Such a canonical expression can also be defined for any 
function f from 3" to F e ,  if F is the finite field G F ( q ) .  In this general situation 
we first introduce through Theorem 7 the notion of optimal nonlinearity. From 
now on this field is be denoted by F, and 3' is identified with the finite field 
F,c. 

Notation 3 Let M ,  be the dgebra Fpc[zl,.  . . , xn]/(x; - X I  , . .  .,xi - xn). For 
a polynomial 8 E M ,  which is considered the smallest degree multavariate poly-  
nomial in its class, we denote b y  Dey,, 8 the degree of 9 in the variable xi, i = 
1,. . . , n. 

Definition4. In the algebra M ,  we call L a ( x , )  = F, ( X i  - P ) ,  a E F, 
P f a  

the Lagrange univariate idempotents (with respecl to xi). 

The following known lemma which is easily proven by induction on n enables 
us t o  show the existence and unicity of the algebraic normal form for any function 
f : FI ---r F,c. 

Lemma5. Let B E M ,  be considered as a polynomial function defined on FY. 
If B vanishes for all  x 6 FY, then all i t s  coeficients are zero. 
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Theorem6. For any function f : FY --+ F,t there exists a unique polynomial 
function 8 E M ,  ( thus with Deg,, 0 5 q -- 1, i = 1, .  . . , n)  such that, f o r  all 3: 

i n  FYI f(x) = e(z). This polynomial 0 is called the algebraic normal form off. 

The  proof of this theorem relies on Lagrange interpolation since we can write 
e(Z) = C a e F ,  -f(rr)La(Z). 

Using a combining function which has both highest possible nonlinearity and 
correlation-immunity orders would be suitable in order t o  protect the result- 
ing running-key generator from all known attacks. Unfortunately, there exits a 
tradeoff between these parameters: a low nonlinearity is the price t o  pay for a 
high correlation-immunity order. Siegenthaler proved in [12] that  for any Boolean 
function f from FZ to  Fz, the nonlinearity order d and the correlation-immunity 
order t always satisfy d + t 5 n. We here exhibit a similar relation for any func- 
tion from FY to  F,t . Actually those relations for q > 2 are derived from stronger 
properties. 

Theorem7. Let there be given a function f : F; -+ F,t. If f is t - lh  OT- 
der correlation-immune (resp. is t-resilient) with respect t o  F,,  then fo r  every 
monomial p in the algebraic normal fo rm 0 of f there exists a subset T of 
( 1 , .  . . , n }  of size t (resp. of size t + 1 provzded q' # 2 or n # e + t )  such that 
Deg,, p 5 q - 2, V i  E T .  

Proof. Let j variables be fixed amongst z1, . . . , z,, for example and without loss 
of generality we choose zn-j+1 = z;L-j+l,  . . . , z , ~  = xz. Then we have 

q z l ! .  . . ,  "n-j! z;-j+1,. . . !  = 
n - i  

Thus V j  5 t , V v  E F,c, I L i ,  , n - , ( ~ ) l  = qf-'  Ill, , n - t ( v ) l .  This relation shows 
that for all j < t , 111, , n - l (v ) /  = 0 in F,t. Then, for all j < 1 ,  relation 1 can be 
written as: 

n- i 

V E F ;  o E I i ,  , " - , ( u )  :=I 

Since each La,  is monic polynomial of degree q - 1, the coefficient of degree 
n-,(u) n:=;' L a , ( r 8 )  is equal to 111, ,n - j (v) l  which is ( q  - l ) (n  -j) of CaEfl, 

zero in F,c. 
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Since this is true for any other choice of j variables, j < t ,  amongst 2 1 , .  . . , 2, 
it ensures that any monomial of 0 contains no product of n-t+l or more variables 
having simultaneously degree q - 1,  as asserted. 

Furthermore if f is balanced, we have Vv E F,t,If-'(v)J = q"-'. Thus we 
additionally have: 

111 ,,.., n-t(v)l is then zero in Fqt provided n - t - t > 0. 
Moreover if n = t+t? then ~I~,,,.,n.-t(~)~ = 1. The coefficient of a monomialp of 0 
such that Deg,, p = q-1 ,  i = 1,. . . , n - j  is equal to x V E ~ , t  -vIII , .__, n-t(v)l = 
C U E ~ p t  --2, = 0 provided q f  # 2, as asserted. This means in particular that ,  if 

n # 1 + t or qf # 2, 8 contains no product of n - t or more variables having 
simultaneously degree q - 1. 

Remark. The previous proof also implies a stronger condition on the algebraic 
normal form of some 2-th order correlation immune functions, even if they are 
not balanced: if f : FY -+ F,z is a t-th order correlation immune function with 
respect to  F, such that: 

VV E F q t ,  111, ..., n-t(v)I = qn-f - t  

then the assertion of the theorem on balanced functions holds. 

We can then deduce from this theorem an inequality which generalizes Siegen- 
thaler's one. 

Corollary8. Let f : FY -+ F,t be a t - th  order correlation-immune function 
with respect t o  F,.  Then the total degree d of its algebraic normal form satisfies 

d + t  5 ( q -  1). 

d + t < ( q - l ) n - l  

Iff is additionally balanced and 71. f e +  t or q' # 2 ,  then 

Definitiong. A function f : F; --+ F,t either correlation immune of order 
t or t-resilient has optimal nonlinearity i f ,  for its algebraic normal form 0,  all 
corresponding bounds in Theorem 7 are tight. 

Optimal nonlinearity of resilient functions used for combining LFSRs will 
permit to achieve high linear complexity as shown in the following section. 

4 
nonlinearity over any finite field 

We here construct t-resilient functions f : FY 4 F, with optimal nonlinear- 
ity. Such functions are especially useful for designing running-key generators by 
combining linear feedback shift registers. The combining function has indeed to  
be correlation-immune and balanced since the output digits have to be uniformly 
distributed. 

Construction of t-resilient functions with optimal 
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4.1 Combining LFSRS 

We first recall some well-known results which show that  optimal nonlinearity 
leads to  a maximal linear complexity of the resulting running-key generator. 

Let a denote the sequence given by 

a,+; = -bm-l am+;-l - bm-2um+;-2 - . . . - boa, (2) 

A polynomial g ( X )  = bo + b l X  -t . . . + b,-lX"-' + X" E F,,[X] such that  a 
sequence a verifies (2) is called a recurrence polynomial (or characteristic poly- 
nomial) for a. Whenever a polynomial such as g is a recurrence polynomial for 
a, we say that  a is driven by g. 

For a sequence a we denote by L(a) its linear complexity which is the smallest 
degree of a recurrence polynomial which drives a. There clearly is a unique monic 
polynomial with degree L(a) which drives a sequence a. I t  is called the minimal 
polynomial of the sequence. The period of the sequence is then equal to the order 
of its minimal polynomial. 

But, even if the recurrence polynomial is properly chosen, the linear com- 
plexity of the sequence is often smaller as we wish. A well-known method for 
increasing it consists in using several LFSRs wit,h different feedback polynomials. 
Their output sequences are then taken as arguments of the algebraic normal form 
of a combining function f : Ft + F, whose output then forms the running-key, 
as depicted in Figure 1 

LFSR 1 

Y 

Fig. 1. Combining LFSRs 

An estimation of the linear complexity of this resulting generator can be 
obtained thanks to  the following theorems proved in [9, 5 ,  11. 

Proposition 10. Lei a and b be two sequences whose minimal polynomials are 
respectively g1 and g2. TLen the ltnear complextty of the sum sequence satisfies 
L(a + b) 5 L(a) + L(b) where equality holds zf and only z f g c d ( g l , g 2 )  = 1. 

We now compute the linear complexity of a product of sequences whose 
respective minimal polynomials are homogeneous polynomials i. e. products of 
distinct irreducible polynomials with equal degree. 
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Proposition 11. Let a and b be two sequences whose respective minimal poly- 
nomials g1 and 92 are homogeneous polynomials with respective orders t i  and t 2 .  

The Hadamard product sequence ab = (anbn),,?O is then driven b y  an homoge- 
neous polynomial whose order divides lcrn(t1, t 2 )  and its linear complexity is  at 
most L(a)L(b). Moreover, zf gcd(tl ,22) = 1 ,  then L(ab) = L(a)L(b). 

We now come to Herlestarn’s result [5] on the linear complexity of a power 
sequence. 

Theorem 12. IJ 0 5 s < q ,  q = pel  s = Cfzt s ip ’ ,  0 5 s; < p ,  f h e n  

with equality J a as a ML-sequence. In particular, when p = 2, 

where w(s)  i s  the Hamming weight o f s  and where equality holds i f  a is a h fL -  
sequence. 

Equality in the ML-case is due to [ l] .  The proof relies on a corollary of Lucas 
Theorem for multinomial coefficients. 

For a product sequence the best that can be expected for the linear com- 
plexity is that  of Ihe sequences being multiplied. Whenever a product sequence 
satisfies this upper bound with equality, one says that this product sequence 
attains maximum linear complexity. We thus see that the optimal nonlinearity 
of a t-resilient function leads to maximum linear complexity for the resulting 
pseudo-random generator. 

4.2 

L e m m a  13. Let  M be the algebra F B [ z ] / ( t q  - 2). 
W e  have zn M that 0 5 degree(z i ( ‘J-2))  < q - 2 for a l l  2 5 i < q - 1, and for  
even q ,  1 5 d e g r e e ( r j q )  < q - 2 f o r  all  3 5 j 5 q - 2.  

Construction of resilient f u n c t i o n s  w i t h  optimal non- l inea r i ty  

proof. Indeed we first have , i ( n - 2 i  - - 2  q + q ( ’ - l ) - Z *  = z~z i -1 -2 :  - - Z q - i - l ,  with 
O < q - i - l < q - 2 .  
Next we write j = 2a + b with  b E ( 0 ,  l } ,  If b = 0,  we make i = a above since 

2 5 a 5 q - 2. If b = 1, we have 1 5 a < 9. Then we obtain Degi ’ = 
.- 

Deg, * 4 9 - 2 ) , %  = ! e ? f 2 < q - 2 ,  

We here essentially construct (q‘ , n,  q ,  t )  orthogonal arrays of index unity. 

Proposition14. For all q = pa with p # 3 and q # 4 there exists an 1-resilient 
function f : Fi + F, with optimal nonlinearity. With the additional assumption 
on q that q f 1 mod 3 we have that there exist a ( n  - 1)-resilient function 
f : FY -+ F, with optimal nonlinearity for every n i J q  is even and for every 
odd n if q i s  odd.  
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Proof. Proof of the first assertion. 
For odd characteristic p > 3, we define f(z, y) = ( x q - 2  + yQ-’ + 1)q-’, and for 
even q > 4, f (z ,y)  = ( ~ q - ~  + y q  + l)q-5. In both cases f is 1-resilient since 
gcd(q-2,q-1) = 1 andforeven  q > 4, gcd(:-l,q-l) = 1, gcd(q-5,q-1) = 1, 
which shows tha t  all these exponentiations permute the  finite field F,. In view 
of Lemma 13 we point ou t  that, in the first case, the  coefficient of ~ q - ~ y q - ’  is 
( q  - 2)(q - 3) which is not a multiple of p > 3. In the second case we see tha t  
the coefficient of ~ q - ~ y q - ~  is 3(,i5) E 1 mod 2. 
Proof of the second assertion, by induction on n.  

0 q odd. We have that 93(21, 2 2 ,  z3) = (xYv2 + x i - 2  + z:-’)>” which contains 
the monomial 6 ( ~ 1 2 2 2 3 ) q - ~ .  
Next we define gZr+l(Z1,. . ., z2,+l) = ( g 2 r - l ( z l , . .  ., 1 2 r - l )  + z‘,;~ + z:;-,”,)~ 
containing the  term 6 g 2 r - 1 ( ~ 1 , .  . . , ~ 2 ~ - - 1 ) 2 ~ ,  z ~ , + ~ .  

0 q even. We first have g2(x1, 1 2 )  = (z; + x”,-’)~ where only 31;-2z:-2 
9-1 3 h a s  x;-z as a factor. Then gn+l(xl,. . .,xn+.1) = ( g n ( Z 1 , .  . . ,zn) + 2:+1) . 

In tha t  last polynomial, the only ternis with x:;: as a factor are in 
39, (11 , .  . . , x , ) ~ ~ ~ ~ .  All these functions gn are n-1-resilient since gcd(3, q-1) = 
1 by assumption, and gcd(q - 2, q - 1) = 1. By Theorem 7, they have optimal 
nonlinearity. This still holds for q = 2: f(x1,. . .,xn) = 21 + . . . + zn is an  
( n  - 1)-resilient function with optimal nonlinearity since 1 + t = n. 

Propositionl5. Let p # 2 or t # R - 1. Let f l ,  fz  : FY -+ F, be two t-resilient 
functions with optimal ncnlinearzly , such that degree( f1 - f2) = degree(f1).  
Then g : FY+’ -+ F, defined b y  

9 - 2  q-2 

4 - 1  

is a t-resalient function with optimal nonlznearily. 

From both previous propositions we deduce the following theorem: 

Theorem16. Let q = pa with. p # 3 and q # 4.  For all  n > 1, there exits 
a 1-resilient function f : FY -+ F, with optimal nonlinearity. If q $ 1 mod 3, 
then for all n > 1, ihere exits a t-resilzent function f : F; -+ F, with optimal 
nonlinearity for  al l  t < n i f q  is even, and for all even t < n if q is odd. 

Proo/. By Proposition 14, if t agrees with the above assumptions, there exists a 
i!-resilient function g : Fit’ -+ F, with optimal nonlinearity. Applying Propo- 
sition 15 with f l  = g and fi = ag, where a E F, \ (0, 1) leads to a t-resilient 
function with t + 2 variables and optimal nonlinearity . If we iterate this con- 
struction n - t - 1 times, we obtain a t-resilient function with n variables and 
optimal nonlinearity. Siegenthaler proved this result in  Boolean case. 

Example 1. We here construct a 2-resilient function with 4 variables over Fg. 
Proposition 14 enables 11s to construct functions g1 and 92 which are respectively 
1-resilient with 2 variables and 2-resilient with 3 variables. Both normal forms 
have optimal nonlinearity: 
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gl(z1, z2) = (zf, + 4 ) 3  = zyz; + x:x; + x;' + z; 
z:z;z; + z;z;z3 + z:z; + x;z; + z+;z3 + z:x; + z:z;z; + z;z; + x2x3 + z; + 
z;'z3 + 2:z223 + z,x,z: + zf + 2;23 + xi 

3 3 -  6 6 6  5 3 6  4 5 4  
g2(21> z2, r 3 )  = (gl(zl 3 2 2 )  + z3) - z 1 z 2 2 3  + d l  + Z z 3  + z1x2z3 + z:z: z3?z:z3 + 

We now apply lemma 15 with f l  = g2 and f2  = agz where a E Fg \ {0,1}. 
We then obtain a 2-resilient function f with 4-variables and optimal nonlinearity 
d = 25. The function f ( 2 1 ,  z2, z3,z4) has 42 terms among which ( a + l ) z ~ z ~ z ~ x ~ .  
Since this monomial contains 3 = t f 1 variables with degree q - 2 and one with 
degree q - 1, it  hes optimal nonlinearity according to Theorem 7. 

5 
correlation immune with respect to F: 

Algebraic Normal Form of q-ary functions which are 

We now give a new bound for the optimal nonlinearity of any function f from 
(F,L)" to F, which is correlation immune with respect to F , k .  

For a polynomial f E F , [ z ; , j ,  1 5 i 5 n ,  0 5 j 5 k - 11, Pdeg,, f denotes 
t,he partial degree of f in the variables z , ,~ , .  . . , z , , ~ - I  

Theorem17. Let there be gtven a funclzon f . (F,k)" -+ F, where k > 1. I ts  
normal f o rm as then a polynomzal6 E F , [ x , , ~ ,  1 5 i 5 n, 0 5 j 5 k - l]/(~;,] - 

Iff IS t - th  order correlation immune (resp. t-resilient) with respect l o  F,k,  then 
t o  every  monotnaal p of 0 corresponds a subset T of { 1,. . . , n }  of m e  t (resp. 
t + 1) such that Pdeg,,p 5 (k - l ) ( q  - 1) -+ q - 2, V i  E T and Pdeg,,p 5 k ( q  - I ) ,  
tli # T .  

xi,j). 

Proof. Let us consider f as a function from (F,k)" to F,k. Then its normal form 

is a polynomial p E F,p [XI,. . . , rn]/(zPk - x i ) .  Let a be a primitive element in 
F,p. Then F,k = F, +aF,  +. . . +&IF, and to any  z, E F,p can be associated 
a polynomial of F,k[z , , j ,  0 5 j 5 k - 11, h e a r  in each indeterminate. 
The function f can therefore be written as a polynomial 0 in the algebra F y k  [ z ; , j ]  

modulo the ideal generated by ~ 4 , ~  - z,,j ~ 1 5 i 5 n, 0 5 j 5 k - 1. I f f  takes its 
values in F,, then @(z) = d ( z )  for all 1: E Fin.  Thus fl = 0' and all coefficients 
of 0 lie in F ,  in view of Lemma 5. 

We now write XI for all s < qk  as a polynomial in x,,o, , . . , z ; , k - l .  Let s = 
S O + S ~ Q + . .  . + s k - l q k - '  be the q-ary decompositionof s and w q ( s )  = Cfzi s,. 
Then we have: 

E - 1  
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Then Pdeg,,(zf)  is at most w,(s).  Let fly==, 2:’ be a monomial of 8 .  By 
Theorem 7, i f f  is l-th order correlation immune with respect to  F p k  , this product 
contains at  most n - 1 variables of degree qk - 1. Each of these variables gives a 
polynomial over F, of degree a t  most k ( q  - 1). The degree s of any other variable 
in the product is less than or equal to q‘ - 2; then w,(s) 5 ( k  - l ) ( q  - 1) + q - 2. 
In other words there exists a T c (1,. . .,n}, (TI = t such that Pdeg,,p 5 

I f f  is additionally balanced, we have for all u E F,,I f-’(v)l = qnk-’ .  Since 
k > 1 and 1 < n,  l-1 = 0 mod q .  In view of the remark following Theorem 7, 
we then obtain the expected result. 

(k - l ) ( q  - 1) + q - 2, V i  E T .  

Remark. As for Theorem 7 the strongest condition may hold even if f is not 
balanced. A necessary condition for having the property asserted for balanced 
functions is: 

CorolIary18. Let  f : FYk --+ F, be a t - t h  o r d e r  corre la t ion- immune  f u n c t i o n  
w i t h  respect t o  Fqk. T h e n  the to ta l  degree d of i t s  algebraic n o r m a l  form sa t i s f ies  

d + t 5 ( q  - 1)kn 

I f f  is addi t ional ly  balanced a n d  k > 1, then  

d + t  5 ( q -  1 ) k n -  1 

Example  2 .  
Let 4:  F8 x Fs -+ Fs 

(2; Y) (s3 + Y3I3 
Let cr be a root of X 3  + X + 1. To each element 2 in F8 we associate the 

polynomial 20 + ax1 + a2x2 and we now consider 4 as a function from F; to Fz. 
Each of its components f o ,  fl, f2 defined by 4 = fo  + afl + a2fz is a Boolean 
function with 6 Boolean variables and it is obviously 1-resilient with respect to 
Fa. All of them have optimal nonlinearity; the normal form of fo is for example: 
fo(zo;~l;~2;Yo;Yl;Y2) = 2 0  + Yo + 21Y2 + ZZYl + xoxlyl + ZlYOYl + ~ 2 Y o Y 1  + 
xoXlYzY2 + zox2Yz + rox2YoYl + ~ O ~ l Y O Y Z .  

6 Application t o  the design of cryptographic primitives 

Many “conventional” cryptographic primitives consist of some small boxes con- 
nected by a graph structure. In [lo] Schnorr and Vaudenay exposed a cryptanal- 
ysis method for such primitives only based on the graph structure, called the 
black box cryplanalysis.  In order to maximize the complexity of this attack they 
recommend that all the boxes should be functions realizing perfect diffusion, and 
they introduce the concept of rnultipermutations. 
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Definition19. A (r, n )  multipermutation over a finite alphabet F is a function 
x from Fr to F" such that 2 different (r+n)-tuples of the form (2, ~(z)) cannot 
collide in any r positions. 

All the boxes of the network representing a cryptographic primitives should 
then be multipermutations. Let us consider a box with r inputs and n outputs in 
the network. If this box is an ( r ,  n )  multipermutation then the knowledge of any 
r - 1 or less words amongst inputs and outputs does not permit to  determine any 
of the other inputs or outputs. Moreover we assume that all inputs and outputs 
can be deduced from the knowledge of any r of them. We will say that such a box 
has degree of freedom r .  This means that,  if you want to  resolve this box (ie. 
to  find all its inputs and output) such that,  for example, the first output has a 
given value, then you have to try all possible values for r -  1 inputs/outputs. The 
complexity of the resolution is then the size of the examined space, ie. 1FIr-l. 

In [lo] Schnorr and Vaudenay applied the black box cryptanalysis for invert- 
ing or finding collisions for hash functions whose compression function is based 
on FFT-networks. These functions were improved in [ll]. 
The iterative hash function hk,$ is defined as follows: the message M is split into 
n blocks M ' ,  . . . , M" of 2"'+l;-' bits. For 1 5 i 5 n, we iterate the compression 
function gk,J: Ha = gk , s (Hi - l ,  M ' ) ,  where H a  is a fixed initial value. The hash 
value of M is then H " .  The compression function gt ,= over F2- has 2E inputs and 

outputs in F z m ;  it is based on the FFT-network with s + 1 layers. Then 2E-1 

it contains 2k-1(s + 1) boxes performing a (2,2)-multipermutation over F2-. 
Figure 2 gives for example the strccture of 9 2 , 1 .  

Fig. 2. The g2,1 compression function and the corresponding collision network 

It is then possible to find collisions for h2,l i e .  pairs of messages ( M ,  M ' )  
such that g 2 , 1 ( H ,  M )  = g 2 , 1 ( H ,  M ' )  by resolving the network given in Figure 2 
for fixed values H I  and H z  in F p .  Since all boxes are multipermutations over 
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F2- , the complexity of t)he resolution is because we have t o  try all possible 
values for M1 and Mz for resolving boxes Bo,o, Bo,1, Br,o, B1,1. Then considering 
all possible values for MI enables us to successively resolve boxes B&,o, Bi,ol Bi,l 
and BL,l. 

However this collision network may be resolved with a lower complexity if 
inputs and outputs are not considered as elements of F2- anymore, but as binary 
strings; the degree of freedom is not preserved if the boxes are viewed as functions 
from F;" to  F;". We consider for instance the g2,1 function over F4 with boxes 
B0,o and Bl,o defined by: 
"1 : F4, i F4 

A2 : F; i F; 

( 2 1 , ~ O , Y l r y O ) ~ ( ~ 0 + Y 0 , ~ 1 + Y 1 , ~ l  + 2 0 + Y l + 1 , 2 1 + Y O )  

( 2 1 , ~ O , Y ~ , Y o ) ~ ( ~ 1 + Y l r 2 0 + Y O r ~ 1 + ~ 0 + Y 1 + 1 , 2 1 + Y O )  

and boxes B o , ~  and B1!1 defined by: 

These functions are both (2,2) multipermutations over F4 since they correspond 
to pairs of orthogonal Latin squares. 

We now want to  obtain all the possible solutions of the collision network for 
fixed ( H I ,  H2). We refer the reader to  Figure 3. 

1. Considering all possible values for MI and for the low-weight bit of M2 
enables us to resolve Bo,o and t o  find the low-weight bit of both outputs of 
B0,l. I t  follows t,hat we similarly get the high-weight (resp. low-weight) bit 
of the left output of B1,O (resp. B1,l). We now consider all possible values 
for the high-weight bit of M i  and we obtain the low-weight bit of the left 
output and the high-weight bit of the right output of BA,o. 

2. The  set of bits for which all possible values are examined is then E = 
{ both bits of M I ,  m2, mi}  (these bits are underlined in Figure 3). At this 
step, the complexity is then 2IEl = 24. We now know the low-weight bit of 
the left input and the high-weight bit of the left output of B{,o. Then we 
deduce the low-weight bit of its right input thanks to  the particular structure 
of the box. This leads to the knowledge of the  low-weight bit of A44 and of 
the right output of Bh,l. 

3. If we now examine all possible values for the high-weight bit of M i ,  we 
Completely resolve Bh,l. The set E is now { both bits of M I  , mz, mi, ni}; 
the complexity is 2 5 .  Then the struct.ure of the box enables us t o  completely 
resolve l?i,l from the knowledge of its right input, the high-weight bit of its 
left input and the low-weight bit of its lefl output.  

4. Now all the remaining boxes can be successively resolved since they have a t  
least two determined inputs/outputs. The complexity of this attack is then 
'.15 while it was 26 when all inputs and outputs were considered as elements 
of F4. 

This attack is successful because the structure of the multipermutation 7 ~ 2  

enables us to  deduce some information from the knowledge of only 2 bits amongst 
all inputs and outputs of B{,o at  the beginning of step 2. This results from a 
particular property of AZ which can be expressed in terms of correlation-immune 
functions. 
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Proposition20. A ( r ,  n )  multipermutation x over Fz- is  equivalent t o  a Bool- 
ean junction fir : F:('+") ---* F2 r-th order correlation-immune with respect to  
F p  such that If;'(l)l = 2"'. Moreover the nonlinearity order d o f f r  verifies: 

mn - 1 + mr)xdegree (ay ) )  5 d 5 m ( r  + n )  - r 

where K = ( X I , .  . . , n,) is considered as a function from FY' to FY'" and xi(j) is 
the j - t h  binary component of a;.  

Proof. A (P, n) multipermutation cver F2- is equivalent to an orthogonal array 
of size 2"', strength r ,  with r -+ n constraints over Fzm. This orthogonal array 
consists of all the (r+n)-tuples (2, ~ ( 2 ) ) .  By Proposition 2 this orthogonal array 
can be viewed aa hhe truth table of function fx : FT('+") + F2, which is r-th 
order correlation-immune with respect to Fzm. By Theorem 17 its normal form 
is a polynomial of F2[2?), 1 5 i 5 r + n,O 5 j 5 m - 11 of degree d and 
d + r 5 m(n + r ) .  By definition fir can be expressed by: 

' 3  

fir(.) = rJ n [ n l j ) ( x y , .  . , , z $ m - l ) )  - $2; - 11 
l l i l n  O < j < r n - l  

We then deduce the expected inequality. 

The  complexity of the previous cryptanalysis method, which consists in con- 
sidering a ( r ,  n )  multipermutation x over Fz- as a function over F2, can then be 
deduced from the correlation-immunity order, t ,  of the Boolean function fr with 
respect to  F2. This order has indeed the following cryptographic significance: the 
knowledge of any t - 1 bits of inputs and outputs of the box does not permit to  
determine any of the other bits. For example the previous attack on g2,1 results 
from the fact that  the binary correlation-immunity order fir2 is only 2. This 
attack could be avoided if all multiperrnutations in the g2,1 network were given 
by the function fr : F: --+ F2 whose truth table consists of all codewords of the 
[4,2,3]-extended Reed-Solomon code over F q :  fr is indeed a correlation-immune 
function of order 2 with respect to  F4 and of order 3 with respect to  Fz. 

Applying Theorem 7 t o  fir gives an upper bound on its binary correlation- 
immunity order depending on its nonlinearity order. 

Theorem21. Lei x be an ( r ,  n) muliipermvtation overFzm and f i r  : FY('+") - 
Fz be the associated Boolean function with nonlinearity order d. Then  its binary 
correlation-immune order t satisfies r 5 t 5 m ( r  + n )  - d - 1. In  particular we 
have: 

r _< t 5 mr - maxdegree (ap) )  

Proof. The  binary correlation-immunity order t is obviously greater than T .  The 
second part of the inequality directly comes from Theorem 7 and the associated 
remark since If;'(l)[ = 2"", If;'(O)l = 2m(n+') - 2mr and t < m r  (this results 
from the Bush bound [2] which proves the non-existence of binary orthogonal 
arrays of size Z"", strength mr with n ( r  + m) constraints provided mr > 1). 

' J 
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This theorem shows that it is not suitable to use multipermutations over F2- 
whose components, considered as Boolean functions, have a high degree. 

Example 3. 
Let n :  Fi 4 FB” 

(2; Y) ((z3 + Y 3 Y ;  (z3 + fw) + (2 A 413) 
where a is a root of X 3  + X + 1, R denotes the circular rotation to  the right, + 
is the bitwise XOR and r\ the bitwise AND. 
This function is then a (2,2)-multipermutation over Fg (see Theorem 4 in [lo]). 
The function TI ’ )  : F! + Fz corresponding to the low-weight component of 
xl(z; y) = (z’+$)~ has degree 4 as proved in Example 2. The previous theorem 
gives 2 5 t 5 6 - 4. It  follows that the binary correlation-immunity order of fT 
is minimal. The use of this multipermutation in a cryptographic primitive is 
therefore not secure. 
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step 1 step 2 

Hi &? H2 

Hi & Hz ?- 

h? 1 F H '  

Hi <? H2 ?mi 

Hi M, H2 n z z  

Fig. 3. Resolution of  the collision network for g2.1 
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