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Abstract. 111 1993, Beimcl and Chor presented an unconditionally sc- 
cure interactive protocol which allows ii subset of users in a network to 
establish it commuri key. This schexne made use of a key predistributioxi 
scheme due to  Blom. 
In this paper, we describe some variations and generalizations of the 
Bcimel-Chor scheme, including broadcast encryption schemes as well as 
interactive key distribution schcmcs. Oiir constructions use the key pre- 
distribution scheme of Blundo e t  al, which is a generalization of the Blom 
scheme. We obtain families of schemes in which the amount of secret in- 
formation held by the network users can be traded off against, the amount 
of information that needs to be broadcast. 
'CVc also discuss lower bounds on the storage and comniuncation require- 
ments of protocols of these typcs. Some of our schemes are optimal (or 
close to optimal) with respect to t,hese h i i ~ i d s .  

1 Introduction 

When a subset of users in a network wishes to communicate privately in confer- 
ence, encryption algorithms can be cmployed to provide security against eaves- 
dropping. If conventional (private-key) cryptography is used, a common key must 
be shared by the  members of the conference, which we call the  privileged subset. 

One solution is to use a Key Prcdistribution, Scheme (KPS) [lo] in which 
secret information is given to each user by a trusted authority in such way 
that, specified privilcged subsets can coniputc a secret, key. One siic:li scheme 
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was described by Blom [3], in which t,here is a secret key associated with each 
pair of users. By giving each user w + 1 pieces of secret information, any of 
t,he resulting secrpt keys is unconditionally secure against a coalition of size W.  

A generalization of Blom’s method can be found in [4], and a survey of key 
predistribut,ion schemes can bc found in [ 111. 

A different, approach is t,o iise a Broudcnst Encryption Scheme (BES), in 
which t,he TA broadcasts an encrypted version of a conference key, whosc value 
can be decrypted only by members of the privileged subset. (Unconditionally 
secure) broadcast encryption was first, introduced by Fiat and Naor [8] ,  and has 
been further studied in 15, 111. 

A third approach is for the members of the privileged set to interactively 
compute a secret, conference key by exchanging messages among themselves. Of 
course there many such schemes that a.re computationally sccure, going back to 
the Diffie-Hellman scheme. (One nice conference scheme was recently described 
by Biirmester arid Desmedt [GI ,) Unconditionally securc schemes for conference 
key agreement, have been studied by Beimel and Chor [l, 21 (see also Blundo and 
Crestmi [5]). We will call such a schcme an Interactive Key  Distribution Scheme 
(IKDS). An IKDS typically consists of a key predistribution phase (which re- 
quires a trusted aathority), followed by an interactive conirriunication phase 
among the conference participants (which does not involvc the trusted author- 
it,y). 

In this paper, we present, new constructions for BES and IKDS. These schemes 
are one-time schemes in that they can be used for only a single broadcast, (in 
the case of BES) or to establish only one key (in the casc of IKDS). Hence, 
we will use the acronyms OTBES and OTIKDS, respectively. One situation in 
which this would be very appropriate is if the key that is being established is 
a (long-term) mast,er key. We should also note, however, that onetime schemes 
can generally bc modified in a straightforward way to obtain r-time schemes; 
see [ 1, 51, for example. 

Our new schemes allow a trade-off between communication and storage. In 
general, a smaller broadcast size can be accomplished if the participants have 
more secret information, and vice versa. One of the main purposes of this paper 
is to examine and quantify these trade-offs. 

It, should be evident that we are interest,ed in unconditionally secure schemes 
in this paper, i.e., schemes that do not, dcpend on any computational assump- 
tions. Although these schemes require a trusted authority, they are nevertheless 
extremely efficient computationally. There is also some benefit in using an un- 
conditionally secure key distribution mechanism, even if the key is to  be sub- 
sequently used in a convent,ional, cornputationally-secure cryptosystem such as 
DES. 
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2 Mathematical Models 

2.1 Key Predistribution Schemes 

We begin by discussing key preclistributiori schemes, since we will be using these 
as building blocks in our consideration of broadcast encryption schemes and 
interactive key distribution schemes. 

Our model consists of a trusted authority (TA) and a set of users U = 
{1,2 , .  . . , T L } .  We assume that network is a broadcast channel, i.e., any informa- 
tion transmitted by the TA (or by a user in the network) will be received by every 
user. It is assumed to be insecure against passive attacks, i.e., the information 
that is broadcast can be observed by anyone. However, we will assume that the 
network is secure against active attacks. (In pract,ic:e, we could obtain protection 
against active attacks by using an unconditionally secure authentication code to 
authenticate all information that is broadcast.) 

In a key predistribution scheme, the TA generates and distributes secret 
information to each user. The information given to  user ,i is denoted by ‘zli and 
must be distributed “off-band” (i.e., not using the network) in a secure manner. 
For 1 5 i <_ n, let Ui denote the set of all possible secret values that might be 
distributed to  user i by the TA. For any subset, of users X C_ U ,  let U X  denote 
the Cartesian product Ui, x . . . x U L , ,  where X = {il,. . . ,ij} and i l  < . . . < ij. 
We assume that there is a probability distribution on Uu, arid the TA chooses 
uu g Uu according to  this probability distribution. This secret information will 
enable various privileged subsets to compute keys. 

2 u  will denote the collection 
of all privileged subsets to  which the TA is distributing keys. .F C 2 u  will denote 
the collection of all possible coalitions (called forbidden subsets) against which 
each key is to remain secure. 

Once the secret information is distribut,ed, each user 1, in a privileged set Y 
should be able to compute the key k p  associated with P .  On the other hand, no 
forbidden set F E F disjoint from P should be able to  compute any information 
about, k p .  

The desired properties (:an be described mathematically using the entropy 
function (see [7] for basic terminology and results on information theory). We say 
that the scheme is a (P, F)-Key Predistribution Scheme (or ( P ,  F)-KPS) 
provided the following conditions arc satisfied: 

Let 2 u  denote the set of all subsets of users. P 

(KPS1) Each user i in any privileged set P can compute k p :  H(KplU,)  = 0 
for all i E P ,  P E ‘I> 

(KPS2) No forbidden subset 1”’ disjoint from a privileged subset P has any 
information on k p :  H ( K p )  = H(KpILrF) for all P E P and F E F such that 
P n F = 0 .  

IJsually, we will be considering schemes where P consists of all t-subsets of U ,  
and 3 consists of all subsets of U of size at  most w. Such a KPS will be denoted 
as a ( t ,  71))-KPS. 
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2.2 Broadcast  Encryption Schemes 

We now t,urn to the not,ion of a one-time broadcast encryption scheme. We de- 
scribe the model from [ll] (a different model, which is not a one-time scheme, 
is presented in [5]). In our model, there is an initial set-lip phase in which thc 
TA distributes secret information to  tlie network users, just as in a key predis- 
tribution system. As before, we denote thc secret information given to user i by 
U i .  

At a later time. the TA will want to broadcast a message (i.e., a plaintext) to 
a privileged subset, P .  We will let P C 2u denote the collection of all privileged 
subsets to which the TA might want to broadrast a message. The particu1a.r 
privileged subset P E P to which the T A  will broadcast a message is, in general, 
not known ahead of time. 

The message to be broadcast to P will he denoted as nzp, and is chosen by 
the TA from a specified set M p  according to i-l, specified probability distribution 
on M p .  Then the trrondcast bp  (which is an element, of a specified set Bp)  is 
computed as a function of m p  and up .  

Once bp is broadcast, each user 1; E P should be able to decrypt b p  and obtain 
mp. On the other hand, we will desire that  the broadcast, should be secure against 
specified coalitions. F 2u will denote the collection of all possible forbidden 
subsets against which a broadcast is to remain secure. We require that no F E F 
disjoint from P should be able to compute any information about, mp. 

As mentioned abovc, we discuss the security in terms of a single broadcast, 
so we call the scheme “one-time”. Here is a formal definition. We say that the 
scheme is a. (PI 3)-One-Time Broadcast Encryption Scheme (or ( P ,  F)- 
OTBES) provided the following conditions are satisfied: 

(OTBES1) Without knowing the broadcast, no subset of users has any infor- 
mation about, mp,  even given all the secret information Iil,,: H ( M p l U u )  = 
H ( M p )  for all P E ‘P.  

(OTBES2) The message for a privileged uscr is uniquely determined by the 
broadcast and tdhe user’s secret, information: H ( M p l U ; D p )  = 0 for all i E 
P I P E P .  

(OTBES3) After receiving the broadcast, no forbidden subset F disjoint from 
P has any information on mp: H(A4p)  = t J ( k l p / U ~ B p )  for all P E P arid 
F E F such that P n F = 0. 

As with KPS, we will be consider-irig OTBES where privileged sets have size 
t and forbidden sets have sizil (at most) I I J ;  the notation (t,w)-OTBES will be 
used to describe this scenario. 

In Section 6, we will describe o u r  rnodel for iritcractive key distribution 
schemes. 

3 The Blundo ct a1 KPS and its Properties 

We will be using the key predistributiori scheme of Rlnrn [3 ] ,  and the generaliza- 
tion of Blurido et aB [4]. The Blundo et d srherne is a ( t ,  70)-KPS (and the Blom 
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scheme is the special case t = 2 ) .  Let p be a prime such that p 2 n (the number 
of users). The TA chooses n distinct random numbers si  E Z,, and gives S ;  to 
user i (1 5 i 5 n).  These values si do not, iieed to bc secwt. 

Next, the TA the constructs a. raridorn symmetric polynomial in t variables 
with coefficients from Z,, in which the degree of any variable is at most 7u: 

i , = o  l , -n 

Then, for 1 5 i 5 TL, the TA computes a. polynomial ,9i in the t - 1 variables 
2 2 ,  . . . , xt by setting z1 = s, in f(z1,. . . , z t ) ,  The coefficients of *9i comprise the 
secret, information which is given to user 7 .  The key associated with the t-subset 

k p  = f ( s , ,  , . . . , s,,) mod p .  

Each user ij E Y ran curriput,e 

k p  = g i ,  ( s ~ ,  ! .  . . , s , , - ,  .s,,+~ l . .  . , s T t )  mod p .  

It, (:an be shown that, no subset of w iiscrs disjoint from 1’ can compute any 
information about, k p  (see [4]). In fa.ct,, given the secret, information held by a 
coalition F of size t ,  every possible 4-tuple of keys held by the l-subsets of P 
occurs with equal probability p ~ ,, where LY = ( i )  . 
Lemmal. Suppose we have a Bliiiido et  a1 ( t  + 111 - ti,!)-KPS, whet-e i? 5 t .  
Let P and F two sets o f t  nnd ‘UI ‘users, respectively, such that P n F = 8. Let 
Q = (i) and let Y l ,  . . . , Y, he arll the subsets of I‘ of cardinality l .  Let kl, . . . , k, 
he arbitrary elernents of Z,, nnd let  U F  he the secret information yiven to  the 
.subsel F .  Then 

Remark: In thc case F = 2, this is t,hc result, stated in [I ,  Lemma 91. 

4 One-time Broadcast Encryption Schemes 

4.1 

In this scc.t,ion, we presen(, a ( t ,  w)-OTBES based on the comhinatorial st,ructures 
called “resolvable designs” (for forrrial deiiriitions and the results in design theory 
that we use, we refer to  [9]). 

Suppose that L > 1 is any integer such that t = 0 mod 8. (The “best” choice 
for e for a given parameter situation will be discussed in Section 5.2.) The set- 
up phase consist,s of the TA distributing secret information corresponding to  a 
Blundo e t  a1 (P,  1, + w - I?)-KPS iniplenient,ed over Z,, p prime. For an !-subset 
of users A ,  we drnotc by k~ the key associated wit,h the subset A .  

A Construction using Resolvable Designs 
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Now suppose that the TA wishes to broadcast a message to  a privileged set 
P of cardinality t .  Consider the collection of all !-subsets of P ,  which we call 
blocks. (This collection is sometimes called the compl Y -uniform h w e  rgraph 
on P.) By a farnous theorem of Baranyai (see, for example, [9]), this set of ( k )  
blocks can be partitioried into T = (:I;) parallel classes, each of which consists 
of of t/C blocks. (In other words, the hypergraph is resolvuble.) We will denote 
these parallel classes by C1, . . . , C,, arid we will dcnote the blocks in C, by Bi,j, 
1 5 i 5 r ,  1 5 j 5 t / f .  (The resolution of the hypergraph into parallel classes is 
public knowledge.) 

There is a key k ~ ; , ,  associated with every block & , j .  The message to be 
broadcast to P will be an element of ( Z P ) ' ,  say 

mp = (7111 , .  . . , r n j r ) .  

The T.4 encrypts ea.ch rrii using the t / !  keys k ~ , , ~ ,  by defining 

bi , j  = k ~ , , ,  + m, mod p ,  

1 5 i 5 r ,  1 5 j 5 t / f .  Then the broadcast b p  is 

h r  = @l, l .  ' . . I b l , t / f ,  b Z , l > .  . ' , b 2 , L / I ,  " . 1 [),.,I, ' . . 1 b , t / d  
Let's see how any user h E P can decrypt the broadcast. For each i, 1 5 i 5 r ,  

there is a block Bi,h, E Ci such that h, t Bi,hi. Thus h can compute all the keys 
kB,,h,  1 1 5 i 5 7'. Thcn it is a simple matter for h to compute 

7ni = b z , f L ,  - k ~ ; , ~ ,  mod p ,  

l l i < r .  
Here is a small example to illustrate. 

E3;nmplcl. Assume t,hat t = 6 and 4 = 2. Lct P = { 1 , 2 , 3 , 4 , 5 , 6 }  The (i) = 15 
pairs of users in P can be partitioned into 5 disjoink parallel classes, as follows: 

C1={{5,6}, {1,4}, { 2 , 3 ) ) ,  CZ = {{5,1}, {2,6}, {3,4}}, c 3 = { { 5 , 2 } ,  ( 3 ,  I}, {4,6}}, 
C4 = { { 5 , 3 } ,  {1,6), {2 ,4 ) ) ,  C5 = {{5 ,4) ,  {3 ,6 ) ,  (1,211. 

Suppose thc TA wants to broadcast the message m p  = (ml,  m2, m3, m4, ms) E 
(z,)5 to  the users in P .  The broadcast, b p  is the coilcatmation of the following 
15 values: 

k { s , ~ }  + 7111, k{1,4)  + 'rr11, k{2,3)  + ~ r ~ i ,  
k{l,S) + m.2, k{Z,6} + nk!, k{",4} + m2, 

k{2,5} + 712.3, Jc{1,3} + m3, k{4,6} + 7113, 

k { 4 > 5 }  + n 1 5 ,  k { 3 , 6 }  + 7715, k{,,Z) -f 7715, 

k { : ( , 5 }  f m4, k(1,6) $- m 4 ,  k{2,4} + m.4, 

where all addit,ion is modulo p .  
Let us set how user 3 will decrypt t h r t  broadcast. This user knows the five 

keys k{1,3}, k { ~ , s } ,  k . { 3 , 4 ) ,  k{:3,5} and k{:$,61, arid hence he or  she can perform the 
following calculations: 

m1 = b1.3 - k{Z,:+} rriod p ,  m2 = h2,:3 -- k{3,4) mod p ,  r n 3  = b3,2 - k { 1 , 3 )  mod p ,  
m4 = h 4 , l  - k { ~ , ~ )  mod p, n15 = b6,2 -- k { 3 , 6 }  mod p .  
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4.2 Security of the Scherne 

We now briefly discuss t,he security of the scheme. It is intuitively clear that a 
coalition of 711 users disjoint form a privileged set P has no informat,ion about mp 

after observation of the broadcast, even if they pool all their secret information. 
This is because of the property, which we stated in Lemma 1, that the ( i )  keys 
kn appear to  them to be independent randorri elements of Z,. Each of these 
keys is used t,o encrypt one element, of Z,, and thus these keys function as a big 
one-time pad. A formal proof can be given by modifying that given in [2] in a 
straightforward way. 

5 Entropy Bounds for OTBES 

5.1 Lower Bounds on Entropy 

We are interested in t,hc amoiint, of secret, inforination held by the users in an 
OTBE'S, as well as the size of the broadcast. As mentioned eadier, there exists 
a trade-off between t,hese quantities: one can achieve a small broadcast if the 
amount, of secret information is Iargc, and vice versa. In  this section, we present, 
a bound that quantifies t,his trade-off, More specifically, Theorem 2 provides a 
lower bound 011 the information held by U J  users together with the broadcast size 
(in the case t 2 w + I ) .  Becaiise of  space limitations, the proof will not be given 
here, but, it, can be found in the long version of this paper, available from the 
authors. 

The following throreiii holds for arbitrary entropies on the message spaccs 
M p :  but for clarit,y we will st,atc: it for the simpler case where H ( M p )  = H ( M p ( )  
for all P,P' E 'P. We denote this common ent,ropy by H ( M ) .  

Theorem2. Suppose w e  have (I ( t ;w-OTBES,  where t 2 w + 1. Then, for any 
P = { i l , .  . . , Z L }  u, it holds lhut 

W 

H ( B ~ )  + C H ( U i , )  2 ( 2 ~  + ~ ) H ( M ) .  
.J = 1 

5.2 

We measure the efficiency of our constructions by considering the amount) of 
secret information stored by e x h  user as (:ompared to the information content 
of the broadcast; and the size of the broadcast as compared t,o its information 
content. 

The Entropy of our Schemes 

Hence, we consider t,he following quantities: 



394 

(Note that these qiia.nt,it,ies are the reciprocals of informution, m tes  as defined in 

It is easy t,o see that T ,  2 1 provided that, i is a member of at least one 
privileged set. Also, r B p  2 1. It is easy t,o construct schemes in which T ,  = 1 
for 1 5 i 5 1 1 ,  and it is also t,rivial to mnstruct schemes in which T B ~  = 1 (see 
[ll], for example). However, as ment,ioned previously, the results of Section 5.1 
show that there is a trade-off between r1 and T B ~ :  if one is “small” then the 
other must be “large”, In particular, if we rephrase Theorem 2 in terms of the 
notation defined above, we have the following result. 

Theorem3. In, a n y  ( t ,  w)-OTBES with t 2 111 + 1: 

v11.1 

lL 

rlj,. + c r,, ? (2w t 1) 
,/ - 1 

We look now at t,he construction for (t,w)-OTBES t,ha.t we presented in 
Section 4.1. We assume that a message is a random element of (Z,)”, where 
r = (:I:). Performing some simple arithmetic, we have the following result. 

Theorem4. Let P be an integer such that 1 5 P 5 t .  Then there exists a 
( t ,  w)- OTBES w i t h  r ::I-’) 

(;>I;) 1‘L 

1 5 i 5 71,, and 
f 

0’ T B , ,  1 

We haw noted that> we arc free to choose f‘ however we wish. If we wanled t,o 
minimize r z ,  we would choose P = 1. The resulting (trivial) scheme has ~i = I ,  
which is optimal. If wc wanted t,o mininiize TB,, , we would choose P = t ,  yielding 
rBp  = 1, also optimal. But if we wanled t,o s w  how close we can get to  attaining 
the hound of Theorem 3, we should choose some intermediate value of e.  

= 1. We know from Theorem 
3 t)hat ri + r ~ ~ ,  > 3 in any ( t ,  I)-OTBES. Oiir construction allows us to construcl 
a scheme in which 

As an cxsniple, suppose we consider the case 

We minimize r ,  + rfi,, by choosing e i ts follows. 

1+1 if I is odd 
if t is even. 

These choiws for 0 yield the followirig: 

if is odd 

tt? 
‘ ’ I  + l’B, 5 
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In particular, for t = 2 , 3 ,  we get a ( t ,  1)-OTBES with T, + r~~ = 3, which is 
optimal. For larger t ,  we always have T ,  + T B ~  < 4, which is not too far away 
from the lower bound r2 + r,qr 2 3. 

6 The Model for Interactive Key Distribution Schemes 

We now turn our attention to one-time int,eractive key dist,ribution schemes. We 
will use the model described by Beimel and Chor in [l, 21. In this model, there 
is an initial distribution of secret information by the T A ,  followed by a sequence 
of messages broadcast by the members of  a privileged set, P. At the end of the 
protocol, every member of P should be able to compute the same key, mp, while 
no c:oalitiori F disjoint, from P should have any information about mp. 

In general, the messages exchanged among the members in P can depend on 
previous messages, and there may be several rounds of communication. In this 
paper, we confine our attentmion to schemes of a very special type, termed “non- 
reactive” by Beimel arid Chor. In R non-reactive schcme, every member i E P 
independently chooscs a value m2, and uses his or her secret information, u,, to  
compute an encrypted version of mL, denoted by b , ,  which is Llien broadcast. 

Thus a non-rcactive one-time key distribution scheme can be thought of as 
several independent executions of a one-time broadcast encryption scheme, with 
each privileged user in turn broadcasting a message that can be decrypted only 
by the other privileged users. 

The kcy mp for the privileged sct P consists of the concatenation of all the 
values m i ,  i E P: 

rnp = ( m i l  ~. . . , m ( , ) ,  

. it }, i l  < . . . < if. WP define the broadcast in an analogous 
way: 

bP = (h > ’ . . , h, 1. 
Here are the formal definitions for a (‘P, S)-Non-Reactive One-Time Key 

Distribution Scheme (or (P, F)-NROTKDS): 

(NROTKDS1) Thc value of the key is indepcndent, of all the secret informa- 
tion [ J L ~ :  

f f ( M p I [ , ! L d )  ---7 H ( D ! p )  

for all P E 7‘. 
(NROTKDS2) Thc valuc 7 7 ~ ~  chosen t)y each privileged user is independent 

of the all the secret information Uu and independent of all the information 
broadcast by the othcr privileged users: 

for all i E P ,  P c ’P 
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(NROTKDSJ) The information broadcast by each privileged user i E p is a 
function of his or her secret, informat,ion and the value chosen for mi: 

H(B,JU,M,) = 0 

for all i E F ,  P E 'P . 

cast and the user's secret information: 
(NROTKDS4) The key can bc computed by a privileged user from the broad- 

H(M,+JjBp) = 0 

for all i E P,P E P. 

from P has any information on rnp:  
(NROTKDS5) Aft,er receiving the broadcast, no forbidden subset F dis.joint 

H ( M P )  = H(&!PlUFBP) 

for all P E 'P and F c F such that, P n F = 0. 

7 Constructions for Key Distribution Schemes 

In this section, we present a ( t ,  w)-NR.OTKDS which uses ( t ,  w)-OTBES ~ 0 1 1 -  

structed from resolvable designs in Scction 4.1. Our construction will contain 
the Beimel-Chor scheme as a special case (namely, when ! = 2) .  

Suppose that, ! 2 2 is any integer such that, t 5 1 mod ( e  - 1). The set- 
up phase consists of the TA distributing secret information corresponding to a 
Blundo e t  a1 ( l ,  t t w  - I)-KPS implemented over (Z,)!, p prime. For an !-subset 
of users A, we denott by kn  the key associated with the subset A .  We will think 
of k~ as being ma.& up of C independent keys over Z,, which we will denote by 

Suppose that the privilegcd set P wishes to interactively construct a common 
k A , 1 , .  . . I k A , P .  

key. Each user h t P will perform the following steps. 

1. h chooses a random value nih = (m:, . . . , mk) E ( Z p ) ' r ,  where T = (:I;). 
2 .  Since t 1 mod (l - l), t,hr complete ( B  - 1)-uniform hypergraph on P\{h} 

can be partitioned into r parallel classes, each of which consists of of s = 
( t - l ) / ( l -  1) blocks. Denote these parallel classes by C:, . . . , C,h, and denote 
the blocks in C," by B;,, 1 5 i 5 T ,  1 5 j 5 s.  

3.  For each block Bt.7, denote 

u { h )  = ( 3 . 1 , .  . . , T t } ,  
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5 .  [Jscr h. hroa.dca.st,s t,hc v 

h - bll h b - ( l . l , . . . . b : , s . ' . . I b  , , l , . . . l b ~ , s ) .  

Probably the only aspect, of the scherne that requires explanation are the 
values a$.  Their function is to  ensure that every k ~ , j  is used to  encrypt exactly 
one of t,he rn,c's. The proof that, every privileged user can compute m p ,  and 
that 110 forbidden set of w users can compute any information about m p ,  are 
essentially the same a.s t,hose used in st,udying the OTBES scheme in Section 
4.1. 

We now present an example to illustrate thc protocol. 

Example2. Suppose tha t  t = 5 and P = 3. Not,e that, 5 = 1 mod 2.  Suppose that, 
the privileged set I' = { 1 , 2 , 3 , 4 , 5 }  . 

For each user i t P ,  we part,it,ion the 2-suhsets of P\{i) into T = 3 disjoint 
parallel classes. This can be done as follows: 

c: = { { 2 , 3 } , { 4 , 5 } }  ci = { {2 ,4} , {3 ,5}}  ct = {{2,5} ,{3,4)}  
c? ={{1 ,3} , {4 ,5}}  c: = {{1,4} ,{3,5}}  ci ={{1 ,5} , {3 ,4}}  

cf { {1>2} , {3 ,5}}  c; = { {1 ,3} , {2 ,5}}  c$ = {{1,5},{213}} 
c: = { {1 ,2} , {3 ,4}}  c: { {1 ,3} , {2 ,4} )  cg = {{1,4} ,{2,3}} .  

c,3 = {{1,2},{4,5}} c; = {{1,4},{2,5}} c; = { {1 ,5} , {2 ,4H 

Let's look at the computations to be performed by the users in P.  First, each 
Z,. user h picks three random values (his or' her part of the key) m ~ , m ~ , r n ~  

Next,, he or she c:omputcs thc rcllcvant N valucs. These are as follows: 

ff;,l = 1 a:,'2 = 1 a;,, = 1 R,,, = 1 a;,, = 1 = 1 
a!,, = 2 a:,2 = 1 a;,, = 2 = 1 a$,,  = 2 a;,2 = 1 
a:,, = 3 a;,2 = 1 a;,1 = 2 a;,, = 2 a3 3 , l  - - 2 a$,2 = 2 
a;,l = 3 a;,2 = 2 = 3 = 2 = 2 a;,2 = 3 

= 3 = 3 = 3 a;,2 = 3 = 3 = 3 

This determines the values that are broadcast,: 
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We look now at our const,ruc:t,ion for ( t ,  u:)-NROTE;DS. The key is a random 
clement of (Z , l ) f ' ,  wkicrc T = (:--:). Sirriple c:almlat,ions yicld the following. 

Theoreni5. Let P he an, integer szr.clr. thut 1 5 P 5 t .  Then there exists a 
( t ,  ?li)-NROTKDS , u ) % ~ I L  

1 5 i 5 n, a71d P ' R ~  = ( t  - I)/([ - 1) 

We mentiorid alrcady that the Beinirl-Chor construction is the special case 
P = 2.  In this case, wt' gPt 

For any values of f and u:, it is always t,hc ca.se in the Beirriel-Chor scheme that 
T ,  2 2 .  We observr tha.t, by using larger values of P, wc can sometimes obtain 
values of T ,  vcry close to 1 (it is easy t,o see that rt  2 1 in any scheme, so the 
values are close t,o opt,imal). 

As an illustration of  a. class of examples where this can be clone, let's consider 
the case 111 = 1 in more detail. Whcn t i )  = 1. we see that 

a(t - 1) 
( r  ~ l ) ( t  - Pt I ) '  

T I  = T I ( [ )  = 

Elerrieritary algchia shows that r l (P  i- 1) 2 r , (4)  if and only if t 5 t2 I- P ~ 1 In 
thr rase wherr f 1 P' + 8 ~ 1 for sorile iritrgrr P. thc followirig is obtained. 

Theorem 6. For m y  P 2 2 ,  there ezcists an ( P 2  + ! - 1, l ) -NROTKDS in (which 
r ,  = 1 + $, for 1 5 i 5 TI,. 



399 

9 Comments 

The long version of this paper (available from the authors) contains all omit,- 
ted proofs. In addition, it, contains an alt,ernate construction for OTBES and 
IKDS, bsscd on polynomial interpolation, that does not have any congruential 
condition on the paramet,er &. (The communication and storage requirements of 
t,he alternate construction are identical to the constriiction we give here, but the 
alternate construction is more complicatrd c~ornput,at~ionally.) 
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