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Abstract. In 1993, Beimel and Chor presented an unconditionally se-
cure interactive protocol which allows a subsct of users in a network to
establish a common key. This scheme made use of a key predistribution
scheme due to Blom.

In this paper, we describe some variations and generalizations of the
Beimel-Chor scheme, including broadcast encryption schernes as well as
interactive key distribution schemes. Our constructions use the key pre-
distribution scheme of Blundo et al, which is a generalization of the Blom
scheme. We obtain families of schemes in which the amount of secret in-
formation held by the network users can be traded off against the amount
of information that needs to be broadcast.

We also discuss lower bounds on the storage and communcation require-
ments of protocols of these types. Some of our schemes are optimal (or
close to optimal) with respect to these bounds.

1 Introduction

When a subset of users in a network wishes (o communicate privately in confer-
ence, encryption algorithms can be employed to provide security against eaves-
dropping. If conventional (private-key) cryptography is used, a common key must
be shared by the members of the conference, which we call the privileged subset.

One solution is to use a Key Predistribution Scheme (KPS) [10] in which
secret information is given to each user by a trusted authority in such way
that specified privileged subsets can compute a secret key. One such scheme
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was described by Blom [3], in which there is a secret key associated with each
pair of users. By giving each user w + 1 pieces of secret information, any of
the resulting secret keys is unconditionally secure against a coalition of size w.
A generalization of Blom’s method can be found in [4], and a survey of key
predistribution schemes can be found in [11).

A different approach is to use a Broadeast Eneryption Scheme (BES), in
which the TA broadcasts an encrypted version of a conference key, whosc value
can be decrypted only by members of the privileged subset. (Unconditionally
secure) hroadcast encryption was first introduced by Fiat and Naor [8], and has
been further studied in [5, 11].

A third approach is for the members of the privileged set to interactively
compute a secret conference key by exchanging messages among themselves. Of
course there many such schemes that are computationally secure, going back to
the Diffie-Hellman scheme. (One nice conference scheme was recently described
by Burmester and Desmedt [6].) Unconditionally securc schemes for conference
key agreement have been studied by Beimel and Chor [1, 2] (see also Blundo and
Cresti [5]). We will call such a scheme an Interactive Key Distribution Scheme
(IKDS). An IKDS typically consists of a key predistribution phase (which re-
quires a trusted authority), followed by an interactive communication phase
among the conference participants (which does not involve the trusted author-
ity).

In this paper, we present new constructions for BES and IKDS. These schemes
are one-time schemes in that they can be used for only a single broadeast (in
the case of BES) or to establish only one key (in the casc of IKDS). Hence,
we will use the acronyms OTBES and QTIKDS, respectively. One situation in
which this would be very appropriate is if the key that is being established is
a (long-term) master key. We should also note, however, that one-time schemes
can generally be modified in a straightforward way to obtain 7-time schemes;
see [1, 5], for example.

Our new schemes allow a trade-off between communication and storage. In
general, a smaller broadcast size can be accomplished if the participants have
more secret information, and vice versa. One of the main purposes of this paper
is to examine and quantify these trade-offs.

It should be evident that we are interested in unconditionally secure schemes
in this paper, i.c., schemes that do not depend on any computational assump-
tions. Although these schemes require a trusted authority, they are nevertheless
extremely efficient computationally. There is also some benefit in using an un-
conditionally secure key distribution mechanism, cven if the key is to be sub-
sequently used in a conventional, computationally-secure cryptosystem such as

DES.
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2 Mathematical Models

2.1 Key Predistribution Schemes

We begin by discussing key predistribution schemes, since we will be using these
as building blocks in our consideration of broadcast encryption schemes and
interactive key distribution schemes.

Our model consists of a trusted authority (TA) and a set of users ¢ =
{1,2,...,n}. We assume that network is a broadcast channel, i.e., any informa-
tion transmitted by the TA (or by a user in the network) will be received by every
user. It is assumed to be insecure against passive attacks, i.e., the information
that is broadcast can be observed by anyone. However, we will assume that the
network is secure against active attacks. (In practice, we could obtain protection
against active attacks by using an unconditionally secure authentication code to
authenticate all information that is broadcast.)

In a key predistribution scheme, the TA generates and distributes secret
information to each user. The information given to user ¢ is denoted by u; and
must be distributed “off-band” (i.e., not using the network) in a secure manner.
For 1 < i < n, let U; denote the set of all possible secret values that might be
distributed to user i by the TA. For any subset of users X C U, let Ux denote
the cartesian product U;, x ... x Uj;, where X = {i1,...,7;} and i3 <... <1;.
We assume that there is a probability distribution on Uy, and the TA chooses
uy € Uy according to this probability distribution. This secret information will
enable various privileged subsets to compute keys.

Let 2% denote the set of all subsets of users. P C 2% will denote the collection
of all privileged subsets to which the TA is distributing keys. F C 2¥ will denote
the collection of all possible coalitions (called forbidden subsets) against which
each key is to remain secure.

Once the secret information is distributed, each user 7 in a privileged set P
should be able to compute the key kp associated with P. On the other hand, no
forbidden set F' € F disjoint from P should be able to compute any information
about kp.

The desired properties can be described mathematically using the entropy
function (see [7] for basic terminology and results on information theory). We say
that the scheme is a (P, F)-Key Predistribution Scheme (or (P, F)-KPS)
provided the following conditions are satisfied:

(KPS1) Each user ¢ in any privileged set P can compute kp: H(Kp|U;) =0
forallic P,PeP.
(KPS2) No forbidden subsct F' disjoint from a privileged subset P has any

information on kp: H(Kp) = H(Kp|Uf) for all P € P and F € F such that
PNnF =4

Usually, we will be considering schemes where P consists of all t-subsets of I,
and F consists of all subsets of ¢/ of size at most w. Such a KPS will be denoted
as a (t,w)-KPS.
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2.2 Broadcast Encryption Schemes

We now turn to the notion of a one-time broadcast encryption scheme. We de-
scribe the model from [11] (a different model, which is not a one-time scheme,
is presented in [5]). In our model, there is an initial set-up phasc in which the
TA distributes secret information to the network users, just as in a key predis-
tribution system. As before, we denote the secret information given to user ¢ by
U;.

At alater time, the TA will want to broadcast a message (i.e., a plaintext) to
a privileged subset, P. We will let 7 C 2¥ denote the collection of all privileged
subscts to which the TA might want (o broadcast a message. The particular
privileged subset P € P to which the TA will broadcast a message is, in general,
not known ahead of time.

The message to be broadcast to P will be denoted as mp, and is chosen by
the TA from a specified set M p according to a specified probability distribution
on Mp. Then the broadcast bp (which is an element of a specified set Bp) is
computed as a function of mp and up.

Once bp is broadcast, each user i € P should be able to decrypt bp and obtain
mp. On the other hand, we will desire that the broadcast should be secure against
specified coalitions. F C 2% will denote the collection of all possible forbidden
subsets against which a broadcast is to remain securc. We require that no £ € F
disjoint from P should be able to compute any information about mp.

As mentioned above, we discuss the security in terms of a single broadcast,
so we call the scheme “one-time”. Here is a formal definition. We say that the
scheme is a (P, F)-One-Time Broadcast Encryption Scheme (or (P, F)-
OTBES) provided the following conditions are satisfied:

(OTBES1) Without knowing the broadcast, no subset of users has any infor-
mation about mpg, even given all the secret information Uy H(Mp|Uy) =
H(Mp) forall P € P.

(OTBES2) The message for a privileged user is uniquely determined by the
broadcast and the user’s secret information: H{(Mp|U;Bp) = 0 for all @ €
P,PeP.

{OTBES3) After receiving the broadcast, no forbidden subset F disjoint from
P has any information on mp: H(Mp) = H(Mp|UpBp) for all P € P and
F e Fsuchthat PN F = .

As with KPS, we will be considering OTBES where privileged sets have size
t and forbidden sets have size (at most) w; the notation (¢,w)-OTBES will be
used to describe this scenario.

In Section 6, we will describe our model for interactive key distribution
schemes.

3 The Blundo ¢! u/l KPS and its Properties

We will be using the key predistribution scheme of Blom (3], and the generaliza-
tion of Blundo et al [4]. The Blundo et al scheme is a (t,w)-KPS (and the Blom
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scheme is the special case t = 2). Let p be a prime such that p > n (the number
of users). The TA chooses n distinct random numbers s; € Z,, and gives s; to
user ¢ (1 < ¢ < n). These values s; do not need to be secret.

Next, the TA the constructs a random symmetric polynomial in ¢ variables
with coefficients from Z,, in which the degree of any variable is at most w:

w w
flay, ... o) = Z ...ZCL,‘[V“,“.TJ“ cx

i, =0 1 =0

Then, for 1 < i < n, the TA computes a polynomial g; in the ¢ — 1 variables
To,..., ¢ by setting xy = s; in f(xq,...,2;). The coeflicients of g; comprise the
secret information which is given to user 7. The key associated with the t-subsct
P={iy,... i} is

kp = f(S,’l PN S,’,,) mod p.

Each user i; € P can compute

kP:{]ij('g'ils-~'aS'Lj71>'5‘i ..,Si£>m0dp.

1

It can be shown that no subset of w users disjoint from £ can compute any
information about kp (see [4]). In fact, given the sccret information held by a
coalition F of size ¢, every possible /-tuple of keys held by the #-subsets of P
occurs with equal probability p~ @, where o = (j).

Lemmal. Suppose we have o Blundo et al (t + w — £,£)-KPS, where £ < t.
Let P and F two sets of t and w users, respectively, such that PN F = Q. Let
= (f,) and let Y1,..., Y, be all the subsets of P of cardinality £. Let ki, ..., ka

be arbitrary elements of Z,, and let up be the secret information given to the
subsel F'. Then

1
P~

PK,, =ki,....K, =ko)=pK, =k. .. K, _ =kU, =ur)=
Remark: In the case ¢ = 2, this is the result stated in [1, Lemma 9).

4 One-time Broadcast Encryption Schemes

4.1 A Construction using Resolvable Designs

In this section, we present a (¢, w)-OTBES based on the combinatorial structures
called “resolvable designs” (for formal definitions and the results in design theory
that we use, we refer to [9]).

Suppose that £ > 1 is any integer such that ¢t = 0 mod £. (The “best” choice
for £ for a given parameter situation will be discussed in Section 5.2.) The set-
up phase consists of the TA distributing secret information corresponding to a
Blundo et al (¢£,1 + w — ¢)-KPS implemented over Z,, p prime. For an £-subset
of users A, we denote by k4 the key associated with the subset A.



392

Now suppose that the TA wishes to broadcast a message to a privileged set
P of cardinality t. Consider the collection of all f-subsets of P, which we call
blocks. (This collection is sometimes called the complete £-uniform hypergraph
on P.) By a famous theorem of Baranyai (see, for cxample, [9]), this set of (2)
blocks can be partitioned into r = (ﬁ:i) parallel classes, each of which consists
of of t/£ blocks. (In other words, the hypergraph is resolveble.) We will denote
these parallel classes by ..., C,, and we will denote the blocks in C; by By ;,
1<4i<r,1<j<t/f (The resolution of the hypergraph into parallel classes is
public knowledge.)

There is a key kp, ; associated with every block B; ;. The message to be
broadcast to P will be an element of (Z,)", say

mp = (my,...,m,).
The TA encrypts each mn; using the t/¢ keys kg, ;, by defining
bij = kp,, +m, mod p,
1<i<r, 1< j<t/e Then the broadcast bp is
bp = (bbb bages bt b))

Let’s sce how any user i € P can decrypt the broadcast. Foreach 4,1 <i < r,
there is a block B; p, € C; such that A € B, p;. Thus h can compute all the keys
thhi, 1 < ¢ < r. Then it is a simple matter for i to compute

mi = by p, — kp, . mod p,

1< <.
Here is a small example to illustrate.

Ezample 1. Assume that t = 6 and ¢ = 2. Let P = {1,2,3,4,5,6} The (g) =15
pairs of users in P can be partitioned into 5 disjoint parallel classes, as follows:

C1 :{{576}! {1’4}a {2a3}}7 CQ:{{5v 1}5 {276}’ {3a4}}v 03:{{5,2}, {37 1}7 {456}}1
C4:{{S>3}a {laﬁ}v {254}}7 Cs={{5,4}, {376}"{1’2}}

Suppose the TA wants to broadcast the message mp = (my, ma, m3, Mg, M) €
(Z,)® to the users in P. The broadcast bp is the concatenation of the following
15 values:

kisey +mu, kpiay Y, kg + g,

ki1sy + ma, kae) + ma, k(y.4) + ma,

ki2 5y + ma, kyy sy +ma3, kg ey +ms,

ks sy + My, kp1e)y + ma, kyp gy + may,

kiasy +ms, ks ey + ms, kgpay +oms,
where all addition is modulo p.

Let us see how user 3 will decrypt the broadcast. This user knows the five
keys ki1 2y, k(23}, k{3,4}, k(3,5 and k{36y, and hence he or she can perform the
following calculations:

m1 = b1z — kg sy mod p,my = by 3 — kyz 4y mod p, mg = by s — kfy 33 mod p,
ma = ba,1 — k(351 mod p, ms = by 5 — ky3,6; mod p.
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4.2 Security of the Scheme

We now bricfly discuss the security of the scheme. It is intuitively clear that a
coalition of w users disjoint form a privileged set P has no information about mp
after observation of the broadcast, even if they pool all their secret information.
This is because of the property, which we stated in Lemma 1, that the (§) keys
ka4 appear to them to be indepcendent random elements of Z,. Each of these
keys is used to encrypt one element of Z,, and thus these keys function as a big
one-time pad. A formal proof can be given by modifying that given in [2] in a
straightforward way.

5 Entropy Bounds for OTBES

5.1 Lower Bounds on Entropy

We are interested in the amount, of secret information held by the users in an
OTBES, as well as the size of the broadcast. As mentioned earlier, there exists
a trade-off between these quantities: one can achieve a small broadcast if the
amount of secret information is large, and vice versa. In this section, we present,
a bound that quantifies this trade-off. More specifically, Theorem 2 provides a
lower bound on the information held by w users together with the broadcast size
(in the case t > w + 1). Because of space limitations, the proof will not be given
here, but it can be found in the long version of this paper, available from the
authors.

The following theorem holds for arbitrary entropies on the message spaces
Mp, but for clarity we will state it for the simpler case where H(Mp) = H(Mp/)
for all P, P’ € P. We denote this common entropy by H(M).

Theorem 2. Suppose we have a (t,w)-OTBES, where t > w+ 1. Then, for any
P=A{i1,...,i} CU, it holds that
H(Bp)+ Y H(Ui,) > (Qw+ 1)H(M).

=1

5.2 The Entropy of our Schemes

We measure the efficiency of our constructions by considering the amount of
secrct information stored by each user as compared to the information content
of the broadcast; and the size of the broadcast as compared to its information
content.

Hence, we consider the following quantities:
- H(U;)
" H(MY'

1 <i<n,and
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(Note that these quantities are the reciprocals of information rates as defined in
[11].)

It is easy to see that r, > 1 provided that i is a member of at least one
privileged set. Also, rg, > 1. It is easy to construct schemes in which r; =1
for 1 €7 < n, and it is also trivial to construct schemes in which rg, = 1 (see
[11], for example). However, as mentioned previously, the results of Section 5.1
show that there is a trade-off between r; and rp,: if one is “small” then the
other must be “large”. In particular, if we rephrase Theorem 2 in terms of the
notation defined above, we have the following resuit.

Theorem 3. In any (¢, w)-OTBES with t > w + 1,

w
TR, + Z‘T‘,J > (2w + 1).

J=1

We look now at the construction for (¢,w)-OTBES that we presented in
Section 4.1. We assume that a message is a random element of (Z,)", where
T = (E:}) Performing some simple arithmetic, we have the following result.

Theorem 4. Let £ be an integer such that 1 < £ < t. Then there exists a
{t,w)— OTBES with

1<i<n, and

We have noted that we arc free to choose ¢ however we wish. If we wanted to
minimize r;, we would choose £ = 1. The resulting (trivial) scheme has r; = 1,
which is optimal. If we wanted to minimize rg,, we would choose £ = ¢, yielding
rpp = 1, also optimal. But if we wanted to see how close we can get to attaining
the bound of Theorem 3, we should choose some intermediate value of €.

As an example, suppose we consider the case w = 1. We know from Theorem
3 that r; +rp, > 3inany (f,1)-OTBES. Qur construction allows us to construct
a scheme in which

, )@
ri+ TRy = (:ﬂl) -[?(t—1{+1)'

We minimize r; + rg, by choosing £ as follows:

i

5 if t is even.

{{:{ TLif ¢ 1s odd

These choices for £ vield the following:

/ll . .
2 if ¢ s odd
T +,’.BIJ <7 {4&%’*1

1) . .
ﬁl if t is even.
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In particular, for t = 2,3, we get a (¢,1)-OTBES with r;, + rp, = 3, which is
optimal. For larger ¢, we always have r, + g, < 4, which is not too far away
from the lower bound r; + 75, > 3.

6 The Model for Interactive Key Distribution Schemes

We now turn our attention to one-time interactive key distribution schemes. We
will use the model described by Beimel and Chor in [1, 2]. In this model, there
is an initial distribution of secret information by the TA, followed by a sequence
of messages broadcast by the members of a privileged set, P. At the end of the
protocol, every member of P should be able to compute the same key, mp, while
no coalition F disjoint from P should have any information about mp.

In general, the messages cxchanged among the members in P can depend on
previous messages, and there may be several rounds of communication. In this
paper, we confine our attention to schemes of a very special type, termed “non-
reactive” by Beimel and Chor. In a non-reactive scheme, every member ¢ € P
independently chooses a value rni;, and uses his or her secret information, u;, to
compute an encrypted version of m;, denoted by b;, which is then broadcast.

Thus a non-reactive one-time key distribution scheme can be thought of as
several independent executions of a one-time broadcast encryption scheme, with
each privileged user in turn broadcasting a message that can be decrypted only
by the other privileged users.

The key mp for the privileged set P consists of the concatenation of all the
values m;, { € P:

mp = (Mg, ..., M, ),
where P = {i1,...,4t}, 11 < ... < 4. We define the broadcast in an analogous
way:
bp = (bil,...,bi,).

Here are the formal definitions for a (P, F)-Non-Reactive One-Time Key
Distribution Scheme (or (P, F)-NROTKDS):

(NROTKDS1) The value of the key is independent, of all the secret informa-
tion Uy

H(lV]p'Uu) = H(]V[p)

for all P ¢ P.
(NROTKDS2) The valuc m; chosen by each privileged user is independent

of the all the secret information U and independent of all the information
broadcast by the other privileged users:

H(M;|UyBp\(iy) = H(M;)

forallie P, P ¢ P.
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(NROTKDS3) The information broadcast by cach privileged user i € P is a
function of his or her secret information and the value chosen for m;:

H(B,\U;M;) =0

forallie P, PeP.
(NROTKDS4) The key can be computed by a privileged user from the broad-
cast and the user’s secret information:

H(Mp|U; Bp) =0

foralli e P,Pe€P.
(NROTKDS5) After receiving the broadcast, no forbidden subset /' disjoint
from P has any information on mp:

H(Mp)= H(Mp|UrBp)
for all P € P and F € F such that PN E = (.

7 Constructions for Key Distribution Schemes

In this section, we present a (¢, w)-NROTKDS which uses (¢, w)-OTBES con-
structed from resolvable designs in Section 4.1. Our construction will contain
the Beimel-Chor scheme as a special case (namely, when £ = 2).

Suppose that £ > 2 is any integer such that ¢ = 1 mod (£ — 1). The set-
up phase consists of the TA distributing secret information corresponding to a
Blundo et al (£,t+w — )-KPS implemented over (Z,)¢, p prime. For an ¢-subset
of users A, we denote by k4 the key associated with the subsct A. We will think
of k4 as being made up of ¢ independent keys over Z,, which we will denote by
kat, ... kage

Suppose that the privileged set PP wishes to interactively construct a common
key. Each user h € P will perform the following steps.

1. h chooses a random value m? = (m?},...,m") € (Z,)", where r = (}~2).

2. Since t = 1 mod (¢ — 1), the complete (¢ — 1)-uniform hypergraph on P\{h}
can be partitioned into r parallel classes, each of which consists of of s =
(t—1)/(€£—1) blocks. Denote these parallel classes by CF,...,C?, and denote
the blocks in CP by B, 1<i<r, 1<j<s.

3,7
3. For each block B!, denote

B,{fj Ulht ={21,..., 3¢},
where z; < ... < x4, and let oz?j denote the index such that z . = h.
> 12

4. User h encrypts each m using the s keys kgn ,» , by defining
(AR i

b?’j = k,B‘hJ ot m® mod p,

e
i
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5. User h broadcasts the vector
i i R h h
bt = (bl‘vl,...,blys,...,brl,...,bm)

Prob(xbly the only aspect of the scheme that requires explanation are the
values af ;. Their function is to ensure that every k4 ; is used to encrypt exactly
one of the m®’s. The proof that every privileged user can compute mp, and
that no f01b1dden set of w users can compute any information about mp, are
essenfially the same as those used in studying the OTBES scheme in Section
4.1.

We now present an example to illustrate the protocol.

Example 2. Supposc that t = 5 and £ = 3. Note that 5 = 1 mod 2. Supposc that
the privileged set P = {1,2,3,4,5} .

For each user ¢ € P, we partition the 2-subsets of P\{¢{} into r = 3 disjoint
parallel classes. This can be done as follows:

Cp =1{2,3}{4,5}}  Cy = {{2,4},{3,5}} €5 ={{2,5}

CY = {{1,31,{4,5}}  CF = {{1,4},{3,5}}  CF=1{{1,5},{3,4}}
{{1,2},{4,5)}  CF={{L,4},{2,5}} CF ={{1,5},{2,4}}

Oy ={{1,2},{3,5}}  C3 ={{1,3},{2,5)}}  C3=1{{1,5},{2,3}}

Cr={1.2},{3.4}} 7 ={{1,3},{2.4})} CF={{1,4},{2,3}}.

Let’s look at the computations to be performed by the users in P. First, each
user ) picks three random values (his or her part of the key) m?, mb m? € Z,.
Next, he or she computes the relevant o values. These are as follows:

it

,{3,41}
{

It

[l

A3
|

0, =1 a,=1 aj; =1 aj,=1 ag; =1 o5,=1
ol ;=2 aj,=1 af, =2 af,=1 o =2 of,=1
of | =3 a},=1 ag 1 =2 ag,=2 o}, =2 of,=2
of; =3 al,=2 o}, =3 al,=2 ol =2 of,=3
af ;=3 ai,=3 03.,1 =3 al,=3 oaf; =3 af,=3

This determines the values that are broadcast:

b' = (m] + k{1,2,3},17m} + k{1,4,5},17m$ + k{12,431
my + k13500, M5 + k12,501, ms + k{13,4,1)
b =(m?+ kirospsmi + ki asy,my + ki12.4y,2
7715 + k{2,3,5},1»m§ + k{l,z,s},‘z,’mé + k{2,3,4},1)
b = (m'ig + k{lygyg}):;,?'n,ff + k{3)4.5}’1,m% + k{1'314}'2
mﬁ + k{23512 7n§ + k{1,3,5},2a77l§ + k(2,3,4),2)
bl = (m? + k{11274}13, m‘l1 + k{3,4‘5}'2,m3 + k{1’3‘4}'3
my + kga.45).2, M5 + k{1a.5).2, M8 + ki23,41,3)
b= (m? + k{L,z,s}aym? + k{3,4,5},3,mg + k{13513
M3+ kg2a5y.3m5 + ki asy.s,my + kg2,351.3)
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Now let us see how user 4 will compute the key. This user knows the values
of kg1 24y, k13,45 k{1,45)> #{2,3.4), k(2,457 and k3 453 These can be used to
compute values m” as follows:

k{1 2.4} can be used to compute my,m3,
k{1,3,4) can be used to compute mg,m3,
k{1,454 can be used to compute m),m3,
k(2,3.4} can be used to compute m2,m3,
k{2451 can be used to compute m3,mj3, and
k(3.4,5) can be used to compute m3, m3.

Finally, user 4 knows the values ], mi and mj since he or she chose them. So

user 4 can determine all 15 components of the key.

8 The Entropy of our Key Distribution Schemes

We look now at our construction for (¢,w)-NROTKDS. The key is a random
element of (Z,)"", where r = (;’i) Simple calculations yield the following.

Theorem 5. Let { be an integer such that 1 < £ < t. Then there exists a
{(t,w)—NROTKDS with

(e

T

1<i<n, and rg, = (t —1)/({ - 1).

We mentioned alrcady that the Beimel-Chor construction is the special case
¢ = 2. In this case, we get
2(w — 1)
rio =2 ( '}"7”’*-

For any values of ¢ and w, it is always the case in the Beimel-Chor scheme that
r; > 2. We observe that by using larger values of £, we can sometimes obtain
values of r; very close to 1 (it is casy to see that r; > 1 in any scheme, so the
values are close to optimal).

As an illustration of a class of examples where this can be done, let’s consider
the case w = 1 in more detall. When w = 1, we see that

Ut —1)

ri =71i(f) = (fF-DE—-04+1)

Elementary algebra shows that »; (£ + 1) > r;(¢) if and only if t < €2 + £ — 1. In
the case where ¢t = 2 + ¢ — 1 for some integer ¢, the following is obtained.

Theorem 6. For any ¢ > 2, there exists an (2 +¢—1,1)=NROTKDS in which
r, =14+ % for1 <i<n.



9 Comments

The long version of this paper (available from the authors) contains all omit-
ted proofs. In addition, it contains an alternate construction for OTBES and
IKDS, based on polynomial interpolation, that does not have any congruential
condition on the parameter ¢. (The communication and storage requirements of
the alternate construction are identical to the construction we give here, but the
alternate construction is more complicated computationally.)
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