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Abstract. T'he use of cryptographic devices as “black boxes”, namely
trusting their internal designs, has bcen suggested and in fact Capstone
technology is offered as a next generation hardware-protected escrow en-
cryption technology. Software cryptographic servers and programs are
being offered as well, for use as library functions, as cryptography gets
more and more prevalent in computing environments. The question we
address in this paper is how the usage of cryptography as a black box
exposes users to various threats and attacks that are undetectable in
a black-box environment. We present the SETUP (Secretly Embedded
Trapdoor with Universal Protection) mechanism, which can be embed-
ded in a cryptographic black-box device. It enables an attacker (the
manufacturer) to get the user’s secret (from some stage of the output
process of the device) in an unnoticeable fashion, yetl protects against
attacks by others and against reverse engineering (thus, maintaining the
relative advantage of the actual attacker). We also show how the SETUP
can, in fact, be employed for the design of “auto-escrowing key” systems.
We present embeddings of SETUPs in RSA, El-Gamal, DSA, and private
key systems (Kerberos). We implemented an RSA key-generation based
SETUP that performs favorably when compared to PGP, a readily avail-
able RSA implementation. We also relate message-based SETUPs and
subliminal channel attacks. Finally, we reflect on the potential implica-
tions of “trust management” in the context of the design and production
of cryptosystems.

Kcy words: Cryptanalytic attacks, hardware, software, RSA, DSA, ElGa-
mal, Kerberos, Private key, Public Key, applied systems, design and manufactur-
ing of cryptographic devices and software, Capstone, key escrow, auto-escrowing
keys, subliminal channels, randomness, psendorandomness.

1 Introduction

Black-box cryptography (i.e., crypto using protected devices) is often used, and
is strongly endorsed by the U.S. government, namely in the Clipper and in par-
ticular in Capstone escrow technology. Also, software cryptosystems are offered
and used where uscrs do not necessarily check their code anthenticity. In effect,
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these modes employ cryptography as a black-box. Some of the most important
questions that arise with respect to black-box cryptography are the following:
Is the algorithm contained within the black-box secure? Does it leak secret key
information? If someone ever successfully reverse-engineers the black-box am [
at risk?

Here, we present the notion of a SETUP mechanism that allows implementors
and attackers to modify cryptosystems so that they leak users’ key information
in such a way that protects the attacker and gives him (and only him) access to
keys. In the case of black-box devices, our results show that the same exclusive
ability of the attacker still holds in the case that a user successfully reverse-
engineers the device. Thus, we shed some light on the above issues by showing
how several existing cryptosystems can modified in this way. Furthermore, these
modifications are internal, and are designed in such a way that the resulting
cryptosystem conforms to the specifications of the original cryptosystem. Our
results indicate that software cryplosystems can be modified to leak key infor-
mation while significantly minimizing the attacker’s risk of getting caught. This
has serious implications for network security systems. When a cryptosystem is
modified to leak secret key information subliminally using a SETUP implemen-
tation (rather than a standard one), we call the cryptosystem a contaminated
cryptosystem. The modifications that we present are general in the sense that
they can be implemented by the designer of a cryptosystern or by an attacker
that uscs rogue software.

Specifically, we first show how RSA and ElGamal key generation programs
can be contaminated in such a way that a database of public keys created us-
ing the cryplosystem is elfectively a database of public/private key pairs with
respect to the attacker, exclusively. We also show how such an idea can be used
for hardware based overhead-free “auto-escrowing key” systems. We then present
message-based SETUPs that are related but stronger than the subliminal chan-
nels of Gus Simmons in ElGamal and DSA. We also show how Kerberos can
be contaminated in such a way that the attacker can passively tap the network
and exclusively derive session keys. We conclude with a discussion of suggested
measures on how to reduce and detect the existence of contamination in various
installations.

2 Definitions and Background

Informally, a Secretly Embedded Trapdoor with Universal Protection (SETUP)
mechanism is an algorithm that can be embedded within a cryptosystem to leak
encrypted secret key information through a subliminal channel in that cryptosys-
tem. This encryption is performed by a PKCS function E that is also contained
within the cryptosystem. Since the PKCS function F is a trapdoor one-way
function, and since it is secretly embedded within the cryptosystem, we refer to
the mechanism as a secretly embedded trapdoor. The information that is leaked
through the subliminal channel of the cryptosystem is universally protected be-
cause even if the attacker is given access 1o the ciphertext and the embedded
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function E, the secret key information still cannot be determined. The following
is a more formal definition of a SETUP mechanism (contains all the details, but
avoids lengthy formalisms so as to keep the idea clear).

Definition 1:

Let C be a publicly known cryptosystem. A SETUP mechanism is an algorithmic
modification made to C to get ¢’ such that:

1. The input of C’ agrees with the public specifications of the input of C'.

2. C' computes using the attacker’s public encryption function £ (and possibly
other functions as well), contained within C”.

3. The attacker’s private decryption function DD is not contained within C’ and
is known only by the attacker.

4. The output of C' agrees with the public specifications of the output of C.
At the same time, it contains published bits {of the user’s secret key) which
are easily derivable by the attacker but are otherwise hidden. (The output
can be generated during key-generation or during system operation).

5. Furthermore, the output of C and C’ are polynomially indistinguishable (see,
e.g., [ACGS]) to everyone (including those who have access to the code of
C') except the attacker.

Definition 2:

Let C be a publicly known cryptosystem. A contaminated cryptosystem C’ is a
modified version of (' that contains a SETUP mechanism.

Thus by forming C’ we have setup C to leak sccret key information. Such
an attack is carried out without letting the users know that the cryptosystem
in question is contaminated, and without giving any advantage to those who
discover the contamination.

Related Work

Gus Simmons has pioneered the research in the area of subliminal channels and
their inclusion in cryptosystems [Sim83]. Ile has published channels in the Ong-
Schnorr-Shamir, ElGamal, Esign, and DSA digital signature schemes. Another
channel was discovered by Desmedt [Des90]. Killian and Leighton [KL95) showed
how a key distribution channel containing a subliminal channel can be exploited
by attackers that agree on a way to exploit it. We are inspired by all of these
works and our goal 1s to point out that in the “black-box™ context, the naive
and somewhat restricted looking “imperfectness” exhibited by channels leaking
information can become “serious flaws”. Furthermore, even if all agreements
among the parties are known, the danger persists due to “new” applications of
cryptography itself (i.e., using crypto to attack crypto).
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3 SETUP in RSA Key Generation

The obvious way to attack the RSA [RSAT8] key generation process is to include
a fixed prime number p. Since ¢ will be chosen randomly, the modulus will look
random to the casual observer. Obviously, this is not a SETUP since anyone can
find all keys after two have been generated (using the Euclidean Algorithm).
Hence, reverse engineering requires no effort at all. Using a fixed pseudorandom
seed Is easily detected by reverse engincering as well.

A more advanced mechanism is as follows. Let n be the product of two k-bit
primes p and ¢. Let e and d denotc public and private exponents respectively.
In this description (e,n) and d are the keys being generated and (E,N) and D
are the attacker’s keys. The idea is to hide enough information within (e,n) to
allow the attacker to derive d from (e,n). Assuming the original cryptosystem
generates ¢ al random from {0, 1}*, the [ollowing attack can be performed. p
and ¢ are chosen randomly from {0,1}* and are tested for primality. e is then
sct to be p¥ mod N. Let this ciphertext be denoted by p’. If e and ¢(n) are not
relatively prime, a new value for p is chosen and the process is repeated. Once
a valid e is found, d is computed as usual and the public key (e,n) is published.
To determine p, the attacker looks up (en) and decrypts e with his private key.
If the result divides n evenly then he has successfully factored the user’s public
modulus. This SETUP mechanism cannot be used effectively in programs like
PGP, since PGP uses very small exponents (on the order of 5 bits). Therefore,
any such attack is unlikely to go unnoticed. Also, attacks with small ¢ will enable
attacks on Rabin’s scheme [Rabin].

We will now introduce our strongest version of the RSA SETUP mechanism
by describing a program called Pretty-Awful-Privacy. PAP is very similar to
PGP, except that the author of PAP has the exclusive ability to factor the
public keys that are generated by PAP. In PAP, the problem of requiring a
large exponent is circumvented entirely by hiding p’ in the public modulus. PAP
hides p’ in the upper order bit representation of the public modulus, using a
storage method for information within the RSA key that was first pointed out
by Desmedt [Des90]).

PAP works as follows. It contains the k-hit RSA public key of the attacker
which is half the length of the key being generated. Tt first generates a random
k-bit prime p. It then randomizes p and makes sure that the resulting valuc is in
the domain of the attacker’s public key. Namely it “randomizes” p using a keyed
randomizing function F. The key used in conjunction with F is (K + ¢) where
K is fixed and 7 is an index initially zero. Let the resulting value be denoted by
p'. If p/ isn’t less than the attacker’s k-bit modulus, then 7 is incremented and I
1s used once again. This process continues at most B; times. If after B; times,
a value less than the attacker’s modulus isn’t reached, a new p is generated and
the process is repeated (B is, say, 16).

Once a value for p’ is found it is encrypted using the attacker’s public key
to get p”. PAP then runs a pseudo-random function (G on p” using the key
(K + j) where K is the samc as before and j is an index initially zero, Let the
resulting value be denoted by p”’. Note that p’’ is a k-bit quantity. (We tried
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to achieve a pseudo-randomization of the values, and a mechanism to sample
values relatively fast— the specific details can be changed). PAP then sets X to
be " concatenated with a bit-string randomly chosen from {0, 1}*. To find the
other factor ¢, PAP divides X by p and then tests the quotient for primality.
q is set to be the quotient if and only if the quotient passes a primality test.
If the quotient isn’t prime, j is incremented by 1, and p’” 1s recomputed. PAP
then rcattempts to find a quotient that is prime. PAP will continue this process
up to By times. If this bound is reached, a new prime p is chosen at randorn, ¢
and j are set to zero, and the entire key generation process is repeated. The By
bound gives a work factor that trades off the required work of finding the prime
number ¢ for increasing the work of recovering p [Has]. It can be shown using
snitable values for B; and Bj that the probability of finding a valid p and ¢ is
appreciable, using the Prime Number Theorem [And71]. PAP initially sets the
value of the public exponent e being generated to 17. Once a valid ¢ is found,
PAP checks to see if e and ¢(n) are relatively prime. If they aren’t then e is
incremented by 2 until they are. n and d are then calculated in the usual way.

To find out if a given public key was created using PAP, the attacker does
the following. He first sets U to be the upper order bits of the victim’s public
modulus n such that there are k bits to the right of this value. He then decrypts
U using K + j and where j ranges from 0 to By — 1. The attacker then decrypts
all of these values using his private key to get the set of possible p” values.
FEach potential p” is then decrypted using F and K + i where i ranges from 0 to
B, —1.If any of one of the resulting plaintexts divides n, then he has successfully
factored the victim’s modulus. If a factor isn’t found, then the attacker decrypts
U + 1 and proceeds as before. Note that since PAP ignores the remainder upon
dividing X by p, it is possible that a borrow bit modified p’ in the upper order
bits of n. It is for this reason that the attacker must try I/ +1 as well. If by then,
a factor isn’t found, the attacker concludes that his version of PAI’> was not used
to generate the public key.

Note that the reason for encrypting p with ¥ prior to performing the public
key encryption 1s to ensure that p can have a value larger than that of the
attacker’s public modulus! The reason for encrypting the public key ciphertext
using G is to take advantage of the pseudo-randomness and to avoid the overhead
of excessive public key encryptions. In doing these extra encryptions we cut down
on the computational complexity of PAP and ensure the randomness of p and
g. We implemented this SETUP mechanism using the GNU MP library. A more
complete description of our implementation is given in Appendix A.

3.1 Security of PAP

We will now show that by making certain reasenable eryptographic assumptions,
the values for p and ¢ that are chosen by PAP are random. Note that p is
contained in {0,1}*, and that p is initially chosen uniformly at random. The
randomizing function F is a mapping from the set of prime numbers in {0, 1}*
to [0..N-1], where N is the attacker’s public modulus {recall that we only pass
primes to F).
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Lemma 1. Assuming that p and the k upper order bits of X are random, q 15
random wn the sel of k-bit primes.

Let C be an RSA cryptosystem that generates RSA public/private key pairs
in the usual way, with the restriction that its random values are chosen inde-
pendently from the user (this is the case in our modified version of PGP, see
Appendix A). Now if we assume that the application of G is similar to applying
a random oracle (which a pseudo-random function in hardware-protection is!)
its range is indistinguishable from a truly random choice, hence we can show:

Theorem 1 PAP is a contaminaled cryptosystem based on crypilosystem C.

Remark 1: The attacker’s key is used as a private cipher (encryption key
unknown- so a reduction of half the size is acceptable).

Remark 2: After reverse enginecring, one learns the attacker’s encryption key.
If we assume it is a strong public-key system (given k) then the reverse-engineer
cannot tell pasl or future keys since he does not see the random bits used in
their generation. The “reverse engineer” still needs to solve strong encryptions
by the attacker’s key.

Remark 3: If we have the freedom to choose ¢, where e is half the size of n,
then the attacker’s key can be the same size as the keys generated by the system.
In this case the encryption is split into two halves, half being put in N and half
in e. In this case we can also use RSA as a strong encryption (pseudo-random
generator [ACGS]), hiding the final seed for the attacker to invert in e.

4 An Application: Auto-Escrowing-Keys in Hardware

The notion of embedding a public key within a cryptosystem may lead to a glob-
ally trusted and efficient hardware key escrow mechanism. Each device would
have its own unique public key. The corresponding private keys would be es-
crowed among two or more agencies (as in threshold cryptography and function
sharing). If the communications from one device needs to be examined by law en-
forcement, the escrow agencies could combine their shares and the corresponding
private key could be reconstructed. The communications device could be made
tamperproof, and in the event that it is ever successfully reverse engineered, it
will still be a difficult task to derive private keys. This would allow the general
public to scrutinize the devices design, and would therefore provide assurance
as to how 1t functions. Furthermore, there is no lengthy communications process
between users and escrow agents in determining a key to be used, and the users
are free to generate their own keys at any time. To ensure that users are us-
ing the escrow device to generate keys, the key distribution center can verify the
SETUP existence before making keys publicly available. (A user may be required
to perform key generation for a session based on its own and its partner’s keys—
this will be enough information for escrow regardless which partner is under a
wiretapping procedure).
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We have shown that under the hardware protection of key generation and
assuming the use of RSA | we have, in effect, an escrow system. This is somewhat
in the opposite direction of [BFL95] who showed that private encryption with
universal escrow keys implies public-key cryptography.

Claim 1 Given RSA (or a more general public-key function) with a SETUP
in its key gemeration procedure, we can implement a tamper-proof hardware key
escrow system with no system overhead.

Warning: It could be the case that public escrow keys themselves get gener-
ated using a contaminated cryptosystem. The key escrow agencies would there-
fore be fooled into thinking they were the only people who could access the
private escrow keys and guard the rights of individuals. So, “the guards them-
selves fail to guard”. This hierarchy of attacks demonstrates the extreme level
of caution that must be taken in regards to cryptosystems.

5 SETUPs in ElGamal, DSA, and Kerberos

SETUP in ElGamal Key Generation

A similar subliminal channel can be implemented in FlGamal. The following is
a summary of normal ElGamal encryption [EIG85):

Public Key: p,g,y

Private Key: =z

Encryption: a = ¢* (mod p), b = y* M (mod p)
Decryption: M = 6/a® (mod p)

Here M is the message being encrypted and (a,b) is the ciphertext of M. To
generate a key pair, a prime number p is chosen at random (typically with
known factorization [Bac88]). Two numbers, g and « are chosen at random such
that they are both less than p and g is a generator. The value for y is then
found by calculating ¢* (mod p). Two simple versions of the subliminal channel
in ElGamal will now be described. Both versions require that the key generation
program is capable of choosing = and either p or g.

In the first version, it is assumed that p is shared by a group of users and z
and g are generated by the key generation program. This attack is very similar
to the attack on RSA key generation. The value for z is chosen randomly and z
1s encrypted using the attacker’s public key and a pseudorandom function to get
z’. If 2’ is less than p and it is a generator mod p (e.g., assuming p’s factorization
is known) then g is set to z’. Otherwise, a new z is generated and the process
is repeated. To retrieve x the attacker looks up the public key and decrypts g
using his private key. The attacker’s kcy 1s an RSA key, say.

Consider now the (less likely) case in which g is shared among a group of users
and p is chosen by the key generation program. Another attack is as follows. The
value for z is chosen randomly and is encrypted using the attacker’s public key
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and a pseudorandom function to get x’. I[ ' is a prime greater than g (and g
15 a generator mod 2', e.g. assuming 2z’ — 1 has casy factorization into one large
prime and other small primes), and z is less than z’ , then p is set to be z’. The
attackcr can retrieve z by looking up the public key and decrypting p with his
private key.

Pure ElGamal system: Consider the case where we are free to choose
p and g during key generation. In this attack, x is encrypted using ElGamal
rather than RSA. Since only ElGamal is used (and private key cryptography),
the primitive routines for encryption need not be stored in the rogue routine
since they are already present in the host cryptosystem. Let the attacker’s keys
be denoted by P, G, Y, and X. The contaminated cryptosystem generates &
randomly and then computes g and p the following way. A value is chosen at
random. If it is relatively prime to P-1, then k is set to be this value. b is then
found by encrypting x with k, Y, and P using ElGamal. Hence b = Y*z mod P.
b 1s then encrypted with a private key to create pseudorandom functions and
variability so that one option meets our required distribution (as in RSA, trying
with increasing keys as a psendorandom function untill a bound or a success 1s
reached). If b is prime (we may require that the b — 1-th factorization be known
and have one large prime, for certifying the instance), and if z is less than b,
then a is calculated using k, G, and P. Hence, a = G* mod P.If a is not less
than p then a new k is chosen and the process is repeated. Once a valid £, a,
and 6 are found, p is set to b and g is set to a. (Recall that we may have to have
special primes and a special generator according to the key generation procedure
for the discrete logarithm problem in question.) Once ¢ and p are chosen, y is
then calculated using ¢, z, and p. If the user publishes y, g, and p, then the
attacker can compute x by decrypting g and p with lis private key.

The key generation attacks against RSA and ElGamal bear a strong resem-
blance to the ideas described in “Reflections on Trusting Trust” by Ken Thomp-
son [Tho84]. Can programs be trusied to generate keys for us? Can the programs
that make key generation programs be trusied? One way to prevent these at-
tacks is to design key generation programs so that the user has the option to
choose his or her own random parameters whenever possible, or to at least allow
for testing at the time of installation (in hardware). The user should be able
to check the devices manufactured by various vendors and compare the results.
This would limit the avenues that an attacker could use to install a SETUP. It
was pointed out to us by Diflic [Diffie] that in a typical cryptographic system, a
key generation program is often put into hardware in order to be able to declare
that “our system is secure”. This “traditional wisdom” may need revision in light
of the attacks presented herein. The trust between producers of cryptosystcms
and users has to be built on a different foundation.

SETUP in ElGamal Signature Scheme

In this section we introduce a SETUP where the leaking is done via the sys-
tem’s messages (i.e., signature values). The attack is general in the sense that
users can change their public/private key pairs at any time and the attack will
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still work. Note that in the subliminal channel attack on signature schemes by
Gus Simmons, the attacking parties collaborate, namely, Bob must know Alice’s
private key in order to receive a subliminal message. This is not the case in the
SETUP attack.

Let p and g (for the signature alg.) be shared among the users. A roguc
routine is installed in ElGamal that contains the ElGamal public key of the
attacker. Let the public key of the attacker be denoted by p, g, and Y and let
his private key be denoted by X. Note that the g and p in the attacker’s public
key are the same as those in the ElGamal implementation. Let the user’s private
key be denoted by z.

Our attack continually leaks z such that only the attacker can retrieve it. For
the attacker to derive 2 he must obtain at least two (wlog, consecutive) signatures
from Alice (at some point during the signing history), denoted by (r;,s;) and
(7i41, Si+1). 1t is also assumed that none of the random parameters are disclosed
to the user, to assure that the user cannot detect an attack. The computation of
the signature (r;, s;) proceeds in a similar way as in normal ElGamal. A random
number k; is generated such that &; and p — 1 are relatively prime. In addition,
k; is used iff ged(Y* mod p, p—1) = gcd(g(y'k' mod ) mod p, p— 1) = 1. The
signature of Alice’s message m; is found by calculating, r; = ¢** mod p, and
s5i = (ki~ ' (my —z7;)) mod p— 1. Alice’s subsequent, signature is determined in a
slightly different way than usual. Rather than choosing k;4+1 randomly, its inverse
is chosen to be a specific value. We set k;ll to be Y*: mod p. ki is then found by
calculating the inverse of Ic;rl1 mod p. The signature algorithm then proceeds as
normal. We set r; 11 = gF+t mod p and Sit1 = (kian _l(mi.H —azriy1)) mod p—1.
Given these two digital signatures and the corresponding messages, the attacker
can derive x by computing, z = 7,7y (mi41—{(si41/(ri® mod p))) mod p—1. Since
x was chosen to be less than p — 1, this yiclds Alice’s private key. Furthermore,
no one else can compute z since no one else knows the private key X.

Theorem 2 Given r;,r;11,8,+1 and m,,q1, the attacker can compute z.

Proof.

siy1 = (Y* mod p)(mip1 — zrip1) mod p— 1

X mod p = ¢X* mod p = Y* mod p

st/ (1% mod p)mod p—1=(mj41 —xrigr) modp—1

P12 = (M1 — (8i01/(rX mod p))) mod p — 1

T = ri“+11(7n,-+1 — (8i41/(m:% mod p))) mod p— 1

Comment: the probability of getting two consecutive signatures that permit
the computation of # can be increased by being more selective of the k;. The
following is how to accomplish this. We make ;2 a function of k;¢; in the same
way we made k; 41 a function of k;. We then make k; 43 a function of k;y9, and
so on. We therefore include a pseudo-random number gencrator for the k; in the
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contaminated cryptosystem. The effectiveness of this method is limited due to
the restrictions on ;. We can reduce this drawback by “looking ahead” and only
using k;’s that yield sets of valid &;’s with high cardinality.

The attack has been inspired by the work of Gus Simmons. The attack is
unique in that it exclusively allows an attacker to compute = based on informa-
tion arranged by the cryptographic device. This attack, which is quite simple to
implement, implies that there may exist other SETUP attacks on cryptosystems
that give the implementor exclusive access to all enciphered information.

Application: Recall now the hypothetical situation proposed by Gus Simmons
regarding his subliminal attack on ElGamal. Alice is in prison and wants to
coordinate an escape plan with Bob, who is on the outside. It was originally
assumed that Bob already knows Alice’s private key. The SETUP attack is
more general since we can discard this pre-coordination assumption: Alice need
only look up Bob’s public key, and then contaminate her own cryptosystem
with 1t. She can then send two signed messages to Bob, thereby giving him her
private key. The Simmons subliminal channel can then be used as usual. If their
relationship ever goes awry, Alice can rekey and seek a new person to help her
plan an escape. In general this can be phrased as:

Theorem 3 If a system has a message-based SETUP version, and the users
are members of a public key system (based on a trapdoor permutation like RSA),
then there erists a subliminal channel belween users who have not met earlier.

SETUP in DSA: SETUP from subliminal channels

In fact, the concept of securely disclosing keys via a SETUP can be used to
extend subliminal channels in general (ignoring speed and bandwidth), e.g. the
one found in DSA by Gus Simmons [Sim94]. One of the shortcomings of the
attack on DSA is that only a few bits (roughly 14) can be leaked in a given
signature. The other drawback is that if anyone successfully reverse-engineers
the tamperproof device, they will have access to the secret primes. The later
drawback can be readily solved by including the attacker’s public key in the
encryption device as a SETUP, and having the device compute the encryption
of the user’s private key with the attacker’s public key, with the ciphertext bits
leaked 1n the same way as described by Simmons. This will prevent everyone
except the designer of the device from being able to derive the private keys of
others. A tamper proof device is therefore not needed, and the set of secret
primes can be made public. This is a general strengthening, which gives the
following implication (that is sornewhat converse to the last theorem):

Theorem 4 If a cryplosystem has a subliminal channel, then assuming a lrap-
door permutation (RSA, say), it has a message-based SETUP version.
SETUP in Kerberos

In this section we show how Kerberos [N1'94] can be modified to leak session
keys exclusively to an attacker without putting the attacker at risk. The Kerberos
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model is based on a client server model in which the client is either a user or
a program. Upon logging in, the user first communicates with the Kerberos
authentication server and receives a ticket granting server (TGS) ticket. This
ticket is used to receive subsequent tickets to be used with various servers. Once
the user decides which service he wants, he sends a ticket request along with
the TGS ticket to the ticket granting server. The user then receives a ticket for
a particular server. All Kerberos tickets have time-stamps and are only valid
for a specified time interval. A concise description of the ticket granting server
interaction will now be given.

Kerberos Table of Abbreviations

c: client

s: server

ks : z's secret key

{m}ks : m encrypted with z's secret key
Try: s ticket to usey

Agy:  Authenticator from x toy

The following applies to Kerberos Version 5. To receive a server ticket and
server session key, the client sends the packet (s, {7} 145 }orgs, {Acthc,igs) to the
TGS. If the TGS ticket and Authenticator are valid then ({kc s tke g5, {Te,s 1 ks)
is sent back to the client.

Claim 2 Based on any public-key cryplosystem there is a SETUP version of
the Kerberos key distribution mechanism.

The SETUP involves modifying the way the TGS functions by including a
rogue routine and the attacker’s public key. Rather than generating k., ran-
domly, the rogue routine receives k. ¢4, from the ticket and creates the plaintext
m using m = (ke 145, RN D), where RN D is a random field. The plaintext m is
then encrypted using the public key of the attacker to get the ciphertext m’ (say
of 512 bits). Since m’ is longer than the ticket we have to split it among a number
of tickets. m’ is exposed block by block, cach time the value of {k. , }k¢ 145 1 set
to be the next (still unexposed) block of m’. Each of the k. ,’s is then found by
decrypting the corresponding block of m' using k. ;4,. The derived k., is then
placed into the T, , ticket. Given the blocks of m’ and the private key of the
attacker, one can get m’ and recover the desired key, k¢ qs.

In more detail, this attack will give the attacker access to the values k. 4, and
k. s that can be found by passively tapping the network. The attack proceeds as
follows. The attacker modifies Kerberos to become a contaminated Kerberos by
modifying the Ticket Granting Server. He then eavesdrops on the network and
picks up packets emanating from the TGS. He also records any communications
session that he desires. When he wants to decrypt the session of client ¢ (as-
suming the session was SETUP), he performs the following algorithm. First, he
decrypts enough ciphertexts {k..}k: qs using his private key to get the blocks
of the plaintext m. From m he gets k. +4,.
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The attack is secure against system administrators who discover the contam-
ination. The attacker breaks the symmetry between what he can see and what
the system administrator can see by including a public key within the TGS.
Without the private key, the set of {k. (}k. 1gs's cannot be used to get k¢ o5 by
anyone except the attacker.

6 Conclusion

SETUP attacks would completely compromise system security if they were im-
plemented and would give a unique advantage to the attacking party. Fortu-
nately, these mechanisms can only be abused by powerful entities, those who
implement systems and those who have root access to software. These attacks
require one-time access to softwarc or devices. These attacks also have serious
implications for smart card technology. Should we trust the key generation soft-
ware that comes with a smart card? Even il key generation software is digitally
signed we have no assurance that it wasn't contaminated by its implementor
without explicitly analyzing its code. The SETUP system “looks just the same”.
This is a serious problem, particularly if the software is proprietary and incorpo-
rates anti-piracy mechanisms to make analysis difficult. Capstone, cryptographic
servers, and cryptographic libraries are all guards used to prevent system infil-
tration. Due to the existence of SETUP attacks, measures need to be taken to
guard these guards. We conclude with recommendations that will help eliminate
or minmimize the effects of the attacks.

1. Control of randomness is important given its indistinguishability from pseu-
dorandomnes. Thus, design software and hardware that permit the user to
choose random parameters, and make the algorithms used publicly known.
This allows the user to compare the output of one implementation with
the output of a trusted implementation, based on user supplied parameters,
which should be the same.

2. If software is used to generale keys, be absolutely certain that the software is
trustworthy. Integrity checks can help detect modifications made to software
after installation.

3. Cascading cryplosystems that are designed and implemented by independent
sources is also a good measure.

4. In the case of smartcards, make the card support third party random number
generation devices. This will help convince users that a SETUP mechanism
isn’t being used in the smartcard.

5. Make surc the randomness source, the key generator, and the user (message
supplier) are three system components which are separated but are well
authenticated, hard to bypass, and have private channels betwecen them to
assure secrecy.

6. Industry standards for testing-modes which work with user supplied ran-
domness should help increase trust in hardware devices.
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One problem is that very often when left to their own devices, users do
not choose truly random numbers. Yet our results indicate that cryptosystems
cannot be trusted to do so either. It may therefore be desirable to have a separate
program or hardware device that gencrates random values. It is also obvious that
the “common wisdom” of reducing lack of trust to a “hardware component” with
a well defined specification, needs revision. The hardware components and their
source have to be included in the trust model of the system.

In summary, we presented the notion of a SETUP mechanism and showed at-
tacks against RSA, ElGamal, DSA, and Kerberos. The attacks employed “crypto
from within” to attack cryptographic systems. We believe that it is important
for designers and system administrators to be aware of the potential of attacks
like the ones described herein. By taking appropriate measures, analyzing trust
relationuships, and by making the necessary modifications to existing systems, we
can try to ensure that cryptosystems provide the degrec of trust and security
that we expect them to provide.
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A Comparative Performance: RSA SETUP vs. PGP

We compared the average key generation running time of our “SETUP program”
with a modified version of PGP 2.6. Our program was written in ANSI C and was
linked with the GNU MP library version 1.3.2. Our program generates a 512 bit
RSA public/private key pair using the SETUP mechanism described in this work.
Our implementation uses truerand [MB95), which is part of CryptoLib [LMS],
to generate physically random seeds for the pseudo-random number generator.
We chose to use TEA [WN] as our pseudo-random function (any other block
cipher like DES will do). We used the probabilistic primality test from Knuth
to test the random values. We found that we had good results with B equal to
16. The value for B, was 512.

Our goal in doing the comparison was only to see if our RSA SETUP mecha-
nism took noticeably more time than PGP, and to get a feel for the practicality
of the SETUP as a solution to the problem of key escrow. Since our program
was developed using the GNU MP library, and since PGP is based on RSALIB,
we did not do as close a comparison with PGP as possible (since we wanted only
rough figures). Ideally one would start with PGP and then modify it as little
as possible in order to introduce a SETUP mechanism. Our (quick) approach
was to modify PGP to use the same random number generation routines, and
to make it generate primes in a similar manner as the SETUP.

The primary changes that we made to PGP were the following. We modified
randombits() to invoke rand() instead of randomunit(). We removed the PGP
random generation routine calls in rsa_keygen(). We also removed the test that
is performed on the new key. We modified randomprime() to be the following:

int randomprime(unitptr p, short nbits)
{

int numTested=0;
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GenThatPrime:
if (numTested == 10)
{numTested = 0;printf(“Testing 10 more nums for primality\n");}
srand(truerand());randombits{p,nbits-2) ;numTested++;
mp_setbit(p, nbits - 1);mp_setbit(p, nbits - 2);
if (primetest(p)) return O;
else goto GenThatPrime;
} /* randomprime */

We performed our benchmark from the beginning of rsa_keygen() up until
the end of rsa_keygen().

Table 1
512 bit RSA key generation times in seconds
[ Trial [Modified PGP[SETUP gen[SETUP decrl]

1 94 94 9
2 104 136 92
3 100 215 23
4 157 153 21
5 114 20 2
6 132 173 47
7 79 127 25
8 76 274 10
9 158 40 10
10 75 69 20
[[Average] 1089 | 1301 | 259 |

The Modified PGP column lists the modified PGP key generation times.
The SETUP gen column lists the SETUP key generation times. The SETUP
decr column lists the amount of time required to derive a private key from
the corresponding public key. We found that there is no appreciable difference
between the running times of the modified PGP and our SETUP. We therefore
believe that it may be possible to modify PGP to contain an RSA SETUP
mechanism such that it can’t be detected by analyzing key generation times
alone.
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