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Abstract. In this paper we consider very fast evaluation of strongly 
universal hash functions, or equivalently, authentication codes. We show 
how it is possible to modify some known families of hash functions into a 
form such that the evaluation is similar to “bucket hashing” , a technique 
for very fast hashing introduced by Rogaway. Rogaway’s bucket, hash 
family has a huge key size, which for common parameter choices can be 
more than a hundred thousand bits. The proposed hash families have a 
key size that is close to the key size of the theoretically best known con- 
structions, typically a few hundred bits, and the evaluation has a time 
complexity that is similar to bucket hashing. 
Keywords. Universal hash functions, message authentication, authen- 
tication codes, bucket hashing, software implementations. 

1 Introduction 

Universal hashing is a concept that was introduced by Carter and Wegman [8] 
in 1979. Since then, many results in theoretical computer science use different 
kinds of universal hashing. One of the main topics in universal hashing is called 
strongly universal hashing, and has a large amount of applications in computer 
science. The most widely known application in cryptography is the construction 
of unconditionally secure authentication codes. The model for unconditionally 
secure authentication codes was originally developed by Simmons [25, 261 , see 
also [lo]. One of the most important aspect of strongly universal hash functions 
is that the constructions should be simple to implement in software and/or 
hardware. Such implementation aspects have recently been in focus, and there 
are several papers addressing this topic [13, 16, 17, 22, 24, 11, 11. 

Message authentication is one of the most common cryptographic settings 
today. In this setting a transmitter and a receiver share a secret key e .  When the 
transmitter wants to send the receiver a message s, he computes a socalled mes- 
sage authentication codel (MAC), MAC = fP(s), and sends the pair (s, MAC). 
Here fe() denotes the function producing the MAC using key e. Receiving a 
pair (s‘,MAC’) t he  receiver checks that MAC’ = fe(s’). If this is the case, the 
message is accepted as authentic, otherwise it is rejected. 

In the theory of universal hashing, this is usually referred to as a tag (or an 
authenticator). 

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT ’97, LNCS 1233, pp. 149-162, 1997. 
0 Spnnger-Verlag Berlin Heidelberg 1997 



150 

The fastest software MACs in common use today are based on software ef- 
ficient cryptographic hash functions, such as MD5 [2l ,  71. We refer to such an 
approach as the MAC scheme approach. For an overview, see [18, 19, 201. Since 
we are computing one of the fastest types of cryptographic primitives2 on a 
string essentially identical to the message, one might think that it is not possible 
to do much better. However, as was shown by Wegrnan and Carter already in 
1981 [28], this is not the case. It was noted that one does not need to  work with 
a “cryptographically strong primitive”. A “cryptographically strong primitive’’ 
needs some complexity to resist attacks (e.g. many rounds), and this complexity 
is also time consuming. Through Wegrnan and Carter’s universal hashing, one 
can instead work with a very simple function (the universal hash function) to 
produce a MAC. We refer to this approach as the universal hash approach. The 
details of such an approach are given in the last section of this paper. We review 
some advantages of using the universal hash approach instead of the usual MAC 
scheme approach. 

- Speed: The universal hash function can be very simple to  implement, and 
experimental implementations (e.g. [ l l ] )  indicate that producing the MAC 
using universal hash functions is faster than for example MD5 based tech- 
niques. 

~ Parallelizahle: For this self-explaining property to hold, it is sufficient that 
(a pa.rts of) the universal hash function is a linear function, which is usually 
the case. 

- Incremental: If a small part of the message is modified or a part is added 
to the message, we do not need to perform the new MAC calculation over 
the whole message but only over the small part that was modifiedladded. 
This is again a consequence of the linearity of (a part of) the universal hash 
function. 

- Unconditional security/Provable security: Universal hashing is “uncondition- 
ally secure”, i.e., the probability of success in an attack is independent of 
computational resources. The universal hash approach sometimes includes 
usage of some cryptographic primitive to provide multiple use. This usage 
can be done in the form of provable security, i.e., an adversary who can break 
the scheme can also break the underlying cryptographic primitive [22]. 

Note that MAC schemes are highly nonlinear, hence usually neither parallelizable 
nor incremental3. Also, reductions for MAC schemes to show provable security 
are not at all as tight a,s for the universal hash approach, for details see [4, 22, 21. 

This paper studies very fast software implementations of strongly universal 
hash functions. One of the most important steps in this direction was taken by 
Rogaway when he introduced a technique for hashing called “bucket hashing” 
[ 2 2 ] .  It is a very efficient way of producing a MAC, ideally requiring only 6 - 10 
simple instruction per word to be authenticated. The drawback of this approach 

MD5 can probably not be considered to be a “cryptographically strong primitive”, 
due to an attack by Dobbertin [9]. 
In [3], a MAC scheme (XOR-MAC) was presented, which is incremental. 
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is the huge key size that is included, which for common parameter choices can 
be more than a hundred thousand bits. This requires the key to be generated 
through a pseudo-random number generator. 

As mentioned before, there have been some previous work on software effi- 
ciency of universal hash functions, [17, 24, 11, 11. The recent paper [ll] considers 
evaluation of universal hash functions on processors supporting very fast integer 
multiplication. On such processors, they get an extremely high speed. Another 
recent paper [l] is more in the line of our work, focusing on evaluation in hash 
families with a small key size. 

Our contribution is to show how it is possible to modify some known families 
of hash functions into a form such that the evaluation is similar to “bucket 
hashing”. The proposed hash functions have a key size that is close to the key 
size of the theoretically best known constructions, which for common parameter 
choices can be around a hundred bits for a single use. Furthermore, the evaluation 
has a time complexity that is similar to bucket hashing and use the same simple 
instructions. 

The paper is organized as follows. In Section 2 the basic definitions in univer- 
sal hashing and authentication theory are given, as well as connections between 
them. Section 3 reviews bucket hashing, and in Section 4 we introduce our ncw 
approach to bucket hashing. In Section 5 we discuss implementation and param- 
eter choices and finally, in Section 6, we review how the proposed hash families 
are used to produce a MAC. 

2 Universal hash functions and authentication codes 

In universal hashing, we consider a hash family G,  which is a set G of 1G1 functions 
such that g : X -+ Y for each g E G. Interesting cardinality parameters for a 
hash family are 161, 1x1, and IYI. Two relevant definitions arc the following. 

Definition 1. A hash family g is called €-almost universal2 if for any two dis- 
tinct elements x1,x2 E X ,  there are at  most, functions g E G such that 
g(z1) = g(x2). We use the abbreviation t-AU2 for t,he family. 

Definition 2. A hash family G is called c-almost strongly uniwersab if 

i) for any 3: E X and any y E Y ,  there are exactly /61/IYl functions g E 4 Such 
that g(x) = y.  

ii) for any two distinct elements q ,  x2 E X ,  and for any two elements y1, y2 E 
Y, there are at most EIGI/IYI functions g c 4 such that g(z1) = y1, and 
g(32) = Y2. 

We here use the abbreviation eASU2 

For a more thorough treatment of universal hashing, we refer to [27], where these 
concepts are derived further. We will instead consider t,he known equivalences 
between strongly universal hashing and authentication codes. 
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Authentication theory as originally described by Simmons [25], [26], see also 
[lo], considers the problem of two trusting parties, who want to send informa- 
tion from the transmitter to the receiver in the presence of an adversary. The 
adversary may introduce false messages to the receiver or replace a legal message 
with a false one. To protect against these threats, the sender and the receiver 
share a secret key. The key is then used in an authentication code (A-code). 

A systematic (or Cartesian) A-code is a code where the information to  be 
transmitted appears in plaintext in the transmitted message. Such a code is 
a triple ( S , & , 2 )  of finite sets and a map f : S x & -+ Z .  Here S is the 
set of source states, i.e., the information that is to be transmitted, E is the 
set of keys, and 2 is the tag alphabet. When the transmitter wants to  send 
the information s E S using his secret key e E E ,  he transmits the mes- 
sage m = ( s , z ) ,  where z = f ( s , e ) ,  and m E M = S x 2. When the re- 
ceiver receives a message m’ = (s’, z’) ,  he checks the authenticity by calculating 
whether z’ = f ( s ’ , e )  or not. If equality holds, the message m is called valid. 
The adversary has two different attacks to choose between. He might introduce 
a false message 7n = ( s , z ) ,  and hence impersonating the transmitter, called 
the impersonation attack. He can also choose to observe a transmitted message 
rn = ( s , z ) ,  and then replace this message with another message rn’ = ( s ‘ , ~ ‘ ) ,  
where s’ # s. This is called the substitiition attack. The probability of success 
for the adversary when trying either of the two attacks, denoted by PI and 
Ps respectively, are formally defined by PI = I I I ~ X ~ , ,  P(7n = (s, z )  valid) and 
Ps = rnax,,, max,t#s,z~ P(m‘ = (s‘, z‘) validlm = (s, z )  observed). We assume 
that the keys are uniformly distributed. Then these probabilities can be written 
as 

I{e E & : z = f (s, e ) ,  z’ = f (s’, e)}l 
I{e E E : z = f ( s , e ) } l  

PS = max max 
s,z s ’ # s , z ’  

For a review of different bounds and constructions of A-codes, we refer to  [15]. 
The main result on the equivalence between strongly universal hashing and au- 
thentication/coding theory is the following. 

Theorem3 [5 ,  28, 271. 

a) If  there exists a q-ary code with codeword length n, cardinality M ,  and min- 
imum Hamming distance d ,  then there exists an t-AU2 family of hash func- 
tions where E = 1 - d / n ,  1G1 = n, 1x1 = M ,  and IYI = q. Conversely, i f  
there exists an E - A U ~  family of hash functions, then there exists a code with 
parameters as above. 

ii) If there exists an A-code with parameters JSI, [&I, PI = 1/121, and Ps, then 
there exists an r-ASU2 family of hash functions where E = Ps, 141 = I&[, 
1x1 = S ,  and IYI = 121. Conversely, if there exists an E - A S U ~  family of 
hash functions, then there exists an A-code with parameters as above. 
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We review the equivalence ii) above. Each key e E E in the A-code corresponds 
to a unique function ye in G, and S = X. The tag z in the authentication code 
is then obtained as 

The significance of F - A U ~  families in strongly universal hashing lies in the 
fact that  they are very useful whcn constructing strongly universal hash families. 
This is due to the following result by Stinson. 

Lemma4 [27]. Let 61 be 61-AU2 from Xl t o  Yl and let G2 be 62-ASU2 j?om 
YI to Y2. Then G = (92 (91 (z)) : g1 E 61, g 2  E G2} i s  E-ASUA with c = EI + E Z  . 

Most constructions of c-ASU2 families of hash functions for large 1x1 use this 
composition construction. The constructions giving best performance in terms 
of key size [5] (see also (121) uses Reed-Solomon codes as the c-AU2 family in 
the above composition construction. Another useful result, originally used in thc 
Wegman-Carter construction [28], is obtained through the Cartesian product. 

Lemma5 [28, 271. LetG bee-AU2fromX t o y .  LetG" = {gm(zl,xz , . . . , x m )  = 
(g(z1),g(z2), . . . ,g(zm)) : y E 5'1) be a set of  hash functions from Xm to Y". 
Then Gm = { g m }  i s  E-AUZ. 

3 Bucket hashing 

The bucket hashing technique was introduced by Rogaway in [22]. It gave rise to 
E - A U ~  families that are extremely fast to compute, a t  the cost of a very large key. 
Rogaway's arguments was to  produce this long key through a pseudo-random 
number generator. We review some details of the bucket hashing technique. 

Fix a "word size" w 2 1. For n 2 N the hash function is defined to  map from 
X = (0, l},, to Y = (0, l } 'wN.  The number N is referred to  as "the number of 
buckets". It is further required that N ( N  - 1)(N - 2) >_ 6n. 

Let jY,[w, n, N] denote the hash family. Then each h E ' + i ~ [ w ,  n, N ]  is speci- 
fied by a length n list where each entry contains 3 integer numbers in the interval 
[O, N - 11. Denote this list by h = (ho, h l , .  . . , hn-l), where hi = (hi, h:, 119). 

The hash family 31, [w, n, N] is given by the hash functions taken over the set 
of all possible lists 11, subject to the constraint that no two of the 3-element sets 
in the list are the same, i.e., hi # hj,Vz # j .  

With a given hash function h = (ho,hl, .  . . , hn-l), the output value h(z) is 
defined as follows. Let z = 20x1 . . zn-l, where each zi is a bit vector of length 
w. Initialize yj to 0" for 0 5 j 5 N - 1. Then, for each i, replace glhf with 
yh; g, xi, yh: with yhZ @ zi, and yh3 with yh? CB xi. Then set the output to  be 



154 

h(x) = yoyl . . . y n - l .  In pseudocode, we can write the algorithm as follows. 

for j = 0 t o  N - 1 do 

f o r  i = 0 to 7 ~ -  1 do 
Y [ j l  = 0” 

y[hi] = y [ h 3  a3 2, 
y[h?] = y[h3 63 xi 
y[h?] = y[h3 a3 zi 

r e t u r n  y[O]y[l] 3 . . y[n - 11 

The computation of h(x) gives rise to the name “bucket hashing”, since it can 
be envisioned in the following way. We have N initially empty buckets. The first 
word of x is then thrown into three buckets, specified by ho. Then the second 
word of x is thrown into three buckets, specified hy h,l, and so on. Finally, the 
xor of the content in each of the buckets is computed, and the hash function 
output is the concatenation of the final content, of the buckets. This is shown in 
Figure 1. 

Fig. 1. A word is thrown into three buckets in Rogaway’s bucket, hashing. 

The collision probability 6 is given by a complicated expression [22] and in- 
stead of giving it here, we will just transfer some numerical values from [22] 
whenever needed. For example, for n = 1024 and N = 100, the collision prob- 
ability is approximately 2 Y 2 * ,  i.e., ? f ~ [ w , n , N ]  is an e A U 2  hash family where 
E 2-28 .  

The bucket hashing approach gives a very fast implementation, since it only 
requires simple word operations as load, store and xor. Rogaway estimates 
that one word can be processed using only 6 - 10 such simple instructions. 
Usually such simple instructions require only one clock cycle each, and can even 
be executed in parallel on many processors. 

The drawback of the bucket hashing approach is the long key that is used. The 
key size is approximately 3nlog, N ,  which is huge. For n = 1024 and N = 100, 
this is already more than 20000 bits, whereas a theoretically good construction 
[6, 141 for the same c would require 76 key bits. Hence, the key bits in the 
bucket hashing construction must be generated by a pseudo-random number 
generator. This might be time consuming and the hash fa.milies are no longer 
unconditionally secure. 
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4 Bucket hashing with a small key size 

The purpose of this section is to  slightly modify some existing constructions of 
E - A U ~  families of hash functions and then show that they can be implemented in 
a way that resembles the bucket hashing technique. The approach taken here is 
based on evaluation of polynomials similar to [6, 141. The difference is essentially 
that we only consider polynomials over GF(2) ,  whereas the previous approaches 
consider polynomials over a larger field. 

The following is a description of an t-AU2 family of hash functions. Let PLI 
be the set of all polynomials over GF(2)  without constant term and with degree 
at most D , i.e., 

P ,  = {P (x )  :P(z) = P ~ Z + P ~ X ~  + . . . + p o ~ ~ , p i  €G'F(2) ,1  Li 5 D}.  

The hash family 41 is defined as follows. Let the functions in 
X = Po to Y = GF(2"), let p E PD = X ,  (Y E GF(2"),  and define 

map from 

Sa(P)  = P((Y) .  

Theorem 6. The family 

41 = { g a ( p )  : n: E GJ'"''')}, 

i s  nn E-AUJ family of hash functions where 

Pro0 f. 

I{a E GF(2"') : pzI-z2(~) = O}( 
= max 

x1#52 2" 
D 

5 -, 2" 

since any nonzero polynorriial of degree D has at, most D zeros. 0 

Note that this is n slightly weaker rcsult than in [6], where the polynomials 
have coefficients from GF(2") and this does not change c.  However, as we will 
see, our approach will give a very efficient evaluation. 

A generalization of the above construction is the hash family G2, constructed 
as follows. Let the functions in !& map from X = Pz to Y = GF(2m), let 
p = ( p l , p z , .  . . , p a )  E Pg = X and define 

S n l ,  . . , N " ( P )  = P l ( a l )  + . . ' + p a ( a r J .  
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Theorem 7. The family  

is an E - A U ~  family of hash functions where 

Proof. Similar to Theorem 6. 0 

The central topic is to have a fast evaluation. We will now describe a hash 
family, denoted GB[w, n, N ] ,  which has a fast evaluation. Then we show that this 
hash family is an implementation of or Q 2 ,  depending on a parameter choice 
in GE[ZU,  n,  N ] .  

Description of G s [ w , n , N ] :  Fix 7u as the "word size" and let A' = 2""'. 
For 71 2 N the hash function is defined to map from X = (0, l}'", to  Y = 
(0 ,  l}wm. In the implementation there is an intermediate level using L arrays 
with N = ZmIL words in each, so the hash function can be described to map 

x = ( 0 ,  l}'", -+ ( 0 , l ) W N L  -$ ( 0 ,  l}," = Y 

The number N can be interpreted as "the number of buckets" and the number 
L can be interpreted as "the number of rows of buckets". 

Each h E GB[w, n, N ]  is specified by a length n list where each entry contains 
L integer numbers in [ O ,  N - 11. Denote this list by h = (ho, hl , . . . , hn-l), where 
hi = (h:,.  . . , h(- ' ) .  The hash family GB[w,n, N ]  is given by a set of such lists, 
which we call the set of all allowed lists. Different choices of this set will give 
different hash families. 

With a given hash function h = (/LO, hl ,  , . . , hn-l) ,  the output value h(z)  
is defined as follows. Let z = ~0x1 " ' ~ ~ - 1  , where each xi is a bit vector of 
length 20. Introduce L arrays of length N ,  called yk, 0 5 k 5 L - 1. Initialize 
ykb] to 0" for 0 I: Ic 5 L - 1 and 0 5 j 5 N - 1. Then, for each i, replace 
~ ~ [ h p ]  with yo[hp @xi, y l [ h i ]  with yl[hj] @xi, continuing in this way, and finally 
replacing y ~ - l [ h ~  -'I with y~- l [hf - - ' ]  @xi. This first step has hashed the input 
to the intermediate level of L rows of buckets, each containing N words. The 
procedure for L = 2 is shown in Figure 2. 

Next, for each array, we compress the array in the following way. In GF(2"IL) 
we have a primitive element y which satisfies ymiL = gm/L-Iym/L-' t.. .+Sly+ 
go, where gi E GF(2) .  F'romj = N-2  down to m/L we add (xor) yk[j] to y k l j - i ]  
for all i such that ,9i = 1. Finally, set the output to he h(z)  = y o . .  . y ~ - 1 ,  where 
yi denotes the content of the array (yi[O] . - . y i [ r n / L  - 11). 

L 
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Fig. 2. A word is thrown into one bucket in each "row of buckets", here L = 2. 

Assuming a generated list h, we can give a pseudocode for the case L = 2 
with ymI2 = ym/2-b + 1, for some integer h with 1 5 b 5 m/2 - 1, as follows. 

f o r  j = 0  t o  N - 2  do 

f o r  i = 0 t o  n. - 1 do 
Y O M  = o w ,  Y l [ j l  = 0" 

yo[h4] = yo[h8] cn zi 
Yl[h,!] = yl[h:] CFi zi 

Y O [ j  - bl = Y O [ j  - b] &i yo[j] f Yo[ j  - m / 2 ]  = yo[j - 7421 a3 yo[j] 
Y1 li - bl = Y1 [ j  - bl @ Y 1 bl 9 Y I [ j  - 4 2 1  = Y1 [ j  - m/21 @ Y1 [jl 

f o r  j = N - 2 t o  71212  do 

r e t u r n  yo[O]y0[l] . . . yo [ rn /2  - l]yl[O]yl[l] - . - y l [ r n / 2  - 11 

Observe that GB[w,  n, N ]  can be evaluated efficiently using only simple in- 
structions as load, store and xor. Next we prove equivalences between GB[w, n,, N ]  
and the hash families GI and &. Let [z]  denote the vector (zo, . . . , Z L - ~ ) ,  where 
7'' E GF(2"IL) ,  and by convention yN-l  = 0, such that z = yzo + y"1P +. . . + 
y L - 1  pL-1 E GF(2m) .  Here ,B E GF(21n) and h(P) = 0 for some irreducible 
polynomial h(z)  of degree L over GF(2"IL). 

Theorem8. Let the set of a h w e d  lists be 

{ ( [a] ,  [a'], . . . , [ c ~ " ] ) , Y a  E GF(2")). 

Then the hush family G'B[w, n, N ]  is equivulent to GF, i.e., the Cartesian product 
of w hash families (21 as in Lemma 5. 

Proof. The proof is in two steps. 
1. The ith bit of each output word is only dependent on the i th bit of each 

input word xj and independent of all the other bit positions in the input words. 
Hence we can view the hash family GB [w, I L ,  IV] as a Cartesian product of w 
hash families each having an input word size of one, as in Lemma 5. So w.1.0.g 
we assume 11) = 1. 
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2. Regard each array (of length 2"IL) as corresponding to an enumeration of 
elements in GF(2"IL), i.e., GF(2""lL) = (y0,r1,y2,., , ,y2m'L-2 ,0} and entry 
zi corresponds to element 7";. View GF(2m) as a direct, product of such subfields, 
i.e., 

GF(2") = GF(2"IL) @ .  ' .  @ GF(2"IL), . " I 

L 

where each subfieid is represented by one array. An element z t GF(2") is repre- 
sented by the vector t = (to, . . . , ZL-]), where yzl E GF(2"IL). Putting an input 
word xi (w = 1) in bucket zi means adding 7"' in the subfield, and hence, putting 
an input word zi in buckets represented by [t] = (zo,  . . . , Z L - ~ )  means adding 
xiz to the previous content of the buckets. Hence, the list ( [a] ,  [a2], . . . , [an]) ,  for 
(1: E GF(2") means adding zoa+zla2+. . .+x,,an. The result, is now represented 
as powers of y in each subfield (array). In the last part, adding yk[j] to y k [ j  - i] 
for all i such that gi = 1 from j = N - 2 down to m / L  simply means reducing the 
powers of y to the basis {ymlL- ' ,  . . . , y, 1). Hence the output of GB[w, n, N ]  is 
zoa+zla2++. . .+xnan E GF(2m) ,  where GF(2'") = GF(2"/L)@3. . .t8GF(2"/'*) 

0 

A similar result can be obtained for the fanlily G2. For example, let the set 

and GF(2"IL) is represented using the basis (ymlL--', . . . , y, l}. 

of allowed lists be 

{([ail, [(Yz],.. . , [~,,]) , tJat E GF(ZnL) ,  1 I i 5 TL}, 

i.e., the set of all possible lists. Then GR[w, n, N ]  is equivalent to GF with D = 1, 
i.e., the Cartesian product of w hash families G2 with D = 1. 

5 Implementation and parameter choices 

Clearly, the efficiency of t,he evaluation will depend on the choice of parame- 
ters in the above description. Let us consider some different, ways to implement 
G B [ w , ~ L , N ] .  Note that the situation is very similar to Rogaway's bucket hash- 
ing. We can process word by word from input, or we can process bucket by 
bucket. Furthermore, we can use a self-rriudifyirig code (the actual hash function 
is implemented in the program code), or we can read the bucket/word locations 
from a table in memory. The fastest choice is a self-modifying code processing 
bucket by bucket. Then we can keep the current bucket in a register while pro- 
cessing, requiring only one load and one xor instruction for each input word 
and each row of buckets. Hence, for L rows this requires 2L simple instructions. 
For further details we refer to  [22]. 

Furthermore, the compression of the arrays means L N c  load, add and store 
operations, where c is the number of nonzero coefficients in the primitive polyno- 
mial defining y (this can usually be chosen to be 2 ) .  For n > > N the time to do 
the compression part is hence negligible compared to the first part. Initialization 
of the list h is done only once. Hence, when concatenating this hash function 
many times using Lemma 5, the time to execute this part is also negligible. 
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For tabulating some values, we regard n = 8N as being sufficient for consid- 
ering the compression to be negligible in time. Also, the generation of the list 
h is different depending on the actual choice of hash function. In all cases we 
are aware of the fact that we need to concatenate a few, say 10, hash families 
in order to make the timc to process this part small. Alternatively, considering 
multiple use, we can assume that the list h is generated once and then kept, 
fixed. We tabulate some values for different parameter values in Table 1. The 
input size, the output size and N are given in number of words; c is the collision 
probability; the key size is given in bits; and the time column gives the mini- 
mal number of simple instructions per word for a self-modifying code processing 
bucket by bucket. 

Hash function and parameters IlInput sizeIOutput size1 c IKey sizelTimeu 

Table 1. A comparison for some different parameter choices. 

In order to  process each simple instruction in at  most one clock cycle (we 
might execute several in parallel) on a usual processor, each reference to a rnem- 
ory location needs to be in the on-chip cache of the processor. Hence, for a 
self-modifying code processing bucket by bucket, the input to one hash function 
must fit the on-chip cache, giving restrictions on the input size and thus on 
N .  Examining the sizes of the on-chip caches of todays processors, N = 21° is 
probably about the maximum size of the arrays under these circumstances. 

Note the fact t,hat some properties of Rogaway's bucket hashing and the 
proposed techniques are different and hence the techniques are not directly com- 
parable. Especially, gives a much higher compression, i.e., input size/output 
size is much smaller. This means that including !A, it is enough to  concatenate 
two hash families using Lemma 4 to get the desired output size, whereas bucket 
hashing requires many concatenations to obtain the desired output size. This 
can be a problem for large messages since producing a large hash output that 
has to  be written in memory and then further processed will produce cash-misses 
etc. 
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6 The universal hash approach in practice 

Up to this point, we have only considered how to construct the eAU2 hash family. 
This short section overviews how to use the F - A U ~  hash family to  produce an 
E - A S U ~  hash family that gives an authentication tag (MAC) and also have the 
properties mentioned in Section 1. 

The usage of eASU2 families of hash functions in the described way applies 
to the case of sending/storing one message with fixed length (variable length can 
easily be included [22]). Sometimes one is interested in multiple use, i.e., send- 
ing/storing many message where each message needs individual authentication. 
In the unconditionally secure approach, the solution is to add new random key 
bits for each additional messages to be hashed. If hel () is the c-ASU2 hash func- 
tion, the MACs ( ~ 1 ~ 2 2 ,  ) for a sequence of messages s1, s2, . . . can be produced 
by 

~1 = he, (a), 2 2  = he, (4 + e2, ~3 = he, (5-3) + - 5 3 , .  . . , 
are randomly chosen keys of same length as the MAC. It can 

be proved 1281 that this procedure gives the same Pr and PS as for the single 
message case. 

In some cases, the number of messages is limited and then it is preferable to  
keep the unconditionally secure approach. In other cases, the set (e2, e3 , .  . .} of 
randomly chosen keys is too large to be kept secret in an unconditionally secure 
way. Instead, one uses a pseudo-random number generator to produce this set. 
In such a case, some of the motivation to consider eAU2 hash families with a 
short key is lost, since. the same pseudo-random number generator can be used 
to produce the hash function itself. 

A complete E - A S U ~  hash family obtained by Lemma 4 can be described as 
follows. Let z be the message that is to be hashed. Divide z into suitable sized 
substrings 2 = 51x2 . . . zn. Apply a secretly chosen t-AU2 hash function hl and 
calculate yi = hl (xz), 1 5 i 5 n. For the obtained string y = y1 y2 . . . yn (now 
of modest size) we have secretly selected another c-ASU2 hash function h2 and 
calculates w = h2 (51). In am unconditionaliy secure authentication code we would 
select a secret key e and form a MAC of the form MAC = w + e. For the next 
message, we use a new value of e ,  etc. 

If we want to produce the sequence of keys using a pseudo-random number 
generator we can do as follows. We have a counter, call it cnt, which is initially 
zero. This counter is used together with a cryptographic primitive, e.g. RC5 [23], 
using a secret key e.  The MAC for the message is given by 

MAC = 20 + RC5,(cnt), 

together with the used value of the counter. Finally, cnt is incremented. 
with N = 1024 and 

L = 7 as the first hash family. The key el to  select the hash function is 70 bits. 
We have 8092 word input, producing a 70 word output anti E = 2-". AS the 
second hash family, choose the polynomial evaluation hash [6,  141 over G F p ) .  
Our key e2 for this hash family is 70 bits as well. 

Example: As a particular example for 'UI = 32,  choose 
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Divide the input x in 32Kbyte blocks x = x1z2. . 'z , .  Apply the methods 
described in Section 4 on each block x2, receiving ri 70-word blocks called yi, 
by yi = gel (xi). Then form the string y = yly2 . . . yn and interpret this as a 
polynomial over GF(270). This polynomial, call it, y(x), will then have degree 
32n. Evaluate the polynomial in e2, obtaining w = y(e2). Then calculate the 
MAC as MAC = w + e3, where e3 is a third 70 bit key. Finally, we output 
(s,MAC). The value of E will depend on n, but for input sizes smaller than 
8Mbyt,e we have E < 2-56 .  

Alternatively, using RC5 in multiple use we calculate the MAC as MAC = 
w + RC5,, (cnt), output (x, mt, MAC), and increment the counter. 

References 

1. V. Afanassiev, C. Gehrmann, B. Smccts, Fast message authentication using effi- 
cient polynomial evaluation, Proceedings of Fast Software Encryption Conference 
'97, to appear. 

2. M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authen- 
tication, Lecture Notes in Computer Science 1109 (1996), 1 15 (CRYPTO '36). 

3. M. Bellare, R. GuCrin, P. Rogaway, XOR MACs: New methods for message au- 
thentication, Lecture Notes i n  Computer Science 963 (1995), 15-28 (CRYPT0 

4. M. Bellase, J. Kilian, P. Rogaway, The security of cipher block chaining, Lecture 
Notes in Computer Science 839 (1994), 341-358 (CRYPTO '94). 

5. J .  Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets, On families of hash 
functions via geometric codes and concatenation, Lecture Notes in Computer Sci- 
ence, 773 (1994), 331-342 (CRYPTO '93). 

6. B. den Boer, A simple and key-economical unconditionally authentication scheme, 
Journal of Computer Security, 2 (1993), 65--71. 

7. A. Bosselaers, R. Govaerts, J. Vandewalle, Fast hashing on the Pentium, Lecture 
Notes in Computer Science 1109 (1996), 298--313 (CRYPTO '96). 

8. J.L. Carter, M.N. M'cgman, Universal classes of hash functions, J.  Computer and 
System Sciences, 18 (1979), 143~-154. 

9. H. Dobbertin, Cryptoanalysis of MD5 compress, presented at the rump session of 
EURO CRYPT'96. 

10. E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane, Codes which detect deception, 
Bell Syst. Tech. J. ,  53 (1974), 405-424. 

11. S. Halevi, H. Krawczyk, Software message authentication in the Gbit/second rates, 
Proceedings of Fast Software Encryption Conference '97, to appear. 

12. T. Helleseth and T. Johansson, Universal hash functions from exponential sums 
over finite fields and Galois rings, Lecture Notes in Computer Science 1109 (1996), 

13. T. Johansson, A shift register construction of unconditionally sccure authentication 
codes, Designs, Codes and Cryptography, 4 (1994), 69-81. 

14. T. Johansson, G. Kabatianskii, B. Smeets, On the relation between A-codes and 
codes correcting independent errors, Lecture Notes in  Computer Science, 765 

'95). 

31-44 (CRYPT0 '96). 

(1994), 1L11 (EUROCRYPT'93). 



162 

15. G. Kabatianskii, B. Smeets, and T. Johansson, On the cardinality of systematic 
authentication codes via error correcting codes: IEEE Dans. Inform. Theory, 42 

16. H. Krawczyk, LFSR-based hashing and authentication, Lecture Notes in Computer 
Science, 839 (1994), 129-139 (CRYPTO '94). 

17. H. Krawczyk, New hash functions for message authentication, Lecture Notes in 
Computer Science, 921 (1995), 140-149 (EUROCRYPT '95). 

18. B. Preneel, Cryptographic hash functions, Europeo.n 'Transactions on Telecommu- 
nications, 5 (1994), 431-448. 

19. B. Preneel, P. van Oorschot, MDx-MAC and building fast MACs from hash func- 
tions, Lecture Notes in Computer Science, 963 (1995), 1-14 (CRYPTO '95). 

20. B. Preneel, P. van Oorschot, On the security of two MAC algorithms, Lectwe Notes 
in Computer Science, 1070 (1996), 19-32 (EUROCRYPT '96). 

21. R.L. Rivest, The MD5 message-digest algorithm, Request for  Comments 1321, 
Internet Activities Board, Internet Privacy Task Force (1992) I 

22. P. Rogaway, Bucket hashing and its application to fast message authentication, 
Lecture Notes i n  Computer Science, 963 (1995), 29-42 (CRYPTO '95). 

23. B. Schneier, Applied Cryptography, John Wiley & Sons (1996). 
24. V. Shoup, On fast and provably secure message authentication based on universal 

hashing, Lecture Notes in Computer Science, 1109 (1996), 313-328 (CRYPTO 
'96). 

25. G.J. Simmons, A game theory model of digital message authentication, Congr. 
Numer., 34 (1992), 413-424. 

26. G.J. Simmons, Authentication theory/coding theory, in Lecture Notes i n  Computer 
Science, 196 (1985), 411-431 (CRYPTO '84). 

27. D.R. Stinson, Universal hashing and authentication codes, Codes, Designs and 
Cryptography, 4 (1994), 337 -346. 

28. M.N. Wegman and J.L. Carter, New hash functions and their use in authentication 
and set equality, J .  Computer and System Sciences, 22 (1981), 265-279. 

(1996), 566-578. 


	Bucket Hashing with a Small Key Size
	1 Introduction
	2 Universal hash functions and authentication codes
	3 Bucket hashing
	4 Bucket hashing with a small key size
	5 Implementation and parameter choices
	6 The universal hash approach in practice
	References


