Bucket Hashing with a Small Key Size

Thomas Johansson

Department of Information Technology, Lund University,
PO Box 118, S-221 00 Lund, Sweden
Email:thomas@it.lth.se

Abstract. In this paper we consider very fast evaluation of strongly
universal hash functions, or equivalently, authentication codes. We show
how it is possible to modify some known families of hash functions into a
form such that the evaluation is similar to “bucket hashing”, a technique
for very fast hashing introduced by Rogaway. Rogaway’s bucket hash
family has a huge key size, which for common parameter choices can be
more than a hundred thousand bits. The proposed hash families have a
key size that is close to the key size of the theoretically best known con-
structions, typically a few hundred bits, and the evaluation has a time
complexity that is similar to bucket hashing.

Keywords. Universal hash functions, message authentication, authen-
tication codes, bucket hashing, software implementations.

1 Introduction

Universal hashing is a concept that was introduced by Carter and Wegman [8]
in 1979. Since then, many results in theoretical computer science use different
kinds of universal hashing. One of the main topics in universal hashing is called
strongly universal hashing, and has a large amount of applications in computer
science. The most widely known application in cryptography is the construction
of unconditionally secure authentication codes. The model for unconditionally
secure authentication codes was originally developed by Simmons [25, 26], see
also [10]. One of the most important aspect of strongly universal hash functions
is that the constructions should be simple to implement in software and/or
hardware. Such implementation aspects have recently been in focus, and there
are several papers addressing this topic [13, 16, 17, 22, 24, 11, 1].

Message authentication is one of the most common cryptographic settings
today. In this setting a transmitter and a receiver share a secret key e. When the
transmitter wants to send the receiver a message s, he computes a socalled mes-
sage authentication code! (MAC), MAC = f.(s), and sends the pair (s, MAC).
Here f.() denotes the function producing the MAC using key e. Receiving a
pair (s', MAC') the receiver checks that MAC' = f.(s'). If this is the case, the
message is accepted as authentic, otherwise it is rejected.

! In the theory of universal hashing, this is usually referred to as a tag (or an
authenticator).

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT *97, LNCS 1233, pp. 149-162, 1997.
© Springer-Verlag Berlin Heidelberg 1997

150

The fastest software MACs in common use today are based on software ef-
ficient cryptographic hash functions, such as MD5 {21, 7]. We refer to such an
approach as the MAC scheme approach. For an overview, see [18, 19, 20]. Since
we are computing one of the fastest types of cryptographic primitives? on a
string essentially identical to the message, one might think that it is not possible
to do much better. However, as was shown by Wegman and Carter already in
1981 [28], this is not the case. It was noted that one does not need to work with
a “cryptographically strong primitive”. A “cryptographically strong primitive”
needs some complexity to resist attacks (e.g. many rounds), and this complexity
is also time consuming. Through Wegman and Carter’s universal hashing, one
can instead work with a very simple function (the universal hash function) to
produce a MAC. We refer to this approach as the universal hash approach. The
details of such an approach are given in the last section of this paper. We review
some advantages of using the universal hash approach instead of the usual MAC
scheme approach.

— Speed: The universal hash function can be very simple to implement, and
experimental implementations (e.g. [11]) indicate that producing the MAC
using universal hash functions is faster than for example MD5 based tech-
niques.

— Parallelizable: For this self-explaining property to hold, it is sufficient that
(a part of) the universal hash function is a linear function, which is usually
the case.

— Incremental: If a small part of the message is modified or a part is added
to the message, we do not need to perform the new MAC calculation over
the whole message but only over the small part that was modified/added.
This is again a consequence of the linearity of (a part of) the universal hash
function.

— Unconditional security/Provable security: Universal hashing is “uncondition-
ally secure”, i.e., the probability of success in an attack is independent of
computational resources. The universal hash approach sometimes includes
usage of some cryptographic primitive to provide multiple use. This usage
can be done in the form of provable security, i.e., an adversary who can break
the scheme can also break the underlying cryptographic primitive [22].

Note that MAC schemes are highly nonlinear, hence usually neither parallelizable
nor incremental®. Also, reductions for MAC schemes to show provable security
are not at all as tight as for the universal hash approach, for details see [4, 22, 2].

This paper studies very fast software implementations of strongly universal
hash functions. One of the most important steps in this direction was taken by
Rogaway when he introduced a technique for hashing called “bucket hashing”
[22]. It is a very efficient way of producing a MAC, ideally requiring only 6 - 10
simple instruction per word to be authenticated. The drawback of this approach

2 MD5 can probably not be considered to be a “cryptographically strong primitive”,
due to an attack by Dobbertin [9].

% In (3], a MAC scheme (XOR-MAC) was presented, which is incremental.

151

is the huge key size that is included, which for common parameter choices can
be more than a hundred thousand bits. This requires the key to be generated
through a pseudo-random number generator.

As mentioned before, there have been some previous work on software effi-
ciency of universal hash functions, {17, 24, 11, 1]. The recent paper [11] considers
evaluation of universal hash functions on processors supporting very fast integer
multiplication. On such processors, they get an extremely high speed. Another
recent paper [1] is more in the line of our work, focusing on evaluation in hash
families with a small key size.

Our contribution is to show how it is possible to modify some known families
of hash functions into a form such that the evaluation is similar to “bucket
hashing”. The proposed hash functions have a key size that is close to the key
size of the theoretically best known constructions, which for common parameter
choices can be around a hundred bits for a single use. Furthermore, the evaluation
has a time complexity that is similar to bucket hashing and use the same simple
instructions.

The paper is organized as follows. In Section 2 the basic definitions in univer-
sal hashing and authentication theory are given, as well as connections between
them. Section 3 reviews bucket hashing, and in Section 4 we introduce our ncw
approach to bucket hashing. In Section 5 we discuss implementation and param-
eter choices and finally, in Section 6, we review how the proposed hash families
are used to produce a MAC.

2 TUniversal hash functions and authentication codes

In universal hashing, we consider a hash family G, which is a set G of |G| functions
such that g : X — Y for each g € G. Iuteresting cardinality parameters for a
hash family are |G|, | X|, and |Y|. Two relevant definitions are the following.

Definition 1. A hash family G is called e-almost universal, if for any two dis-
tinct elements z;,z2 € X, there are at most €]G| functions g € G such that
g(z1) = g(z2). We use the abbreviation e-AU. for the family.

Definition 2. A hash family G is called e-almost strongly universal, if

i) for any z € X and any y € Y, there are exactly |G|/|Y} functions g € G such
that g{z) = y.

it) for any two distinct clements x1,z3 € X, and for any two elements y;,y2 €
Y, there are at most €|G|/|Y| functions g € G such that g(r1) = y1, and

9(z2) = ¥2.
We here use the abbreviation e-ASU,.
For a more thorough treatment of universal hashing, we refer to [27], where these

concepts are derived further. We will instead consider the known equivalences
between strongly universal hashing and authentication codes.

152

Authentication theory as originally described by Simmons [25], {26], see also
(10], considers the problem of two trusting parties, who want to send informa-
tion from the transmitter to the receiver in the presence of an adversary. The
adversary may introduce false messages to the receiver or replace a legal message
with a false one. To protect against these threats, the sender and the receiver
share a secret key. The key is then used in an authentication code (A-code).

A systematic (or Cartesian) A-code is a code where the information to be
transmitted appears in plaintext in the transmitted message. Such a code is
a triple (S,&,2Z) of finite sets and a map f : S x £ - Z. Here S is the
set of source states, i.e., the information that is to be transmitted, £ is the
set of keys, and Z is the tag alphabet. When the transmitter wants to send
the information s € & using his secret key e € &, he transmits the mes-
sage m = (s,z), where 2 = f(s,e), and m € M = 8§ x Z. When the re-
ceiver receives a message m’ = (s, z'), he checks the authenticity by calculating
whether 2z’ = f(s',e) or not. If equality holds, the message m is called valid.
The adversary has two different attacks to choose between. He might introduce
a false message m = (s,z), and hence impersonating the transmitter, called
the impersonation attack. He can also choose to observe a transmitted message
m = (s,z), and then replace this message with another message m' = (s',2'),
where s’ # s. This is called the substitution attack. The probability of success
for the adversary when trying either of the two attacks, denoted by P; and
Ps respectively, are formally defined by Pr = max,, P(m = (s,z) valid) and
Pgs = max, , maxy s P(m' = (s',2') validlm = (s,2) observed). We assume
that the keys are uniformly distributed. Then these probabilities can be written
as

 max {e€&: 2= f(s,e)}|

Pr= 5,2 e € £} ')
o Heefiz= f(s.0).7 = f(s,0))]

Fs= Sk st {e€&:z=f(s,e)}| ’ @

For a review of different bounds and constructions of A-codes, we refer to [15].

The main result on the equivalence between strongly universal hashing and au-
thentication/coding theory is the following.

Theorem 3 [5, 28, 27].

i) If there exists a g-ary code with codeword length n, cardinality M, and min-
imum Hamming distance d, then there exists an e-AUs family of hash func-
tions where e = 1 —d/n, |G| = n, | X| = M, and |Y| = q. Conversely, if
there exists an e-AUy family of hash functions, then there erists a code with
parameters as above.

#) If there exists an A-code with parameters |S|, |E|, Pr = 1/|Z], and Ps, then
there ezists an e-ASUz family of hash functions where ¢ = Pg, |G| = |£,
|X| = S, and Y| = |Z|. Conversely, if there exists an ¢-ASU, family of
hash functions, then there exists an A-code with parameters as above.

153

We review the equivalence ii) above. Each key e € £ in the A-code corresponds

to a unique function g in G, and S = X. The tag z in the authentication code
is then obtained as

2= go(s).

The significance of e-AUa families in strongly universal hashing lies in the
fact that they are very useful when constructing strongly universal hash families.
This is due to the following result by Stinson.

Lemmad [27]. Let Gi be €1-AU; from X1 to Y and let Gy be e2-ASUs from
Y1 to Ya. Then G = {ga(g1(z)) : g1 € G1,92 € G} is e-ASU; with € = €1 + €2.

Most constructions of e-ASU, families of hash functions for large | X| use this
composition construction. The constructions giving best performance in terms
of key size [5] (see also [12]) uses Reed-Solomon codes as the e-AU, family in
the above composition construction. Another useful result, originally used in the
Wegman-Carter construction [28], is obtained through the Cartesian product.

Lemmab [28, 27]. LetG bee-AU, from X to Y. Let G™ = {g™(x1,%T2,.. .1 &m) =
(g(z1),9(z2),...,9{zm)) : ¢ € Gi1} be a set of hash functions from X™ to Y™.
Then G™ = {g™} is e-AUs.

3 Bucket hashing

The bucket hashing technique was introduced by Rogaway in [22]. It gave rise to
e-AU, families that are extremely fast to compute, at the cost of a very large key.
Rogaway’s arguments was to produce this long key through a pseudo-random
number generator. We review some details of the bucket hashing technique.

Fix a “word size” w > 1. For n > N the hash function is defined to map from
X ={0,1}*" to Y = {0,1}*~. The number N is referred to as “the number of
buckets”. It is further required that N(N — L){N — 2) > 6n.

Let Hp[w,n, N| denote the hash family. Then each h € Hpg|w,n, N] is speci-
fied by a length n list where each entry contains 3 integer numbers in the interval
[0, N — 1]. Denote this list by h = (ho, h1,...,ha1), where by = (h}, A2, h3).
The hash family Hg|w,n, V] is given by the hash functions taken over the set
of all possible lists h subject to the constraint that no two of the 3-element sets
in the list are the same, i.e., h; # h;, Vi # j.

With a given hash function h = (ho, by, ..., hn-1), the output value h(z) is
defined as follows. Let = zox; - - - Tn_1, where each z; is a bit vector of length
w. Initialize y; to 0% for 0 < j < N — 1. Then, for each i, replace yu: with
Y D Ti, Y2 with Yp2 D x4, and Yns with Yns @ x4 Then set the output to be

154

h(x) = yoy1 - - - Yn—1. In pseudocode, we can write the algorithm as follows.

for j=0 to N-1 do
yls) =0

for i=0 to n—1 do
b] = ylh)) @
y[h?] = y[h] & ;i
ylhd] =yl @

return y[0]y[1] - y[n — 1]

The computation of h(x) gives rise to the name “bucket hashing”, since it can
be envisioned in the following way. We have N initially empty buckets. The first
word of z is then thrown into three buckets, specified by hg. Then the second
word of z is thrown into three buckets, specified by h;, and so on. Finally, the
xor of the content in each of the buckets is computed, and the hash function
output is the concatenation of the final content of the buckets. This is shown in
Figure 1.

coa, Wy, W, Wy

Fig.1. A word is thrown into three buckets in Rogaway’s bucket hashing.

The collision probability € is given by a complicated expression [22] and in-
stead of giving it here, we will just transfer some numerical values from [22]
whenever needed. For example, for n = 1024 and N = 100, the collision prob-
ability is approximately 2728, i.e., Hp[w,n, N] is an e-AU, hash family where
€=27%8,

The bucket hashing approach gives a very fast implementation, since it only
requires simple word operations as load, store and xor. Rogaway estimates
that one word can be processed using only 6 — 10 such simple instructions.
Usually such simple instructions require only one clock cycle each, and can even
be executed in parallel on many processors.

The drawback of the bucket hashing approach is the long key that is used. The
key size is approximately 3nlog, N, which is huge. For n = 1024 and N = 100,
this is already more than 20000 bits, whereas a theoretically good construction
[6, 14] for the same ¢ would require 76 key bits. Hence, the key bits in the
bucket hashing construction must be generated by a pseudo-random number
generator. This might be time consuming and the hash families are no longer
unconditionally secure.

155

4 Bucket hashing with a small key size

The purpose of this section is to slightly modify some existing constructions of
e-AUs, families of hash functions and then show that they can be implemented in
a way that resembles the bucket hashing technique. The approach taken here is
based on evaluation of polynomials similar to [6, 14]. The difference is essentially
that we only consider polynomials over GF(2), whereas the previous approaches
consider polynomials over a larger field.

The following is a description of an e-AU, family of hash functions. Let Pp
be the set of all polynomials over GF'(2) without constant term and with degree
at most D , ie.,

Pp = {p(z) : p(x) = pr1z + p2z’ + --- + ppx”,p; € GF(2),1 < i < D}.

The hash family G, is defined as follows. Let the functions in G; map from
X=PptoY =GF(2™),let pe Pp = X, a € GF(2™), and define

9a(p) = pla).
Theorem 6. The family
G1 = {9a(p) : 2 € GF(2™)},

18 an e-AU; family of hash functions where

D
G| =2™, [X[=2", [Y]=2" e==.

27”
Proof.
€ = max {g € G1 : g(z1) = g(z2)}]
T1#T2 \gll
= e HE € CF@™) iy (0) = P (@)}
1131?5I2 2m
= max |{O¢ € GF(2m) :pm‘wz(a) = OH
T1#C2 2m
D
>~ é?n—a
since any nonzero polynomial of degree D has at most D zeros. o

Note that this is a slightly weaker result than in [6], where the polynomials
have coefficients from GF(2™) and this does not change e. However, as we will
see, our approach will give a very eflicient evaluation.

A generalization of the above construction is the hash family G», constructed
as follows. Let the functions in G, map from X = P} to Y = GF(2™), let
p=(p1,p2,---,pn) € PR = X and define

G, 00 (P) = pl(al) +o pn(an)-

156

Theorem 7. The family

Ga = {gm,...,an (p) 0, .., 00 € GF(2m)a}

is an e-AUs family of hash functions where

|Go] =27, [X[=2"7, Y] =27, = —.

Proof. Similar to Theorem 6.]

The central topic is to have a fast evaluation. We will now describe a hash
family, denoted Gg[w, n, N], which has a fast evaluation. Then we show that this
hash family is an implementation of G; or G;, depending on a parameter choice
in Gglw, n, N].

Description of Gglw,n, N|: Fix w as the “word size” and let N = om/L
For n > N the hash function is defined to map from X = {0,1}*" to ¥ =
{0,1}*™. In the implementation there is an intermediate level using L arrays
with N = 2™/F words in each, so the hash function can be described to map

X ={0,1}*" = {0,1}*M - {0,1}¥™ = V.

The number N can be interpreted as “the number of buckets” and the number
L can be interpreted as “the number of rows of buckets”.

Each h € Gglw,n, N] is specified by a length n list where each entry contains
L integer numbers in [0, N — 1]. Denote this list by b = (ho, b1, ..., hp-1), where
hi = (B, ..., hE™1). The hash family Gglw,n, N] is given by a set of such lists,
which we call the set of all allowed lists. Different choices of this set will give
different hash families.

With a given hash function A = (ho,hy,...,hn-1), the cutput value h(z)
is defined as follows. Let z = zox; - -Tn.;, where each z; is a bit vector of
length w. Introduce L arrays of length N, called y;, 0 < k < L — 1. Initialize
yelj] to 0¥ for 0 < k < L —1and 0 < j < N — 1. Then, for each i, replace
yo[h?] with yo[R0] @ z;, y1[h}] with y1[h}] @ z;, continuing in this way, and finally
replacing yr,—1[hf "] with yz_1[hZ~'] @ 2. This first step has hashed the input
to the intermediate level of L rows of buckets, each containing N words. The
procedure for L = 2 is shown in Figure 2.

Next, for each array, we compress the array in the following way. In GF(2™/%)
we have a primitive element ~ which satisfies y™/* = g,,, / LoY™E gyt
go, where g; € GF(2). From j = N—2 down to m/L we add (xor) yx[j] to yx[7 —1]
for all ¢ such that g; = 1. Finally, set the output to be h(z) = yo - - - yp—1, where
y; denotes the content of the array (y;[0] - - - y:[m/L — 1]).

157

ce Wy, Wa, Wy

Fig. 2. A word is thrown into one bucket in each “row of buckets”, here L = 2.

Assuming a generated list h, we can give a pseudocode for the case L = 2
with y?/? = 4™/2=t 11 _for some integer b with 1 < b < m/2 — 1, as follows.

for j=0 to N—-2 do
yolsl =0, y[j]=0"
for 1t=0 to n—1 do
yolh?] = yolh{] & x;
nilhi] = nlhi] & z;
for j=N —2 to m/2 do
Yolj — 8] = wolj — b] @ yold), yoli —m/2] = yolj — m/2] & yoli]
nli = =wnli-donl), i —m/2l=unli-m/2 &yl
return Yo[Ofyo[l] -~ -yo[rn/2 = Uy [O)y: [1] - - -yn[m/2 — 1]

Observe that Gplw,n, N] can be evaluated efficiently using only simple in-
structions as load, store and xor. Next we prove equivalences between Gg[w, n, N|
and the hash families G; and 5. Let [z] denote the vector (zq,. .., zr_1), where
v# € GF(2™/L), and by convention ¥V ! = 0, such that z = 7% + ¥ 8 4+ +
y#-18L=1 ¢ GF(2™). Here 8 € GF(2™) and h(8) = 0 for some irreducible
polynomial h(x) of degree L over GF(2m/ 1),

Theorem 8. Let the set of allowed lists be
{(al, [@®), ..., [a"]), Yo € GF(2™)}.

Then the hash family Gplw,n, N| is equivalent to G, i.e., the Cartesian product
of w hash families G, as in Lemma 5.

Proof. The proof is in two steps.

1. The ith bit of each output word is only dependent on the ith bit of each
input word z; and independent of all the other bit positions in the input words.
Hence we can view the hash family Gglw,n, N] as a Cartesian product of w
hash families each having an input word size of one, as in Lemma 5. So w.lo.g
we assume w = 1.

158

2. Regard each array (of length 2™/%) as corresponding to an enumeration of
elements in GF(2™/L), ie., GF(2"/L) = 4%, 4,42, ...,v*""*~2,0} and entry
z; corresponds to element v*. View GF(2™) as a direct product of such subfields,
ie.,

GF(2™)=GF@2™") g 0 GF(2™L),

—

L

where each subfield is represented by one array. An element z € GF(2™) is repre-
sented by the vector z = (z20,...,21-1), Where ¥% € GF(2™/*). Putting an input
word z; (w = 1) in bucket z; means adding v* in the subfield, and hence, putting
an input word z; in buckets represented by [z] = (2¢,...,z1-1) means adding
z;z to the previous content of the buckets. Hence, the list ([a], [@?], ..., [a™]), for
a € GF(2™) means adding zoa+z1a2 +- - -+x,a™. The result is now represented
as powers of 7 in each subfield (array). In the last part, adding yx[4] to yelj —]
for all ¢ such that g; = 1 from j = N —2 down to /L simply means reducing the

powers of v to the basis {y™/L~1 ... ~,1}. Hence the output of Gg[w,n, N] is
Lotz 4 a0 € GF(2™), where GF(2™) = GF(2™ D). - ®GF (2™ F)
and GF(2™/") is represented using the basis {y™/L~!, ... ~4,1}. O

A similar result can be obtained for the family Go2. For example, let the set
of allowed lists be

{{({ar], laa]s . o [an]), Vou € GF(2™),1 <@ < n},

i.e., the set of all possible lists. Then Gp[w,n, N] is equivalent to GJ* with D = 1,
i.e., the Cartesian product of w hash families Go with D = 1.

5 Implementation and parameter choices

Clearly, the efficiency of the evaluation will depend on the choice of parame-
ters in the above description. Let us consider some different ways to implement
Gplw,n, N]. Note that the situation is very similar to Rogaway’s bucket hash-
ing. We can process word by word from input, or we can process bucket by
bucket. [urthermore, we can use a self~modifying code (the actual hash function
is implemented in the program code), or we can read the bucket/word locations
from a table in memory. The fastest choice is a self-modifying code processing
bucket by bucket. Then we can keep the current bucket in a register while pro-
cessing, requiring only one load and one xor instruction for each input word
and each row of buckets. Hence, for L rows this requires 2L simple instructions.
For further details we refer to [22].

Furthermore, the compression of the arrays means LNc¢ load, add and store
operations, where ¢ is the number of nonzero coefficients in the primitive polyno-
mial defining «y (this can usually be chosen to be 2). For n >> N the time to do
the compression part is hence negligible compared to the first part. Initialization
of the list h is done only once. Hence, when concatenating this hash function
many times using Lemma 3, the time to execute this part is also negligible.

159

For tabulating some values, we regard n = 8NV as being sufficient for consid-
ering the compression to be negligible in time. Also, the generation of the list
h is different depending on the actual choice of hash function. In all cases we
are aware of the fact that we need to concatenate a few, say 10, hash families
in order to make the time to process this part small. Alternatively, considering
multiple use, we can assume that the list » is generated once and then kept
fixed. We tabulate some values for different parameter values in Table 1. The
input size, the output size and N are given in number of words; € is the collision
probability; the key size is given in bits; and the time column gives the mini-
mal number of simple instructions per word for a self-modifying code processing
bucket by bucket.

[Hash function and parameters |[[Input size[Output size] e [Key size[Time]

Bucket hashing, n = 4096, N = 40 212 40 27201 94000 | 6
Bucket hashing, n = 4096, N = 200 212 200 27341 94000 6
G N=201=3 973 30 |27 30 | 6

Gl N=2¥ 1=4 213 40 2727 40 8
G.N=210 [=5 913 50 |27 s0 | 10
GLN=20 =7 213 70 257170 14
GILN=2® [=4 223 80 2-571 80 8

G, N=21 [=4 D =512 213 40 2731 640 8

Table 1. A comparison for some different parameter choices.

In order to process each simple instruction in at most one clock cycle (we
might execute several in parallel) on a usual processor, each reference to a mem-
ory location needs to be in the on-chip cache of the processor. Hence, for a
self-modifying code processing bucket by bucket, the input to one hash function
must fit the on-chip cache, giving restrictions on the input size and thus on
N. Examining the sizes of the on-chip caches of todays processors, N = 210 is
probably about the maximum size of the arrays under these circumstances.

Note the fact that some properties of Rogaway’s bucket hashing and the
proposed techniques are different and hence the techniques are not directly com-
parable. Especially, G; gives a much higher compression, i.e., input size/output
size is much smaller. This means that including G, it is enough to concatenate
two hash families using Lemma. 4 to get the desired output size, whereas bucket
hashing requires many concatenations to obtain the desired output size. This
can be a problem for large messages since producing a large hash output that
has to be written in memory and then further processed will produce cash-misses
etc.

160

6 The universal hash approach in practice

Up to this point, we have only considered how to construct the e-AU, hash family.
This short section overviews how to use the e-AU; hash family to produce an
e-ASU; hash family that gives an authentication tag (MAC) and also have the
properties mentioned in Section 1.

The usage of e-ASU; families of hash functions in the described way applies
to the case of sending/storing one message with fixed length (variable length can
easily be included [22]). Sometimes one is interested in multiple use, i.e., send-
ing/storing many message where each message needs individual authentication.
In the unconditionally secure approach, the solution is to add new random key
bits for each additional messages to be hashed. If he, () is the e-ASU, hash func-
tion, the MACs (21, 22, . . .) for a sequence of messages s1, 32, . .. can be produced
by

21 = h'el (51)7 22 = hel (32) + ez, 73 = hel ('53) +es, ...,

where eg, es, ... are randomly chosen keys of same length as the MAC. It can
be proved [28] that this procedure gives the same P; and Ps as for the single
message case.

In some cases, the number of messages is limited and then it is preferable to
keep the unconditionally secure approach. In other cases, the set {es,es,...} of
randomly chosen keys is too large to be kept secret in an unconditionally secure
way. Instead, one uses a pseudo-random number generator to produce this set.
In such a case, some of the motivation to consider e-AU, hash families with a
short key is lost, since the same psendo-random number generator can be used
to produce the hash function itself.

A complete e-ASU, hash family obtained by Lemma 4 can be described as
follows. Let z be the message that is to be hashed. Divide z into suitable sized
substrings x = z1z9 - - - 5. Apply a secretly chosen e-AUs hash function h4 and
calculate y; = hi(x;), 1 < i < n. For the obtained string ¥y = y1y2 - - yn (noW
of modest size) we have secretly selected another ¢-ASU, hash function hy and
calculates w = hs(y). In an unconditionally secure authentication code we would
select a secret key e and form a MAC of the form MAC = w + e. For the next
message, we use a new value of e, etc.

If we want to produce the sequence of keys using a pseudo-random number
generator we can do as follows. We have a counter, call it ent, which is initially
zero. This counter is used together with a cryptographic primitive, e.g. RC5 [23],
using a secret key e. The MAC for the message is given by

MAC = w + RC5, (cnt),

together with the used value of the counter. Finally, ¢nt is incremented.

Ezample: As a particular example for w = 32, choose G; with N = 1024 and
L = 7 as the first hash family. The key e; to select the hash function is 70 bits.
We have 8092 word input, producing a 70 word output and € = 2757, As the
second hash family, choose the polynomial evaluation hash [6, 14] over GF(27°).
Our key e for this hash family is 70 bits as well.

161

Divide the input z in 32Kbyte blocks £ = z;22 - - x,,. Apply the methods
described in Section 4 on each block wx;, receiving n 70-word blocks called y;,
by y; = ge, (:). Then form the string y = y1y2 - -y, and interpret this as a
polynomial over GF(27). This polynomial, call it y(z), will then have degree
32n. Evaluate the polynomial in es, obtaining w = y(ez). Then calculate the
MAC as MAC = w + e3, where e3 is a third 70 bit key. Finally, we output
{z,MACQC). The value of ¢ will depend on n, but for input sizes smaller than
8Mbyte we have e < 2756,

Alternatively, using RC5 in multiple use we calculate the MAC as MAC =
w + RC5,, (ent), output (x,ent, MAC), and increment the counter.

References

1. V. Afanassiev, C. Gehrmann, B. Smeets, Fast message authentication using effi-
cient polynomial evaluation, Proceedings of Fast Software Encryption Conference
’97, to appear.

2. M. Bellare, R. Canetti, H. Krawczyk, Keying hash functions for message authen-
tication, Lecture Notes tn Computer Science 1109 (1996), 1 15 (CRYPTO ’96).

3. M. Bellare, R. Guérin, P. Rogaway, XOR MACs: New methods for message au-
thentication, Lecture Notes in Computer Science 963 (1995), 15-28 (CRYPTO
'95).

4. M. Bellare, J. Kilian, P. Rogaway, The security of cipher block chaining, Lecture
Notes in Computer Science 839 (1994), 341-358 (CRYPTO ’94).

5. J. Bierbrauer, T. Johansson, G. Kabatianskii, and B. Smeets, On families of hash
functions via geometric codes and concatenation, Lecture Notes in Computer Sci-
ence, 773 (1994), 331-342 (CRYPTO ’93).

6. B. den Boer, A simple and key-economical unconditionally authentication scheme,
Journal of Computer Security, 2 (1993), 65-71.

7. A. Bosselaers, R. Govaerts, J. Vandewalle, Fast hashing on the Pentium, Lecture
Notes in Computer Science 1109 (1996), 298--313 (CRYPTO ’96).

8. J.L. Carter, M.N. Wegman, Universal classes of hash functions, J. Computer and
System Sciences, 18 (1979), 143-154.

9. H. Dobbertin, Cryptoanalysis of MD5 compress, presented at the rump session of
EUROCRYPT'96.

10. E.N. Gilbert, F.J. MacWilliams, and N.J.A. Sloane, Codes which detect deception,
Bell Syst. Tech. J., 53 (1974), 405-424.

11. S. Halevi, H. Krawczyk, Software message authentication in the Gbit/second rates,
Proceedings of Fast Software Encryption Conference 97, to appear.

12. T. Helleseth and T. Johansson, Universal hash functions from exponential sums
over finite fields and Galois rings, Lecture Notes in Computer Science 1109 (1996),
31-44 (CRYPTO ’96).

13. T. Johansson, A shift register construction of unconditionally secure authentication
codes, Designs, Codes and Cryptography, 4 (1994), 69-81.

14. T. Johansson, G. Kabatianskii, B. Smeets, On the relation between A-codes and
codes correcting independent errors, Lecture Notes in Computer Science, 765

(1994), 1-11 (EUROCRYPT"93).

15

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

162

. G. Kabatianskii, B. Smeets, and T. Johansson, On the cardinality of systematic
authentication codes via error correcting codes, IEEE Trans. Inform. Theory, 42
(1996), 566-578.

H. Krawczyk, LFSR-based hashing and authentication, Lecture Notes in Computer
Science, 839 (1994), 120-139 (CRYPTO ’94).

H. Krawczyk, New hash functions for message authentication, Lecture Notes in
Computer Science, 921 (1995), 140-149 (EUROCRYPT ’95).

B. Preneel, Cryptographic hash functions, European Transactions on Telecommu-
nications, 5 (1994), 431-448.

B. Preneel, P. van Qorschot, MDx-MAC and building fast MACs from hash func-
tions, Lecture Notes in Computer Science, 963 (1995), 1-14 (CRYPTO ’95).

B. Preneel, P. van Qorschot, On the security of two MAC algorithms, Lecture Notes
in Computer Science, 1070 (1996), 19-32 (EUROCRYPT ’96).

R.L. Rivest, The MD5 message-digest algorithm, Request for Comments 1321,
Internet Activities Board, Internet Privacy Task Force (1992).

P. Rogaway, Bucket hashing and its application to fast message authentication,
Lecture Notes in Computer Science, 963 (1995), 29-42 (CRYPTO ’95).

B. Schneier, Applied Cryptography, John Wiley & Sons (1996).

V. Shoup, On fast and provably secure message authentication based on universal
hashing, Lecture Notes in Computer Science, 1109 (1996), 313-328 (CRYPTO
'96).

G.J. Simmons, A game theory model of digital message authentication, Congr.
Numer., 34 (1992), 413-424.

(G.J. Simmons, Authentication theory/coding theory, in Lecture Notes in Computer
Science, 196 (1985), 411-431 (CRYPTO ’84).

D.R. Stinson, Universal hashing and authentication codes, Codes, Designs and
Cryptography, 4 (1994), 337-346.

M.N. Wegman and J.L. Carter, New hash functions and their use in authentication
and set equality, J. Computer and System Sciences, 22 (1981), 265-279.

	Bucket Hashing with a Small Key Size
	1 Introduction
	2 Universal hash functions and authentication codes
	3 Bucket hashing
	4 Bucket hashing with a small key size
	5 Implementation and parameter choices
	6 The universal hash approach in practice
	References

