
Stronger Security Proofs for
RSA and Rabin Bits

R. FISCHLIN and C.P. SCHNORR

Fachbereich Mathematik/Informatik
Universitat frankfurt

PSF 111932
60054 Frankfurt/Main, Germany

Abstract. The RSA and Rabin encryption function are respectively
defined as E N (z) = ze mod N and E N (E) = z2 mod N , where N is a
product of two large random primes p , q and e is relatively prime to
(p (N) . We present a much simpler and stronger proof of the result of
ALEXI, CHOR, GOLDREICH and SCHNORR [ACGS88] that the following
problems are equivalent by probabilistic polynomial time reductions: (1)
given E N (z) find x; (2) given E N (z) predict the least-significant bit
of J with success probability i + h, where N has n bits. The new
proof consists of a more efficient algorithm for inve rhg the RSA/Rabin-
function with the help of an oracle that predicts the least-significant bit
of Z. It yields provable security guarantees for RSA-message bits and for
the RSA-random number generator for moduli N of practical size.

1 Introduction

Randomness is a fundamental computational resource and the efficient genera-
tion of provably Secure pseudorandom bits is a basic problem. YAO [Y82] and
BLUM, MICALI [BM84] have shown that perfect random number generators
(RNG) exist under reasonable complexity assumptions. Some perfect RNG's
are based on the RSA-function E N (z) = xe mod N and the Rabin-function
E N (z) = x 2 mod N, where the integer N is a product of two large random primes
p, q and e is relatively prime to p(N) = (p - 1)(q - 1). The corresponding RNG
transforms a random seed xo E [l, N) into a bit string b l , . . . , 6, of arbitrary
polynomial length m = no(') according to the recursion xi := E ~ (x i - 1) , bj :=
xi mod 2, where N has n bits. The security of these RNG's is related to a result
of [ACGS88] that the RSA/Rabin-function can be inverted in polynomial time
if one is given an oracle which predicts from given E N (z) the least-significant bit
of 2 with success probability f + &. While the ACGS-result shows that the
RSA/Rabin RNG is perfect in an asymptotic sense the practicality of this re-
sult has been questionable as the transformation of attacks against these RNG's
into a full inversion of the RSA/Rabin-function (resp. the factorization of N) is
rather slow.

The main contribution of this paper is a much simpler and stronger proof
of the ACGS-result. The new proof gives a more efficient algorithm for the in-
version of the RSA/Rabin-function if one is given an oracle that predicts the

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT '97, LNCS 1233, pp. 267-279, 1997.
0 Spnnger-Verlag Berlin Heidelberg 1997

268

least significant message bit. While the new method is primarily of theoretical
interest, it yields a security guarantee for moduli N of practical size. We extend
our results to the Rabin-function E N (z) = x 2 mod N . The reduction from EN-
inversion, resp. factoring N , to prediction is particular efficient for the absoiute
Rabin-function Ef ; (x) = 12' mod NI, where lyl = min(y, N - y).

Notation. Let N be product of two large primes p , q. Let Z N = Z / N Z be the
ring of integers modulo N , and let Z> denote the subgroup of invertible elements
in E N . We represent elements I E Z N by their least nonnegative residue in the
interval [o, N) , i.e., Z N = [o, N) . w e let [Q Z] N E [o, N) denote the least non-
negative residue of QZ(modN). We use [Q Z] N for arithmetic expressions over Z
while the arithmetic over Q , z E Z N = [0, N) is done modulo N . Let n be the bit
length of N , 2"-' < N < 2". For z E Z we let !(z) = z mod 2 denote the least-
signaficarrt bit of 2. Let e be relatively prime to p(N) = (p - l) (q - 1), e # 1. The
RSA cryptosystem enciphers amessage z E ZN into EN(z) = ze mod N . Let 0 1
be an oracle running in expected time T which, given E N (x) and N , predicts the
least-significant bit !(z) of 2 with advantages: PrZ,w[O1(EN(x)) = f(z)] 2 ;+E,

where the probability refers to random z ER [0, N) and the internal coin tosses
w of the oracle. We assume that the time T of the oracle also covers the n2 steps
for the evaluation of the function E N . Throughout the paper we assume that E - ~

and n are powers of 2, n 2 2'. We let lg denote the logarithm function with base
2. For a finite set A let b ER A denote a random element of A that is uniformly
distributed. All time bounds count arithmetic steps using integers with lg(ne-l)
bits. We use integers of that size for counting the votes in majority decisions.

Our results. Consider the problem to compute from EN (z) and N the message
x E ZN with the help of the oracle O1 but without knowing the factorization of
N . The new method inverts EN by iteratively tightening approximations uN of
random multiples [m] N with known multiplier a via binary division. The basic
idea is that [faz]N = a [m] N for even [Q Z] N , [! jQX]N = 3 ([a z] N + N) for
odd [U Z] N . Thus we get from a rational approximation uN to [QZ:], and the
least-significant bit l (a z) a tighter approximation to [f a z] ~ :

Without knowing z we get $ (u + t (~ i)) N from the multiplier a, the previous
approximation uN and E N (z) . This in turn yields E N (Q Z) = EN(a)EN(z) and
a guess O i (E ~ (a z)) for ~ (Q z) . Binary division without an oracle has already
been used by GOLDWASSER, MICALI, TONG [GMT82]. The method of binary
division is more efficient than the gcd-method in [BCS83], [ACGSSS]. In order to
decipher E N (z) it guesses the least-significant bits and approximate locations of
two random multiples [QI]N, [b z] ~ whereas the gcd-method requires four random
multiples. Most importantly, the number of oracle calls becomes nearly minimal.

In section 2 we present our basic algorithm that inverts the RSA-function EN
in expected time O (n 2 ~ - 2 T+n2s-6), where T is the time and s the advantage of
oracle 01. The expectation refers to the internal coin tosses of 01 and of the in-
version algorithm. This greatly improves the [ACGS88]-time bound O(n3C8 T)
for oracle RSA-inversion. The new time bound differentiates the costs induced by
the oracle calls and the additional overhead. The oracle calls induce 0(n2e-' T)

[$QZ]N - a(. + l(QZ))N = 4 ([UZ]N - U N).

269

steps, we call the O (n 2 ~ - 6) other steps the additional overhead. We generalize
our security result to the j-th least-significant message bit for arbitrary j. This
generalization affects only the additional overhead of EN-inversion, the number
of oracle calls remains unchanged.

In section 3 we introduce the subsample majority rule, a trick that improves
the efficiency of majority decisions. Suppose we are given pairwise independent
0,l-valued votes that each has an advantage E in predicting the target bit t (a , z) .
A large sample size rn is necessary in order to make the error probability 5
of the majority decision sufficiently small. To reduce the computational costs of
the large sample we only use a small random subsample of it. While the random
subsample induces only a small additional error probability the time for the
subsample majority decision reduces to the size of the small subsample. The
large sample is only mentally used for the analysis, it does not enter into the
computation. Using this trick we gain a factor & in the number of oracle calls
and in the time for the inversion of EN. The reduced number of oracle calls is
optimal up to factor O(1g n).

In section 4 we process all possible locations for [az]N, [b z] ~ much faster
than trying them separately. This reduces the additional overhead in the time
for RSA-inversion to O (n 2 ~ - 4 lg(nE-')).

In section 5 we give conclusions for the security of RSA-message bits and
of the RSA-random number generator for moduli N of practical size. These
conclusions are preliminary as the additional overhead can be further reduced.

In section 6 we extend the oracle inversion algorithm to the Rabin-function
EN and we derive a security guarantee for the x 2 mod N generator under the
assumption that factoring is hard. The oracle inversion of the absolute Rabin-
function is as fast as that of the RSA-function . For the centered Rabin-function
the inversion runs in time O (~ E - ~ lg(na-')T). The latter improves the previous
time bound O(n3&-"T) due to [VV84] in connection with [ACGS88].

2 RSA-inversion by binary division

We introduce a novel method for inverting the RSA-function without know-
ing the factorization of N if one is given an oracle 01 that predicts the least-
significant message bit with non-negligible advantage E . The algorithm RSA-
inversion is a simple version of the new method, that will be made more effi-
cient by subsequent modifications. In order to invert E N (z) it picks two ran-
dom multipliers a, b and guesses the least-significant bits and the approximate
locations for the message multiples [a X] N , [b z] ~ . For at := 2-, mod N it iter-
atively constructs rational approximations u t N so that l [u t x] ~ - utNl 5 3
for i = 1, ..., n. To this end it uses the method of binary division explained in
the introduction. From the approximation unN to [anz]N we get the message
2: = a,' LunN + f l mod N . The main work is to determine the bits l (u t z) by
majority decision using the oracle 01.

The majority decision for t (a ,z) uses multipliers at + iutvl + b that are
pairwise independent. Recall that the arithmetic on a , b , z, at is done modulo N .

270

The algorithm determines an integer wt,j that most likely satisfies the equation
(at + b) x = [a t z] ~ + i [a t - l z] ~ + [b x] ~ - w t , i N , in which case we call wt,j
correct. The i-th measurement guesses t (u t z) by evaluating .! for both sides of
the latter equation. We guess t for the left hand side via the oracle 01 and we
use that the right hand side is linear in l (u t z) . The majority decision performs
m = min{2t,2n}C2 measurements, where m and the set A, of integers i is
chosen as to optimize the trade-off between error probability and efficiency of
the majority decision. The use of pairwise independent multipliers for majority
decision is a crucial contribution of [ACGS88].

RSA -inversion

1. INPUT E N (z) , N
t := 0
guess rational integers

Guess the least-significant bits .t(az), t (bz) , uo := a , uo := u.

t := t + 1, at := aat-l mod N , ut := f(ut-, + t(a,-lz)),
m := min{2', 2 n } ~ - ~ .
A , := {i I 11 + 2il 5 m}, wt,, := Lut + iut-1 + vJ for all i E A,.

Maioritu decision

(t is the stage), pick random integers a , b ER Zk c [0 , N) ,
satisfying

l[az]N - ~ N I 5 $ N ,
u E E;is [o, 4 ~ - 3) , w E 4 [o, 4 ~ 1)

~[bz]N - ~ N I F QN.

2. WHILE t < n DO

€(at%) := [0 if a 5 and 1 otherwise 1 END while
3. O U T P U T z := a;' LunN + J mod N

Correctness. If e (a t z) is always correctly determined the rational approxima-
tion utN to [u t z] ~ tightens from stage t - 1 to stage t by a factor f . As

$ ([u t - l z] ~ + N) for odd [a t - l z] ~ . Hence
at = fu t -1 mod N we have [u t z] ~ = q[at-lz]jv 1 for even [at-lzljv, [a t z] ~ =

[W I N - utN = [atzljv - +cut-1 + t (a t - , z)) N = $ ([U t - l z] N - u t - l N) . (1)

Probability of success. We call wt,; correct if 0 5 [a t z] ~ + i [u t _ 1 2] ~ + [b z] ~ -
wt,jN < N . Correct wt,i satisfy the equation (as N is odd we have -wt,jN =
wt,j mod 2) : .t((at t iut-l + b) z) = e(utz) + iP(ut-lz) + t(bz) + wt,j mod 2.
In the majority decision we replace in this equation l ((a t + iat-1 + b)z) by
O ~ (E N ((U ~ i- iat-1 + b) z)) , and we determine t (a t z) so that the equation holds
for the majority of the i E A,,, . The algorithm succeeds if step 1 guesses correct-
ly and if the majority decisions for . t (atz) are all correct. In this case we have
I [u , ~] N - unNI 5 $& < $ and thus Q,X = Lu,N + $J mod N and the output
is correct. All probabilities refer to the random pair (a, b) ER (Z&)2 and to the
coin tosses of the oracle. We use the conditional probability for the case that we
are in the right alternative, where step 1 guesses correctly and the bits t (atz) of
previous stages have been correctly determined.

271

Error probabili ty of wt,;. Let us denote w;,; = ut + iut-1+ u so that Wt, i =
Lwi,iJ. In the right alternative we have by iteration of equation (1) [a j x] ~ -
ujN = 2-j(ax]^ - uN) for all j 5 t . Therefore and since 2-ts211 + 2a'l 5 1 for
i E A, we have

Hence wt,i is correct except that there exists an integer between w:,;N and
[Q t z] ~ + i[Qt-~z]nr + [b x] ~ . Therefore wt,; errs with probability a t most f . By
using the rn integers i E A, instead of i = 1, ..., rn we save a factor 2 in lil and
in the error probability of wt, j .

Error probabilitg of the m a j o r i t y decision. The multipliers (i + i)a + b
are pairwise independent for l iJ < f min(p, q) since the matrix of the ZN-linear

transformation [;: t T i] [;] has determinant j - i # 0 mod N and (Q, b)

is random in (Zth)2. A similar argument shows that the errors of the wt,; for
i E A, are pairwise independent if we are in the right alternative. The i-th
measurement is correct iff

I [a t r] ~ + i [a t - l ~] ~ + [b z] ~ - W' t , * . N (< - ' (2-t~211 8 + 2il+ l) N 5 i N .

0 1 (E N ((a t + iat-1 + b) x)) = [(atz) + i l (a t - l x) + t (bz) + wt,; mod 2.
This is the case if the oracle guesses correctly and wt,j is correct. The error of
the i-th measurement can be dominated by 0, l-valued random variables X; with
E(Xi1 = E[O i (E ~ ((a t + & - I + b) z)) # [((at + i ~ t - 1 + b)z)] + E[wt,i errs]
so that the Xj are pairwise independent for i E A,. Hence E[X;] 5 -
$s, ~ a r [~ ;] 5 f .

A majority decision is correct iff the majority of the rn measurements is cor-
rect. A majority decision errs only if 6 xi Xi - p 2 a&, where p := k xi E[Xi].
We apply Chebyshev's inequality to the m pairwise independent error variables
X; with a' E Am.

Chebyshev 's inequality.
Pr[11 Cj xj - p I 2 $ E] 5 xi ~ a r [~ j] (r n : ~) - ~ 5 w. 4

m

By rn = mir1{2~, 2 n } ~ - ~ the majority decisions for t(atx) errs with probability
for t 5 l+ lg n and with probability & for t 2 l+lg n. The majority decision

f o r t = 1, ..., nhaveerrorprobabilityCt,l - &+(2n- lgn) / (Sn) 5 $ + $ = 3.
Running time. We give an upper bound for the expected number of steps
required to compute x when given E N (z) and N . We separately count the steps
of the oracle calls and the other steps which form the additional overhead.

The oracle is queried about EN((^^ + iat-1 + b)z) for t = 1, ..., n for the
i E A,,,. The oracle calls depend on a, b but not on u , v , i!(ax), t(bz). So we keep
Q, b fixed while we try all possibilities for u , ..., t (b z) . As the algorithm has success
rate and calls the oracle at most m 5 2 n c 2 times per stage, there are in total
at most 3 . 2 n2&-2T oracle calls.

Each majority decision contributes to the additional overhead at most 2 n ~ - ~
steps that are performed with all oracle replies given. The algorithm does not
need the exact rational ut + u and merely computes wt,; = [ut + u + iut-11 using

272

lg(ns-l) + O(1) precision bits from ut + v and i u t - l . We see that the additional
overhead is a t most the product of the following factors

1. # of quadruples (u, u, t (a z) , t (bz))
2. # of stages n
3. # of steps per majority decision
4. the inverse of the success rate 3

42.5-4 22

2 n ~ - ~

Hence the additional overhead is at most 3 . 2 7 n 2 ~ - 6 , and thus the expected time
for the inversion of EN is 3n2€-'(2T + 2 7 ~ - 4) .

Using an oracle for the j - th least-significant message bit. The j-th least-
significant message bit tj (.) is called secure if EN can be inverted in polynomial
time via an oracle Oj that predicts tj (x) when given EN(^). Let oracle Oj predict
t j (x) with advantage E in expected time T. With the oracle Oj the RSA-inversion
proceeds in a similar way as for j = 1. It guesses initially Lj (ax), Lj (bz) E [0,23) ,
the integers that consist of the j least-significant bits of [a z] ~ , [b .] ~ . A main
point is that the majority decision for .$(atz) takes into account carry overs
from the j - 1 least-significant bits. The equation

~ j - l ((a t + iat-1 + b) x) + 2j - ' t j ((a t + i a t - l + b)z) = Lj-l(atz) +
i L j - 1 (~ t - 1 z) + L j - 1 (b z) + 2 ~ - ~ (l j (a t z) +ik' j(at-lx)+!j(bz)) -wt , iN mod2j
holds for correct wt,i. In order to predict t j (a t r) we replace in this equation
fj((at + ia t -1 + b)z) by 0 j (E ~ ((a ~ + i a t - l + b) z)) and we recover Lj-l((at +
ia t -1 + b) ~) , Lj-l(atz) and Lj-l(at-1~) recursively from the initial values
Lj (az) , Lj (bs), the approximate locations uN, vN and N . We choose lj (at.)
so that the equation holds for the majority of i E A,.

The time of the inversion algorithm does not change from the case j = 1 to
arbitrary j, except that the factor under 1. increases to 22 j42~-4 as we have to
guess Lj (az) , L j (bz) E [0, 2 j) . Now the time bound for RSA-inversion via Oj is
O(n2E-2(T + 2 ' j ~ - ~)) while it is O(24jn3~-8T) for the ACGS-algorithm. There
is a double advantage in the new time bound. The factor 24j decreases to 22j and
it only affects the additional overhead. The additional overhead can be reduced
by the method in section 4 to O (n 2 ~ - 4 lg(n€-')).

3 From pairwise to mutually independent votes.

We introduce the subsample majority decision, a trick that reduces the number
of oracle calls for RSA-inversion by a factor lg n/n. Suppose we have m pairwise
independent 0,l-valued random variables (votes) for i E A, that have ad-
vantage E in predicting the target bit l(atz). The error probability of a majority
decision is A, so we need a large m to make this error small. To reduce the
computational costs of the large sample we only use a small random subsample
consisting of m' << m votes that are selected uniformly at random. Now the votes
of the subsample are mutually independent, even though the original votes are
merely pairwise independent, and their advantage E' is close to E . While the sub-
sample induces only a small additional error probability exp(-2m'~'') the time

273

for the subsample majority decision is only rn‘. The large sample only appears in
the mental error analysis, it does not enter into the computation. We can even fix
a random subset A;! c A, for all SMAJ-calls, where A, := {i 1 11 + 2il 5 m}
as in section 2. Theorem 3 in section 4 uses such a fixed subset Am!.

Subsample Majority Decision (SMAJ). Pick (v (l) , ...] ~ (r n ’)) ER (A,),’
and guess that l(atz) is [Cgl V,(;) 2 $1.
As in section 2 let X; be the error of the vote V; so that E[Xi] 5 4 - : E .

We denote p = A CiEA, E[X;] and p’ = CiEA, X i . Consider the case that
1p’ - pi < i e which by Chebyshev’s inequality holds except with probability
-9 5 5. The SMAJ-rule errs in this case only if 5 xzl X, (q 2
p’ + f ~ . For fixed values X ; with i E A,,, the variables . . . , Xv(,,.,t) are
identically distributed and mutually independent with mean value p’. So we use

Bernstein’s law of large numbers. For random (~ (l) , ..., v(rn’)) E R (Am)”” :
P r [s c$, x,(i) 2 p I 1 + 5 & 1 < exp(-2(?m 1 / 2 6)).

Propositionl.
E[Xi] 5 3 - %E then SMAJ errs with probability at most

If the errors X ; of the votes are pairwise independent and
1 1 2 4- exp(-qm E).

Proof. If 5 Ezl x,(i) 2 f we either have lp - p’l 2 a& or f Ezl X,(i) >_
PI++&. The first event has probability 5 and the second 5 exp(-2m’(;~)~).

RSA-inversion using the SMAJ-rule. Let us modify the stages t 2 4 + l g n
of RSA-inversion so that a t these stages the SMAJ-rule is used with m = 2 4 ~ - 2 n
and the multipliersat+iat-I+b with i E A , -a t stages t 5 3+lgn the set Am
is too small for SMAJ. We apply Proposition 1 with this rn and m‘ = 2 ~ - ’ lg n.
Then ;rn’s2 = lg n > 1.4426 Inn, and thus a single SMAJ-call at stage t 2 4+lg n
fails with probability 5 + n-1.4426 < $ for n 2 2’. All SMAJ-calls together
fail with probability = 5. As the number of oracle calls and the additional
overhead decrease by a factor lg n / n we get

+

Theorem2 Using an oracle 01 that, given E N (x) and N , predicts e (x) with
advantage E in time T, the RSA-function EN can be inverted in expected time
gn(ign) 6 - y ~ + 2 6 ~ 4) .

A main point is that the number of oracle calls for RSA-inversion is at most
9nE-2 lg n, whereas the ACGS-algorithm requires (64)3 gn3~-8 oracle calls,
where (64)3$ M 2l“’. We can further reduce the factor 9 in Theorem 2 by
guessing upon initiation closer approximations uN, v N - this merely increases
the additional overhead. On the other hand the number of oracle calls is nearly
minimal.

Oracle optimality. Goldreich [G96] observed that the number 9n&-’ lg n of
oracle calls in Theorem 2 is minimal up to a factor O(1gn).

274

4 Processing all possible locations together.

We sketch a first step in reducing the additional overhead in the time for FZSA-
inversion. So far RSA-inversion processes all pairs of locations u N , vN separately.
Together these pairs can be processed much faster. We simulate the algorithm
RSA-inversion for fixed a, b and for all u E $ [O , ~ E - ~) , v E $ [0,4~-') with
all oracle replies Oi,t := 0 1 (E ~ ((a ~ + iat-1 + b) z)) given. The majority decision
sets l (a t z) to 0 iff the equation (2) holds for the majority of the i E A;,.

Oi,t = i l (a t - l z) + l (b z) + [ut + u + iu t - l] mod 2. (2)

The main work of RSA-inversion is to compute for all u E & [0,2't~e'~) , ut-1 :=
2ut mod 1, all v , all t and 1 = (l l , ! ~) := (l(at-lz),!(bz)) E (0, 1}2:

r (G , v , l , t) := # { i ~ AA, I equation (2) holds with ii = u t , v , l , t) .

This requires some technical algorithms and a tedious analysis that are contained
in the full version of this paper. A main point is to separate in equation (2) the
influence of ut + v - we only use a few precision bits of ut + v - and that
of u t - l . A key observation is that counting the i that satisfy equation (2) can
easily be done simultaneously for ut-l and ut-l + f if we separately count even
and odd i . By exploiting and extending these ideas we can prove

Theorem 3. I f all pairs (u, v) are processed together, the additional overhead in
RSA-inversion requires ot most expected time O (~ Z ~ E - ~ lg(nc-l)).

The additional overhead in Theorem 3 can be further reduced. We can discard
all pairs (u, v) for which r (u , v , 1 , t)/m' is not in the correct range of numbers
that differ from & E by at most ; E , where E is the exact advantage of 01. Thus
we can restrict the set of pairs (u, v) to a small subset of f [0 , 4 ~ - ~) x 5 [0 ,4~ - ') .

5 Security of RSA-message bits and of the RSA-RNG.

An important question of practical interest is how to generate efficiently many
pseudorandom bits that are provably good under weak complexity assumptions.
Provable security for the MA-RNG follows from Theorems 2 and 3. Under the
assumption that there is no breakthrough in algorithms for inverting the whole
RSA-function Theorems 2 and 3 yield provable security for RSA-message bits
and for the RSA-RNG for moduli N of practical size - n = 1 000 and n = 5 000.

Practical security of RSA-message bits. For given E N (x) it is impossible
to predict [(z) with advantage within one MIP-year (3.16. 1013 instructions)
or else the RSA-function EN can be inverted faster than is possible by factoring
N using the fastest known algorithm. For this we choose T := 3.16 - n :=
1 000, E := A. As the 0-constant in Theorem 3 is about 21°, Theorems 2
and 3 yield a time bound 3 . loz2 for factoring N that is clearly smaller than

275

1025.5 w L";, 1.91, the time for the fastest known factoring algorithm, see the
next paragraph.

Each of the 10 least-significant RSA-message bits is individually secure for
RSA-moduli N with 1 000 bits. This is because we can - see the end of section
2 - invert EN in time 9 n l g n ~ - ~ T + O (n ~ e - ~ lg(ne-')) using an oracle Oj that
predicts the j-th message bit t?j (x).

On the other hand the ACGS-result does not give any security-guarantee for
moduli N of bit length 1 000, not even against one-step attackers with T = 1,
as 21~~710003100~ M 8.5.1030 >> 1025.5.

The fastest known factoring method. The fastest known algorithm for fac-
toring N or for breaking the RSA cryptoscheme requires at least L ~ [i , 1 . 9] ' + ~ (~)
steps, where L N [v , c] = exp(c.(InN)"(lnlnN)'-"). L"$, 1.91 is the conjectured
run time of the number field sieve method with Coppersmith's modificat,ion us-
ing several number fields [BLP93]. Factoring even a non-negligible fraction of
random RSA-moduli N requires LN [i ,1.9] steps by this algorithm.

Practical and provably secure random bit generation. Let N = p . p be
a random RSA-modulus with primes p , q , e an RSA-exponent and let zo ER
[0, N) . The RSA-RNG produces from random seeds (20, N) the bit string b =
(b i , . . . bm) as

x; = mod N , bj = xi mod 2 for i = 1 , . . . m.

A statistical test A rejects b at tolerance level E if for random a Efi {0,1}"
I Prb[A(b) = 11 - Pr,[A(a) = 11 I 2 E .

A tolerance level 6 is considered to be sufficient for practical purposes.

Theorem4. Let the RSA-RNG produce from random seeds (20, N) of length
2n an output b = (b l , ...) bm) of length rn. Every statistical test A, that rejects
the output at tolerance level E , yields an algorithm that inuerts the whole RSA-
function EN in expected time 9nlgn (m/e)'T(A) + O (n ' (r n / ~) ~ lg(nm/&)) f o r
a non-negligible fraction of N .

Proof, Suppose the bit string b E (0, l}m is rejected by some test A in time
T(A) and tolerance level E . By Yao's argument, see eg. [K97, section 3.5, Lemma
Pl] , and since the distribution of b is shift-invariant, there is an oracle 01 , which
given E N (z) and N , predicts !(r) in time T (A) + mn2 with advantage Elm for
a non-negligible fraction of N . By Theorems 2 and 3, and assuming that T(A)
dominates mn2, we can invert EN in the claimed expected time.

Corollary 5 . The RSA-random generator produces for n = 5 000 from random
seeds (20, N) of bit length lo4 at least r n = lo7 pseudorandom bits that withstand
all statistical tests doable with the 1995 world computing power at tolerance leuel A, or else the whole RSA-function EN can be inverted in less than L N [$, 1.91
steps for a non-negligible fraction of N .

276

Proof. ODLYZKO rates the 1995 yearly world computing power to 3.10' MIP-
years, where a MIP-year corresponds to 3.16 . 1013 instructions. Then 3 * lo8
MIP-years correspond to loz2 instructions. By Theorem 4 with a O-constant of
2" we can invert EN using less than lo4' steps while L":, 1.91 > 3.7. lo5'. 0

6 The z2 mod N generator and the Rabin-function.

The x2 mod N generator has been proved to be secure under the assumption
that factoring integers is hard. Here we show that this even holds for moduli
N of practical size. The x2 mod N generator transforms a random seed (t o , N)
into a bit string (b l , ..., b,) as
Here EN is the Rabin-function, N is a random Blurn integer - a product of two
primes p , q that are congruent 3 mod 4 - and xo is a random number in Z N .
We distinguish three variants of this generator, the absolute, the centered and
the uncentered RNG, according to the following variants of the Rabin-function:

xi := E ~ (z , - l) , bi :=l(z i) for i = 1, ..., m.

-- the absolute Rabin-function E&(x) = 1x2 mod NI E (0, N / 2) ,
- the centered Rabin-function E&(z) = z2&N E (- N / 2 , N / 2) ,
- the uncentered Rabin-function Ej$(x) = x 2 mod N E [0, N) .

The centered function E& outputs x 2 d N , the absolute smallest residue
of z2 modulo N in (- N / 2 , N / 2) whereas E); outputs the residue in [O , N) .
Historically the uncentered RNG has been introduced as the x 2 mod N generator
[BBSSS]. However, the absolute and the centered RNG coincide and are more
natural than the uncentered RNG. We note that

where IyI =min(y, N - y) for y E ZN = [0, N) . Thus I!?& extends the output of
Ej; by one bit, the sign.

J%(x) = *%($I, &(x) = lEk(x)l, Ef;(x) E {%(x), %(x) + N) ,

The absolute and the centered RNG coincide in the output. Let xf , x;, X;

denote the integer x; in the i-th iteration with E&, E k , E); and input xo = x: =
x$ = xl;. Using E&(x) = f E & (x) we see by induction on i that xC = ktr4 and
[(zf) = xf mod 2 = x4 mod 2 = l(x4).

On the other hand the uncentered RNG is quite different. It outputs the
xor of [(a$) and the sign-bit [xf > 01. The uncentered RNG is less natural.
Consider the group Z;(+l) of elements in 23; with Jacobi symbol 1. 12>(+1)
is a subgroup of i2; of index 2 that contains the group QRN of quadratic
residues modulo N . We see from -1 E Z>(+1) \ QRN that E& permutes the
set SN = Zk(+l) n [I, N / 2) , E& permutes the set QRN n (- N / 2 , N / 2) and
Eh permutes QRN n (0, N) . The whole point is that Z&(+l) can be decided
in polynomial time whereas QRN may be difficult to decide. So Ej; permutes a
nice set SN whereas I?&, E& permute complicated sets. It comes as no surprise
that we get better security results for the absolute/centered RNG than for the
uncentered one.

277

Oracle inversion of the absolute Rabin-function. The algorithm RSA-
inversion can be directly extended from the RSA-function to the permutation Eg
acting on SN = Z;v(+l)n[l, N / 2) . This extension uses an oracle 01 which given
EgJt) and N predicts for random 2 E Z&(+l) the bit [(z) with advantage E . A
main point is that the majority decisions must use multipliers ii = at + iat-1+ b
in Z&(+l) as we can only interpret the oracle for such inputs E ~ (6 t) with
t E Z&(+l). On the average half of the multipliers ii are in Z&(+l), the
usable multipliers are nearly uniformly distributed, see[P92]. For compensation
the inversion algorithm guesses initially an approximate location uN for [02]N

of half the previous distance. This doubles the additional overhead, but does
not affect the number of oracle calls. With these remarks Theorems 2 and 3
extend from the RSA-function to the absolute Rabin-function E&, Theorem 4
and Corollary 5 extend from the RSA-RNG to the absolute/centered t2 mod N
generator. The extended results prove security if factoring integers is hard, as
the problems of inverting E& and of factoring N are equivalent.

Theorem 6 . The assertions of Theorems 2 and 3 hold for the absolute Rabin-
function E& an place of the RSA-function EN. Theorems 4 and Corollary 5 hold
for the absolute/centered x 2 mod N generator in place of the RSA-generator.

Comparison with the muddle square method. It is interesting to compare
the centered x2 mod N generator with the randomized x 2 mod N generator pro-
posed by GOLDREICH and LEVIN [GL89,L93]: iteratively square x; mod N and
output the scalar products b; = (t i , z) mod 2 for i = 1, .., m with a random bit
string z . Following [GLSS, L93] KNUTH shows that N can be factored in expect-
ed time O (n 2 ~ - 2 m 2 T (A) + n 4 ~ - 2 m 3) for a non-negligible fraction of the N if
we are given a statistical test A that rejects (b l , ..., b,) at tolerance level E , see
[K97, section 3.5, Theorem PI. This yields a security guarantee for the muddle
square method that is similar to the one of Corollary 5.

The problem of inverting of the (un)centered Rabin-function. Consider
the permutations E h , E& acting on the set of quadratic residues. The problems
of inverting E> and E); are equivalent as we can easily transform one output
into the other using that E&(t) - E&(t) E (0 , N) . We consider the oracle
inversion of E;. The problem we face in the oracle inversion of E; is that for
given &y E Z;(+l) we do not know which of f y is in QRN. A solution has
been found by VAZIRANI and VAZIRANI [VV84]. We can determine the quadratic
character of fy using the oracle that predicts [(z) for the inverse image z E QRN
with E h (z) = fy.

Let 01 be an oracle which, given E%(t) and N , predicts the least-significant
bit of z E QRN with advantage E , Prz,w[O1(E&(z)) = [(t)] 2 + E for t ER
QRN and the coin tosses w of 01. The main problem in extending the RSA-
inversion to the Rabin-function is that we can only use multipliers ii = at +
iat-1 + b that are in QRN as we can only interpret oracle values O,(Eh(iit))
with iix E Q R N . QRN is a subgroup of Z> with index 4.

Let us first suppose that 2 is in QRN and that we are given nE-2 multipliers
in QRN of each of the two types (f + i)a + b and i (i a + 6) . Hereafter we show
how to get rid of this assumption.

Inverting the centered Rabin-function. We describe how the algorithm dif-
fers from RSA-inversion if 2 E QRN.

Initially pick random a, b E R Z k a n d produce about nE-2 quadratic residues
of either type (4 + i)a + b , $ (i a + b) - with 11 + 2il 5 4rne-' - in Q R N . On
the average there are nE-2 residues in QRN of either type. Guess the closest
approximations U N , ~ N to [U Z] N , [b 2] ~ with u E $ [o , ~ ~ E - ~) , v E f [0 , 4 ~ - ') .

At stage t determine L(4,s) by majority decision using oracle 0 1 and all sam-
ple points (3 + ;)a + b E QRN. Given t (a a z) we can in the same way determine
L (a b z) using the sample points $(ia+b) in Q R N . Then replace a , b by +a mod N ,

b mod N and go to the next stage. The new sample points (i + $)a + b and
i (i a + b) are again in QRN since we only divide by the quadratic residue 2.

The case that 2 is a quadratic nonresidue. In this case we determine the
quadratic residues (f + i)a + b and $(ia + b) at stages t = 1 and t = 2. We use
the quadratic residues of stage 1 at the odd stages and the quadratic residues
of stage 2 at the even stages. This is possible since we divide the residues by a
power of 4 compared to stages 1 and 2.

Determining quadratic residuosity. Suppose ii E Zk has Jacobi symbol 1,
then we have 7i E QRN i f f Prz[OIE&(iiz) = L (G z)] 2 4 + E for z ER Q R N . This
yields an oracle that predicts quadratic residuosity with advantage E .

The algorithm for inverting the Rabin-function requires O (l a ~ - ~ lg(nC')T)
extra steps for the determination of the quadratic residues (3 + i)a + b , ; (ia +
b). There is an extra factor 4 induced by the density of QRN in Zk. To
compensate for the smaller density the inversion algorithm guesses initially an
approximate location uN for [aZ]N with f times the previous distance. We reduce
the additional overhead by the method of section 4. Assuming that T dominates
n we get

Theorem 7. The centered Rabin-function E& can be inverted in e-cted time
O (~ E - ~ lg(nc-')T) with the help of an oracle that predicts l (z) with advantage
t: in time T when given N und E&(z) .

Conclusion. We have given a stronger security proof for RSA/R.abin bits. Our
proof yields provable security for RSA-message bits, for the RSA-RNG and for
the centered zz mod N generator for moduli N of practical size, e.g. of bit length
1 000 and 5 000. For the first time this yields provably secure and practical
RNG's under the assumption that factoring integers is hard. On the other hand
there are more efficient and provably secure RNG's based on stronger complexity
assumptions, e.g. [MS91], [FSSG].

Acknowledgement. We gratefully acknowledge the comments of D.E. Knuth
and that of an anonymous referee that led to a considerably improved presenta-
tion of the material.

279

References

[ACGS88]

[BCS83]

[BBSSS]

[B LP93 J

[BM84]

[FS96]

~ 9 6 1

[GL89]

[GMT82]

[HSS93]

[K97]

L931

[MS91]

[O W

~ 9 2 1

[R791

[RSA78]

[VV84]

[Y821

W. Alexi, B. Chor, 0. Goldreich and C.P. Schnorr: RSA and Rabin Func-
tions: certain parts are as hard as the whole. Siam J. Comp. 17 (1988),

M. Ben-Or, B. Chor and A. Shamir: On the Cryptographic Security of
Single RSA-Bits. Proc. 15th ACM Symp. on Theory of Computation,
April 1983, pp. 421430.
L. Blum, M. Blum and M. Shub: A Simple Unpredictible Pseudo-Random
Number Generator. Siam J. Comp. 15 (1986), pp. 364-383.
J.P. Buhler, H.W. Lenstra, Jr. and C. Pomerance: Factoring Integers
with the Number Field Sieve. in: The Development of the number field
sieve, (Ed. A.K. Lenstra, H.W. Lenstra, Jr.) Springer LNM 1554 (1993),
pp. 50-94.
M. Blum and S. Micali: How to Generate Cryptographically Strong Se-
quences of Pseudorandom Bits. Siam J. Comp., 13 (1984), pp. 850-864.
J.B. Fischer and J. Stern: An Efficient Pseudo-Random Generator Prov-
ably as Secure as Syndrome Decoding. Proc. EUROCRYPT’96, Springer

0. Goldreich: personal information at the Oberwolfach workshop on Com-
plexity Theory, November 10-16, 1996.
0. Goldreich and L.A. Levin: Hard Core Bit for any One Way Function.
Proc. of ACM Symp. on Theory of Computing (1989) pp. 25-32.
S. Goldwasser, S. Micali and P. Tong: Why and How to Establish a Pri-
vate Code on a Public Network. Proc. 23rd IEEE Symp. on Foundations
of Computer Science, Nov. 1982, pp. 134-144.
J. HBstad, A.W. Schrift and A. Shamir: The Discrete Logarithm Modulo
a Composite Hides O(n) bits. J . of Computing and Systems Science 47

D.E. Knuth: Seminumerical Algorithms, 3rd edn. Addison-Wesley, Read-
ing, MA (1997). Also Amendments to Volume 2. January 1997.
ht tp://www-cs-staff.Stanford.EDU/-uno/taocp.html
L.A. Levin: Randomness and Nondeterminism. J. Symbolic Logic 58

S. MiCali and C.P. Schnorr: Efficient, Perfect Polynomial Random Num-
ber Generators. J. Cryptology 3 (1991), pp. 157-172.
A.M. Odlyzko: The Future of Integer Factorization. CryptoBytes, RSA
Laboratories, 1 (1995), pp. 5-12.
R. Peralta: On the Distribution of Quadratic Residues and Non-residues
Modulo a Prime Number. Math. Comp., 58
M.O. Rabin: Digital signatures and public key functions as intractable as
factorization. TM-212, Laboratory of Computer Science, MIT, 1979.
R.L. Rivest. A. Shamir and L. Adleman: A Method for Obtaining Dig-
ital Signatures and Public Key Cryptosystems. Comm. ACM, 21 (1978),
pp. 120-126.
U.V. Vazirani and V.V. Vazirani: Efficient and Secure Pseudo-Random
Number Generation. In Proc. 25th Symp. on Foundations of Computing
Science (1984) IEEE, pp. 458-463.
A.C. Yao: Theory and Application of Trapdoor Functions. Proc. of IEEE
Symp. on Foundations of Computer Science (1982), pp. 80-91.

pp. 194-209.

LNCS 1070 (1996) pp. 245-255.

(1993), pp. 376-404.

(1993), pp. 1102-1103.

	Stronger Security Proofs forRSA and Rabin Bits
	1 Introduction
	2 RSA-inversion by binary division
	3 From pairwise to mutually independent votes.
	4 Processing all possible locations together.
	5 Security of RSA-message bits and of the RSA-RNG.
	6 The z2 mod N generator and the Rabin-function.
	References

