
Round-Optimal Zero-Knowledge Arguments
Based on Any One-way Function

Mihir Bellarel and Markus Jakobsson2 and Moti Yung3

Department of Computer Science & Engineering, Mail Code 0114, University of
California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail:

rnihir@cs.ucsd.edu. URL: http://ww-cse.ucsd.edu/users/mihir.
* Department of Computer Science & Engineering, Mail Code 0114, University of

California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA. E-mail:
markusQcs.ucsd.edu.

CertCo, New York, NY, USA. E-mail: motiQcertco.com.

Abstract. We fill a gap in the theory of zero-knowledge protocols by
presenting NP-arguments that achieve negligible error probability and
computational zero-knowledge in four rounds of interaction, assuming
only the existence of a one-way function. This result is optimal in the
sense that four rounds and a one-way function are each individually
necassary to achieve a negligible error zero-knowledge argument for NP.

1 Introduction

In a zero-knowledge (ZK) protocol, a prover P wants to “convince” a verifier V
that some claim is true, without “revealing” any extra information [GMR]. In the
theory of ZK protocols, researchers have looked at the complexity assumptions
based on which protocols can be constructed, and the resources necessary to
do so. Here we fill a gap in this area. Let us begin by explaining the various
dimensions of such protocols.

1.1 The big picture

The interaction between P and V takes place on some common input z, and
P is trying to convince V that x belongs to some underlying language L. The
length of x is denoted n and one measures complexity in terms of n. The verifier
is always a (probabilistic) polynomial time algorithm. Typically (and here) L
is in NP. The system has two dimensions: “conviction” and ‘L~ro-kn~wledge.”
Each can be formalized in one of two ways, a weak and a strong, depending
on whether or not we restrict the adversary involved to polynomial time. To
describe these dimensions, we use a terminology from [BCY] (which they credit
to Chaum).

DEGREES OF CONVICTION. Conviction is about “soundness.” If x $ L we ask
that no matter how the prover behaves, it cannot convince V to accept, except
with low probability (called the error probability, and denoted E (-)) . This has
been formalized in two ways:

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT ’97, LNCS 1233, pp. 280-305, 1997
0 Spnnger-Verlag Berlin Heidelberg 1997

281

Statistical conviction: This is the notion of [GMR]. Even a computationally
unrestricted prover should be unable to make the verifier accept x $! L,
except with probability ~ (n) . Protocols providing this strong degree of con-
viction are usually called “proofs.”
Computational conviction: This is the notion of [BrCr, BCC]. A prover re-
stricted to (randomized) polynomial time should be unable to make the
verifier accept x $ L , except with probability ~ (n) . ~ (But a more powerful
prover might succeed in making the verifier accept with high probability.)
Although weaker, this kind of soundness is good enough for cryptographic
protocols. The soundness will typically depend on the assumed intractability
of some computational problem, like factoring or computing discrete loga-
rithms. Protocols meeting this condition are usually called “arguments.”

DEGREES OF ZERO-KNOWLEDGE. Roughly, the zero-knowledge condition of [GMR]
asks that when x E L, the transcript of an interaction between the prover and
a verifier yield no information (other than the fact that z E L) to an adver-
sary who gets to examine the transcript. Again, this adversary may be weak or
strong:

Statistical ZK: Even a computationally unrestricted adversary will not get
useful information out of a transcript, except with low (negligible) proba-
bility. Protocols meeting this are usually called SZK.
Computational ZK: A (randomized) polynomial time adversary will not get
useful information out of a transcript. (But a computationally unrestricted
adversary might.) This will be the case when the transcript contains encryp-
tions of sensitive data, which are useless to a polynomial time adversary,
but can be opened by an unrestricted one. This type of ZK is usually called
CZK and, although weaker, is good enough for cryptographic protocols.

We clarify that this discussion is very informal. The definitions talk of the indis-
tinguishability of ensembles. (See Section 2.4.) We also don’t make perfect ZK
a special case, considering it included as a sub-case of statistical.

A NOTE ON COMPLETENESS. In addition, a basic completeness condition is d-
ways required. It asks that if x E L then there is a strategy via which the prover
can make V accept. The definition of [BrCr, BCC] asks (as appropriate for a
cryptographic protocol) that this be efficiently achievable: if P is given a witness
for the membership of z in the NP language L then it can make V accept in
polynomial time. The definition of [GMR] does not make such a requirement.
However, ad known proofs (statistically convincing) for NP languages do meet
this efficient completeness requirement, so we won’t discuss it further, assuming
it always to be true.
A NOTE ON PROOFS OF KNOWLEDGE. One usually also wants that when x E L,
the ability of a prover to convince V to accept should be indicative of “knowl-
edge” of a witness. Like soundness, in proofs it holds for arbitrary provers and
in arguments for polynomial time ones. (The notion was suggested in [GMR],

* This description masks some subtleties. See Definition 2 and the following discussion.

282

and an appropriate formalization has emerged in [BeGo]. See Section 2.3 for
more.) Again, we will not discuss it further here, concentrating just on the two
dimensions mentioned above.
FOUR KINDS OF PROTOCOLS. Since the dimensions discussed above are orthog-
onal, we get four kinds of protocols:

CZK arguments: Cornputationdy convincing, computational ZK. The weak-
est kind, but still adequate for cryptographic protocols. For example the
arguments for all of NP in [BrCr, BCC] when a standard bit commitment
is used.
CZK proofs Statistically convincing, computational ZK. For example the
proofs for all of NP in [GMW].
SZK arguments: Computationally convincing, statistical ZK. For example
the arguments for all of N P in [BrCr, BCC] when a discrete logarithm
based bit commitment is used; also [NOVY].
SZK proofs: Statistically convincing, statistical ZK. The strongest kind, but
not possible for all of N P unless the polynomial time hierarchy collapses
[Fo]. But there are examples for special languages: quadratic residuosity
and its complement [GMR]; graph isomorphism and its complement [GMW];
constant round SZK proofs for quadratic residuosity and graph isomorphism
[BMOl].

1.2 Complexity measures and optimality

Recall that the error-probability is the probability e(.) in the soundness con-
dition, whether in a proof or an argument. Most atomic ZK protocols have
constant error. But one really wants low error. A standard goal is to make the
error negligible. (That is, a function vanishing faster than the reciprocal of any
polynomial.) We will have the same goal.
COMPLEXITIES TO MINIMIZE. Theoretical research in ZK proofs has focused on
achieving this low error while trying to minimize other complexity measures.
Two main ones are:

Rounds: The round complexity is the number of messages exchanged, or
rounds of interaction in the protoc01.~
Assumptions: The complexity assumption underlying the protocol, it under-
lies either the computational ZK or the computational conviction (or both).
For example it may be an algebraic assumption like the hardness of factoring
or discrete log computation, or a general assumption like the existence of
claw-free pairs, trapdoor permutations, one-way permutations, or one-way
functions.

There may be some danger of confusion in terminology. We call each sending of a
message by a party a round. Some works like [FeSh] call this a move, and say a round
is two consecutive moves. In their terminology, our four round protocols would be
four move or two round protocols.

283

Rounds

polylnl

Assumption Reference Type

One-way function Combine [GMW, HILL, Nal CZK proof

poly(n)

6
6

5

I 4 !Algebraic ICZK argument!

SZK argument

Claw-free pairs W Y I SZK argument

Claw-free pairs [GoKa] CZK proof

One-way function [FeShl CZK argument

One-way permutation “ O W I --

I 4 (Trapdoor perm. + AlnebraiclCombine [Bl, FLS, BeYul ICZK argument)

4
~~ ~ ~~~~~

One-way function This paper CZK argument

Fig. 1. Negligible error ZK protocols for NP. We list round complexity, complexity
assumption used, and type (CZK or SZK, proof or argument). Remember four rounds
is optimal.

LOWER BOUNDS. We know that things can’t go too low. Four rounds and a
one-way function are each individually necessary to get low-error ZK:

0 Four rounds needed: Goldreich and Krawczyk [GoKr] show that there do not
exist three round, negligible emr (whether proof or argument) ZK (whether
computational or statistical) protocols for NP unless NP g BPP. (There is
a technical condition saying the ZK must be of a certain form called black-
box. But all known ZK protocols are of this type. In this paper whenever we
talk of ZK we always mean black box. See Definition 6.) Accordingly, four is
the minimal number of rounds required to achieve ZK with low error. (The
result also holds if the protocol is not sound but just a proof of knowledge,
SO that four rounds is also necessary for negligible knowledge error [ISl].)

One-way function needed: ZK arguments can be used to implement many
kinds of cryptographic schemes, whence by [ImLu] require a one-way func-
tion to implement. Even for the proof case with a computationally un-
bounded prover, it is known that for “hard” languages some kind of “one-
way function” is necessary [OsWi]. Thus, a one-way function is a minimal
assumption required to achieve ZK.

0

THE PROBLEM. There are many secalled “atomic” ZK protocols for NP that
achieve constant error-probability in constant (three or four) rounds. Serial rep-
etition lowers the error and preserves ZK [GoOr, ToWo], but at the cost of
increasing the number of rounds to non-constant. So we would like to do parallel
repetition. However, this is ruled out: first, we have the above mentioned results
of [GoKr]; second, the latter also showed that in general parallel repetition does

284

not preserve ZK. So one must build low error ZK protocols directly.
PREVIOUS WORK. A good deal of effort has gone into this, and a variety of
ingenious constructions have been proposed. We summarize the known results
in Figure 1. (One that may need elaboration is the protocol of [Bl, FLS, BeYu].
We discuss it briefly in Appendix A.)

Notice that prior to our work optimality had not been achieved in any proto-
col category. That is, neither for CZK arguments, SZK arguments or CZK proofs
did we have four round, low error protocols based on any one-way function. In
this paper we have filled the first of these gaps.

We also clarify that we are only tabulating ZK protocols for all of N P (ie. for
NP-complete languages). There is also a lot of work on constant round ZK
(especially statistical ZK) for special languages which we don’t get into.

1.3 Our result

RESULT. We look at low error CZK arguments for all of NP. Figure 1 tells US

that it is possible to do it in four rounds using an algebraic assumption (hardness
of discrete log) [FeSh]; or in five rounds using a one-way function [FeSh]. This
leaves a (small but noticeable) gap, which we fill: we provide an optimal protocol,
that uses only four rounds and a one-way function.

Theoreml. Suppose there exists a one-way function. Then for any language
in NP, there exiats a protocol which has four rounds of interaction; is compu-
tationally convincing (ie. an argument) with negligible error probability; is corn-
putational zero-knowledge; and is a computational proof of knowledge (for the
underlying NP-relation) with negligible knowledge-error.

TECHNIQUES. Our protocol is for the NP-complete language SAT. Let cp be the
input formula. We use the idea of Feige and Sharnir [FeSh] of ORing to cp some
formula Qi which represents some choices of the verifier, and then having the
prover run a standard ZK proof on input 8 = cpvd. However, Feige and Shamir
[FeSh] begin their protocol by having the verifier give a witness indistinguishable
proof of knowledge of something underlying Qi. Instead, we work directly with
the one-way function, having the verifier give a cut-and-choose type proof that @
meets some conditions. This is interleaved with a standard ZK proof run on 8.
To implement the latter with a one-way function we use Naor’s bit commitment
scheme [Na] which can be based on a one-way function via [HILL].

The tricky part is getting the protocol to be ZK. When the protocol is finally
designed, however, the ZK is not hard to see. It turns out the technically more
challenging part is to prove computational soundness. We introduce what seems
to be a new technique, proving the soundness by using proofs of knowledge,
relying on the strong formulation of the latter given in [BeGo].

1.4 Open problems

We have filled the (small) existing gap between upper and lower bounds for
CZK arguments. For other protocol categories, the existing gap is larger and still

285

unfilled. For CZK proofs, it is not known whether constant error can be achieved
with a one-way function (let alone with what value of the constant). For SZK
arguments, it is not known whether it can be done at all (ie. in polynomially
many rounds) with a one-way function.

2 Definitions

We provide definitions for zero-knowledge arguments and computational proofs
of knowledge.

2.1 Preliminaries

NP-RELATIONS. Let p (- , .) be a binary relation. We say that p is an NP-relation
if it is polynomial time computable and, moreover, there exists a polynomial p
such that p (x , w) = 1 implies 12.1 5 ~ (1 x 1) . For any x E {O,l}* we let p (x) =
{ w E {O,l}* : p (x , w) = 1 } denote the witness set of x . We let L, = { x E
{0,1}* : p (x) # 8 } denote the language defined by p. Note that a language L
is in N P iff there exists an NP-relation p such that L = L,. We say that p is
NP-complete if L, is NP-complete.

The example we will concentrate on is satisfiability. Let cp be a boolean
formula (circuit) and T an assignment of 0/1 values to its variables. We let
Satisfy('p,T) = 1 if T satisfies 'p (makes it true) and 0 otherwise. This is an
NP-relation, and the corresponding language L ~ ~ t , ~ f y is of course just SAT =
{ 'p : cp is a satisfiable boolean formula }.
NEGLIGIBILITY. Recall that a function 6: N + R is negligible if for every poly-
nomial p (.) there exists an integer np such that 6(n) 5 l/p(n) for every n 1 np.

INTERACTIVE ALGORITHMS. Parties in our protocols (provers and verifiers) are
modeled as interactive functions. An interactive function A takes input x (the
common input), the conversation MI . . . Mi so far, and coins R to output A(%, M I
. . . Mil R) , which is either the next message, or some indicator to stop, perhaps
accepting or rejecting in the process. Probabilities pertaining to this function
are over the choice of R. We let A,(. , .) = A(z, .? .) and A,,R(*) = A (x , -, R) .
Typically we will have fixed x and will be talking about A,; sometimes we will
also have fixed R and are talking about the deterministic function A,,R. A may
also take an auxiliary input 2u (when A is the prover, this is a witness w E p(s))
and we write AW for this algorithm. Thus we can have A,W or A&.

The transcript of a conversation between a pair of interactive functions is the
entire sequence of messages exchanged between them until one of them halts.
We let Acc(A,, B,) denote the probability (over the coins of both parties) that
B accepts when talking to A on common input x . We let Acc(A,, B,, MI . . . Mi)
denote the conditional probability that B accepts in talking to A on common
input x when the conversation so far is MI . . . Mi.

We refer to the sending of a message by one party as a round of interaction.
So the number of rounds is the total number of messages sent.

286

2.2 Arguments, or computationally convincing proofs

The protocol must satisfy a standard completeness condition saying that a prover
knowing a witness for z E L, can convince the verifier to accept z. Soundness
pertains to what happens when x $ L,,. We want to say that it is unlikely that
one can make the verifier accept, even if one is allowed to modify the strategy
of the prover. The error-probability measures how unlikely. For the purpose of
this paper we are interested in arguments of negligible error, but the definition
that follows is for any error.

Definition 2. Let P, V be polynomial time interactive algorithms and let p be
an NP-relation. We say that (P, V) is a computationally convincing proof (or
argument) for p, with error-probability e (.) , if the following two conditions are
met:

(1) EFFICIENT COMPLETENESS: For every 5 E L, and every witness w E p (x)
it is the case that Acc(P,V, Vz) = 1.

(2) COMPUTATIONAL SOUNDNESS: For every polynomial time interactive algo-
rithm 2 there is a constant Np such Acc(gz,Vz) 5 c(Ix1) for all x $! L,
which have length at least Np.

If e is negligible then we say that the error-probability is negligible.

We highlight the case of negligible error: the system has negligible error as long
as there is some negligible function E(.) such that the error is e (*) .

Notice one difference with defining interactive proofs: wz ask that the point
at which the error goes down to e(.) depend on the prover P. This is necessary,
as the discussion below explains.
ISSUES IN COMPUTATIONAL SOUNDNESS. In the interactive proof setting [GMR],
the error-probability of a protocol (P, V) is E (.) if for any 2 $! L and any inter-
active algorithm playing the role of the prover, Acc(Fz,Vz) 5 c(IxI). The
question of what is the error-probability of a computationally sound proof (ar-
gument) is more subtle. The first thought is that we say the same thing, ex-
cept restricting our attention to p$momial time prover algorithms. Namely,
the error-probability is e(.) if Acc(P,,V,) 5 c(lsl) for any polynomial time in-
teractive algorithm and any x # L. But this is not right. Underlying the
argument is some computationally hard problem like inverting a one-way func-
tion. The size of this problem is proportional to Izl. So for any j k e d z there is
some polynomial time prover who can convince the verifier with high probability,
by solving the underlying computational problem. In other words, we cannot,
for a fixed x pC L, hope that the probability of convincing the verifier is at most
~(1x1) for all polynomial time provers. (Unless the argument is in fact a proof.)
However, for any fixed polynomial time prover, as 1x1 grows, the probability of
convincing the verifier decreases, because the size of the underlying hard com-
putatgnal problem is increasing. In particular it is reasonable to ask that for
each P the error eventually goes below the desired error-probability e(n), which
is what we did above.

In particular, the probability of convincing the verifier to accept x # L in
a computationally convincing proof cannot be reasonably expected to be ex-
ponentially small. It is restricted by the probability of solving the underlying
computational problem. Since the typical assumption is that the latter is neg-
ligible (not but less), the error of the argument too is negligible but not less.
In particular, independent repetition will not lower the error to exponentially
small.

Another way to resolve the issue is to have a security parameter k that is
separate from the input z and measures the size of the underlying hard problem.
For any fixed x, the error-probability still goes down as we increase k. This
formulation is probably better for protocol design, but in the current theoretical
setting, we stick, for simplicity, to just one input, and adopt the definition above.

2.3 Computational proofs of knowledge

We want to say that if an interactive algorithm can convince V to accept 2 E
L then it must actually “know” a witness w E p(z) . This notion of a “proof
of knowledge” was suggested in [GMR]. It was formalized in [BeGo] both for
the standard interactive proof setting and the argument, or computationally
convincing setting. (They discuss the latter in [BeGo, Section 4.71.) We adopt
their notion. It comes in two equivalent forms. We present both.

Recall an oracle algorithm E is an algorithm that can be equipped with
an oracle. An invocation of the oracle counts y one step. We will talk of an
“extractor” E which will be given an oracle for Pz, a prover algorithm on input
5, and will then try to find a witness w to the membership of 5 in L,. The first
definition below is what [BeGo] refer to as the “alternative form of validity.”

Definition3. [BeGo] We say that verifier V defines a computational proof of
knowledge for NP-relation p, with knowledge-error ti,(.), if there is a an expected
polynomial time oracle algorithm E (the extractor) such that for every polyno-
mial time interactive algorithm @ there is a constant N p such that if z E L,
has length at least IVp then

Pr [ER(X) E p(x)] 2 A ~ ~ (F ~ , , V ,) - t i , (~x/) .

If K (.) is negligible then we say the proof has negligible knowledge-error.

In other words, if E has oracle access to then it can output a witness for
membership of 2 in L, with a probability only slightly less than the probability
that would convince V to accept x. Again, note negligible knowledge error
means the above is true for some negligible function K (-) .

In the next formulation (the main one of [BeGo]) the extractor must find a
witness with probability one. It is not limited to (expected) polynomial time, but
must run in time inversely proportional to the excess of the accepting probability
over the knowledge error.

288

Definition4. [BeGo] We say that verifier V defines a computational proof of
knowledge for NP-relation p , with knowledge-error ti,(-), if there is a an oracle
algorithm E (the extractor) and a constant c such that for every polynomial
time interactive algorithm there is a constant N p such that if x E L, has

length at least N p and satisfies Acc(Fz,V,) > +), then Ep*(x) E p(x), and
moreover this computation halts in an expected number of steps bounded by

*

IzlC
Acc(Sz, Vz) - ~ (z) ’

I€ .(a) is negligible then we say the proof has negligible knowledge-error.

See [BeGo] for the proof that these two notions are equivalent. Sometimes it is
convenient to use one, sometimes the other.

2.4 Zero-knowledge

ENSEMBLES AND COMPUTATIONAL INDISTINGUISHABILITY. We recall these no-
tions of [GoMi, GMR]. An ensemble indexed by L g {0,1}* is a collection
{E(Z)},EL of probability spaces (of finite support), one for each 2 E L . Let
Ei = {EI(z)},EL and €2 = {&(x)}zE~ be ensembles over a common index set
L. A distinguisher is a polynomial sized family of circuits D = (Dt}zEL, with
one circuit for each x E L. We say that E1,&2 are (computationally) indistin-
guishobZe if there is a negligible function 6(.) such that for every distinguisher D
there is a constant ND such that if 2 E L has length at least ND then

ZERO-KNOWLEDGE. Let P, V be interactive algorithms. The definition of a zere
knowledge interactive proof [GMR] refers to a language L. It begins by defining
a probability space, the view of a cheating verifier 6 in talking to P on input
x E L. (And then says there is a simulator that on input x produces an “indis-
tinguishable” view.) The basic idea is the same in the argument setting, but one
must be careful about a couple of things. Recall prover P begins with a witness
w to x. The view generated by P and V depends not just on P but on w . An
elegant way to bring this into the picture is via the notion of a witness selector
[BeYu] .

Definition 5. [BeYu] A witness selector for an NP-relation p is a map W: L, +
{0,1}* with the property that W (x) E p(x) for each z E L,.

That is, a witness selector is just a way of fixing an association of a particular
witness to each input. When p = Satisfy and L, = SAT this just means associ-
ating to any formula z = p E SAT a particular satisfying assignment to it, out
of all the possible satisfying assignments.

289

Now we can define the view. Let P,V be interactive algorithms, p an NP-
relation, and W a witness selector for p. We let VIEW(P, W, V, 2) be the proba-
bility space whose points are of the form (R, T), where R is a random tape for Vz
and T is a transcript of an interaction between F'F(') and V,,R. The associated
probability is that over the choice of R and the coins of P?('). The collection
{VIEW(P, W, Q, z)},~~, becomes an ensemble.

We define zereknowledge in a strong "black-box" simulation fozm. The sim-
ulator S is an oracle algorithm given input z and oracle access to V.,R where R
has been chosen at random. (The simulator does not have to pick R. It is done
automatically and the simulator only sees the interface to the oracle V,,R.) It

will output a transcript 7 of a conversation between Pz and &R. We let sv" (z)
denote the probability space of pairs (R, r) where R was chosen at random and

A

A

h

7 4- SV-Jqz).

Definition 6. We say that (P, V) is a (computational) zero-knowledge protocol
for NP-relation p if there exists an expected polynomial time oracle algorikhm S
(the simulator) such that for every polynomial time interactive algorithm V (the

cheating verifier) and every witness selector W for p, the ensembles {? (z) } ~ E L ,

and {VrEw(P, W, 0, z)},EL, are computationally indistinguishable.

A

Note formally, zero-knowledge is no longer a property of the language L, but of
the relation p itself.

Under this definition of zero-knowledge, we know that any negligible error
probability zero-knowledge argument for an NP-complete relation p must have
at least four rounds, assuming N P is not in BPP [GoKr]. We want to meet this
bound given only a one-way function.
REMARK. The above notion of black-box simulation zero-knowledge is stronger
than those of [GoOr, GoKr, BM021 in the following sense. In our notion, the
simulator has no control over the coins R of q,: they are automatically chosen
(at random) and then fixed. The simulator does not even have direct access
to them: it just gets an oracle for pzz ,~ . In the notions of [GoOr, GoKr], the
simulator could choose these coins as it liked, even try running V, on many
different random tapes. In the notion of [BM02] it could not choose them, but
did have direct access to them, and could try several random tapes. However,
since our results are positive, making a more stringent definition only strengthens
them. Also, all known zero-knowledge protocols do meet our definition.

For simplicity we do not talk of non-uniform verifiers, but of course the above
definition could be extended to include them.

h

3 Building blocks for our protocol

Our protocol uses one-way functions, satisfiability, and a standard bit commit-
ment based atomic ZK protocol for satisfiability.

290

3.1 One-way functions

Let f : {0,1}' + {0,1}' be some length-preserving function. An inverter for
f is a family I = {I,,},,>l where each I,, is a circuit, taking n bit inputs and
yielding n bit outputs, and having size at most p(n) for some polynomial p(.) .
We let

denote the probability that I,, successfully inverts f at the point y = f(z), taken
over a random choice of x E (0, l}".

Definition 7. Let f: (0,l)' + (0,l) ' be apolynomial time computable, length-
preserving function. We say f is one-way if there is a negligible function a(.) such
that for every inverter I there is an integer Nr such that Invi(n) 5 b(n) for all
n> N I .

Hereafter we fix a one-way function f, and the notation f will always refer to
this fixed function.

3.2 Formulas and satisfiability

We will present ZK arguments for the NP-complete language SAT. More pre-
cisely let Satisfy be the NP-relation defined by Satish(cp,T) = 1 if assign-
ment T satisfies formula 'p. The corresponding language Lsctish is of course
SAT = { 'p : cp is a satisfiable boolean formula }. We will present ZK argu-
ments for the NP-relation Satisfs, meeting the definitions in Section 2. (In terms
of those definitions, the NP-relation here is p = Satisfar, the common input is
x = cp, a boolean formula, and the witness w is a satisfying assignment T to 9.)

We will be encoding statements about the one-way function f as formu-
las, and need some standard features of the Cook-Levin theorem. The NP-
completeness of SAT as proved in this theorem implies the following. There is
a polynomial time computable transformation FORMULA^ (.) such that for any
y E {0,1}* it is the case that FORMULA^(^) is a boolean formula which is satis-
fiable iff there exists an x E {0,1}' such that f(z) = y. More important, there
are polynomial time computable maps t f ~ , t f , 2 (called witness transformations)
with the following properties. Given z, map tf,l outputs a satisfying assignment
T = t j , ~ (5) to FoF~MuLA~(~(z)) . Conversely, given a satisfying assignment T to
 FORMULA^(^), map t f , 2 outputs a point z = t f , z (T) such that f(x) = y. We will
refer to both the transformation FORMULA^ and to the accompanying witness
transformations in what follows. What is important to remember is that knowl-
edge of a satisfying assignment T to FORMULA^(^) is tantamount to knowledge
of a pre-image z of y under f .

29 1

3.3 Naor’s commitment scheme

We will use Naor’s commitment scheme [Na] which can be based on any one-way
function via [HILL]. Some special properties of the scheme are important for us.

It work like this. Suppose A has some data d E { O , l } m that she wants to
commit to B. First, B must send A a random string R, which we call the com-
mitment setup string, and which has length polynomial in the security parameter
n and the data length m. Then, A picks at random some string s to use as coins,
and computes a function a = COMMIT~(R, d, 3). (This function depends on a
pseudorandom bit generator [BlMi, Ya], constructed out of f via [HILL], but we
don’t need to know that.) This a is A’s commitment to d and is sent to B. At
a later stage, B can ask A to “open” the commitment, at which point A sends
d and 3, and B checks that CY = COMMIT~(R, d , 8) .

The protocol must have two properties. First is privacy: a gives B no infor-
mation about d. Second is aoundness: A can’t create commitments which she
can open in more than one way.

In Naor’s scheme “a], the privacy is true in a computational sense. That is,
as long as B cannot invert the underlying one-way function f, it gets no partial
information about d. Soundness however is true in a strong, unconditional sense,
and since this is important for us, we need to discuss it further.

A de-committal of a is a pair (d, s) such that a = C O M M I T ~ (R , ~ , ~) . We say
that A opens a as d if she provides a de-committal (d , s) of a. We say that a
commitment setup string R is bad if there exists a pair (d l , SI), (dz, 32) of de-
committals of a such that dl # &. We say R is good if it is not bad. Naor’s
scheme has the property that a randomly chosen commitment setup string is bad
with probability exponentially small in n [Na, Claim 3.11. For our purposes we
set the parameters of the scheme so that this probability is 2-2n. (The length
of R required to make this true depends not only on n but also on the data
length m. In what follows, we assume R is of the right length to make this true
with respect to whatever data length we have.) It follows that the probability
that even one out of n random commitment setup strings R1,. . . , R, is bad is
at most n .2-’” 5 2-”. This will be used repeatedly in what follows.

3.4 The atomic protocol

We use as a primitive a atomic four round ZK argument achieving error 1/2.
We now specify the properties we want of it and the notation used to describe
it. To avoid depending on the details of any specific protocol, it is described via
generic components and steps.

THE PROTOCOL. In the literature there are several commitment-based three
round ZK arguments with error 1/2. For concreteness, take the one of Brassard,
Crkpeau and Chaum [BCC], or the one based on general commitment in [ImYu].
To set it up using one-way function based commitment, we first have the verifier
send a commitment setup string, and then run a protocol such as the ones in
[BCC, ImYu], so that we have four rounds.

292

To avoid depending on the details of any specific underlying protocol, we
describe the protocol via generic components and steps. Let 8 denote the boolean
formula which is the common input. The prover is assumed to have a satisfying
assignment T for 8. We now specify the instructions for the parties, with the
nomenclature to be explained later:

(1) Verifier picks at random a commitment setup string R and sends it to the
prover.

(2) Prover picks a random string p and computes an encapsulated circuit C =
ENcCIRC~(&),T, R,p). This is sent to the verifier.

(3) Verifier picks a random challenge bit c and sends it to the prover.
(4) Prover computes an answer D = ANsWERf(8 , T, R, p, c) and sends it to

the verifier.
(5) Verifier checks that C H E c K f (8 , R, C, c, 0) = 1. If this is true it accepts,

else rejects.

Now let us explain the components. In the second step, the prover computes an
object C we call an “encapsulated circuit.” This step will involve a number of
bit commitments which is proportional to the size of 8, and they are performed,
here, using the scheme of Section 3.3, which can be implemented given f. The
commitment setup string used (for all the commitments) is R, and p represents
some random choices that underly the encapsulation. (Roughly, the prover will
first create a randomized version of 8 that is annotated with the values given
by the truth assignment T. This annotated circuit, call it d, would reveal T,
but the prover does not send it directly. Instead, he commits to it, sending
C O M M I T ~ (R , ~ , s) where s is part of p. But the details, such as what is d, will
not matter: later we will summarize all the properties we need.) As in a typical
cut-and-choose protocol, the verifier then poses a random challenge question,
which is the bit c, and prover must “open” the encapsulated circuit in one of two
ways. This “answer” of the prover, denoted D, is computed as a function of the
truth assignment, the challenge, and the random choices underlying the original
encapsulation. It consists of de-committing certain parts of C. The answer being
sent to the verifier, the latter checks that it is correct. The check is a function
of the encapsulated circuit, the commitment setup string, the challenge, and the
answer provided.

PROPERTIES. We assume certain properties of this protocol. The standard ex-
ample protocols (eg. [BCC]) do have these properties.

We assume that if an encapsulated circuit C is successfully “opened” in both
ways, ie. for both a 0-challenge and a 1-challenge, then one can obtain the truth
assignment underlying 8. This is true no matter how C was constructed, and
is the technical fact underlying the protocol being a (computational) proof of
knowledge with knowledge error 1/2.

More precisely, there is a polynomial time algorithm EXTRACT^ such that the
following is true. Suppose R is a good commitment setup string. Let C be some
string sent by the prover in the first step. (It purports to be a correctly computed
encapsulated circuit.) Let DO, D1 be strings such that CHECK^(@, R, C, 0, DO) =

293

CHECKf(@, R, C, l ,&) = 1. Then EXTRACTf(@, R, C, DO, 01) = 2‘” is a truth
assignment that satisfies 8.

We stress that this requires the commitment setup string R to be good as
defined in Section 3.3. We are using the fact that when this happens, it is im-
possible (not just computationally infeasible) for the commiter (here the prover)
to open a commitment in two different ways.

We will need (to show our protocol is ZK) that one can compute ENCCIRC~ (8,
T , R, p) for any T , not just a T that satisfies p. The underlying annotated circuit
d will be non-sensical in this case, but the verifier will not know, because the
annotated circuit is provided in committed form. (Of course, a prover providing
such an encapsulated circuit will be hard put to answer the challenges, but that
will not matter for us.)

Finally, of course, we also need that the protocol is ZK. (Actually, all we will
use is that it is witness indistinguishable in the sense of FeSh], something which
follows from its being ZK.)

4 Protocol 4R-ZK and its properties

We now describe our protocol and its properties. We call the protocol 4R-ZK
for “four round ZK.”

4.1 Protocol description

We give instructions for the prover P and the verifier V to execute protocol
4R-ZK. The common input is a formula ‘p of size n, and the prover is assumed
in possession of a satisfying assignment T to cp. Refer to Section 3 for the notation
and components referred to below.

(1) The verifier’s message M I = M1,1M1,2 consists of two parts computed as
we now describe.
(1.1) For i = 1, . . . , n and j = 0 , l the verifier chooses xj,j & {O, 1)“ and

sets yi,, = f(zi,,). These points are hereafter called the “Y-values.”
It lets MI,J consist of these 2n strings.

(1.2) The verifier picks at random commitment setup strings R1,. . . , R,.
It is thereby initiating n parallel runs of the atomic protocol: Ri will
play the role of the commitment setup string for the i-th run. (But
the input formula 8 for these runs has however not yet been defined!
That will appear later.) It sets M1,2 = (R I , . . . ,Rn).

The verifier sends Mi = M1,1M1,2 to the prover. Now for i = 1, . . . ,n and
j = 0 , l we let @i,, = FORMULA^(^^,,) as per Section 3.2. This is a formula
both parties can now compute.

(2) The prover receives M I . Its reply Mz = Mz,lM2,Z consists of two parts
computed as we now describe.
(2.1) The prover picks bits 61, . . . , 6, e (0 , l) and sets M z , ~ = (61 , . . . , bn).

The bit bi is viewed as selecting the Y-value Yi,bi, and the verifier is

294

being asked to reveal the pre-image of this value, which he will do
in the next step.

(2.2) We now set CP = @1J-b1 V . . , V G , , J - ~ ~ . (This is the OR of all
formulas corresponding to Y-values which the prover has n o t asked
be revealed. As long as f is oneway, the prover has very little chance
of knowing a satisfying assignment to CP.) We then set €3 = @ V 'p.

Notice that T (the satisfying assignment to 'p that the prover has)
is also a satisfying assignment to 6, so the prover has a satisfying
assignment to 8 (even though he does not have one for @). Viewing
R1,. . . , R, as commitment setup strings initiating n parallel runs
of the atomic protocol on common input 6, the prover will now
perform the second step for each of these executions of the atomic
protocol. Namely, for i = 1,. . . , n it picks at random a string pi
to be used as coins in the encapsulated circuit computation, and
computes Ci = ENCCIRC~(@,T, Ri, p i) for i = 1,. . . ,n. He now sets
Mz,z = (Cl,. . ., Cn).

The prover sends M2 = Mz,lM2,2 to the verifier.

(3) The verifier receives M2 = M2,1M2,2. Its reply M3 = M3,1M3,2 consists of
two parts computed as we now describe:
(3.1) It sets M3,1 = (Z l , b l , . . . , z,,b,), meaning it returns the pre-images

for the Y-values selected by the bits bl, . . . , b, that the prover sent
in MZJ = (bl,. . . , b,).

(3.2) Having bl, . . . , b,, the verifier knows @ and hence 8, these formulas
being as defined above. It now picks challenges c1, . . . , c, c (0, l},
one for each run of the atomic protocol on input 8, and sets M3,2 =
(Cl,. . . ,cn).

The verifier sends A43 = M3,1hf3,2 to the prover.

(4.1) say M3,1 = (21,. . . ,zn). The prover checks that f(zi) = Yj,bi for
i = 1 , . . . , n, and if this check fails then it aborts the protocol. Else
it goes on to the next step.

(4.2) Say M3,2 = (a,. . . , c,). The prover computes the answers to these
challenges. Namdy for i = 1,. . . , n it sets Di = ANSWERf(e , T , a, pi , ci).
(Recall pi was the coins used to produce the encapsulated circuit Ci,
so that here the prover is opening this encapsulated circuit according
to challenge ci.)

(4) The prover receives M3 = M3,1M3,2.

The prover sends M4 = (Dl,. . . , Dn) to the verifier.

(5) The verifier receives M4 and makes its final check. For i = 1 , . . . ,n it checks
that CHECK^(€^, Ri, Ci, ci, Di) = 1. (Recall the verifier received the encap-
sulated circuit Ci in M3,2 and the opening Di in M4.) If this is true it
accepts, else it rejects.

Notice that the protocol is indeed of four rounds. Next we address its properties.

295

4.2 Result

Our claims about the above protocol are summarized in the following theorem.
Refer to Section 2 for definitions of the various notions.

Theorem 8. Assume f is a one-way function. Then protocol 4R-ZK is:

(1) A computationally convincing proof (ie. an argument) with negligible error
probability,

(2) A computational proof of knowledge with negligible knowledge error, and
(3) A (computational) zero-knowledge protocol,

all for the NP-relation Satisfy corresponding to the NP-complete language SAT.

We will prove these items in turn. As one might imagine, the difficulty in the
protocol design was making sure it was ZK. Having done the design to make this
work out, however, it will be relatively easy to show. The other claims turn out
to be more non-trivial. In particular the soundness is shown via a novel use of
proofs of knowledge. We begin with a technical lemma that underlies the first
two claims above.

4.3 The e-Extraction Lemma

The first two claims about the protocol are that it is computationally convincing
and a computational proof of knowledge. The first says that if cp is unsatisfiable
then a polynomial time prover has little chance of convincing the verifier to
accept, and the second says that if cp is satisfiable then any prover convincing
the verifier to accept actually “knows” a satisfying assignment to ‘p. Both these
claims pertain to the input formula ‘p. Yet our main technical lemma is a claim
not about cp but about the formula 6 constructed in the protocol. Remember
this formula (a random variable depending on other choices in the protocol) is
the one on which the atomic protocol is actually run. The crucial property of
this formula is that (as long as the verifier is honest, namely is V) it is always
satisfiable: whether or not cp is satisfiable, 8 is, because 0 is always satisfiable.

We claim that if a prover A convinces V to accept cp then we can extract a
satisfying assignment for 6, regardless of whether or not cp is satisfiable. Further-
more, this extraction can be done to meet the kinds of conditions asked in the
definition of [BeGo]. This will help prove both the above mentioned claims, and,
as motivation, it may help to say why. bughly, an assignment to 0 corresponds
to knowledge of inverses of f on random points. But remember 8 = cp V CP. SO if
cp is unsatisfiable, then an assignment to 8 must be an assignment to G, and this
will enable us to say in Lemma 10 that significant success in making the verifier
accept when cp is unsatisfiable translates to inverting the one-way function f .
On the other hand, if cp is satisfiable then an assignment to 6 will with high
probability be one to ‘p since otherwise someone is inverting f . Now let us state
and prove the lemma.

296

Lemma9. There is an expected polynomial time oracle algorithm E (the ex-
tractor) such that for any prover A and formula cp the following is true. Let
R be a mndom tape for A, and M ~ M ~ M ~ , J a partial transcript of an intemc-
tion between A,+,,R and V,. (The transcript includes the first two messages of
the protocol and the first part of V 's third message). Assume the commitment
setup strings in M I are good. Let n = IqI. Let p = A C C (A ~ , R , V # , MlMZM3,I) be
the probability that V accepts given the current partial transcript. Then on input
p, M I M ~ M ~ , ~ and with oracle access to A V , ~ , algorithm E outputs a satisfying
assignment to the formula 8 defined by the above partial transcript as in the
descraption of our protocol, and this with probability at least p - 2-".

Proof. Let R = (R1, . . . , &) be the sequence of commitment setup strings in
M I . We know that MZ = (b, C) where C = (Cl , .. . , C,) and C; is (supposed to
be) an encapsulated circuit as per an execution of the atomic protocol on input
8. Say c = (~ 1 , . . . , c,) is a challenge vector playing the role of message M3,2 in
the protocol, and D = (Dl , .. . , D,) = A44 is some response. It is useful to let

CHECK;(@,R,C,c,D) = /\y=lCHECKf(@, Ri ,Ci ,c i , Di)

be the final evaluation predicate of our verifier. We first describe a different
oracle algorithm El . It takes the same inputs as E should. It always returns a
satisfying assignment to 8, and this within an expected number of steps bounded
by poly(n)/(p-2-"). (We can assumep > 2-" since otherwise there is nothing to
show.) Algorithm El will sample responses of A V , ~ for different random challenge
vectors c, keeping other information fixed, until it finds a pair of challenge vectors
that are accepted by V but are different in at least one component. Namely,
repeat the following steps:
(1) Pick ct = (q , ~ , . . . ,q,,,) 4 (0, l}n and let M;' = M3,1 .ct

until 3 1 , m E [t] such that cl # cm but
(2) Let Df. = (Dt,l i - * i Dt,n) A,,R(Ml M2M&)

CHECK?(@,R,C,cl,DI) = CHECK;(@,R,C,C,,D,) = 1 .

NOW let l,m satisfy the halting condition. Let i E [n] be such that C l , i #
c,,,,i. By definition of CHECK? it must be that CHECKf(e,Ri,Cj,Ci,j,Di,j) =
CHECKf(@, R;, Ci , k,~ , D,,i) = 1, meaning encapsulated circuit C; of the atomic
protocol has been successfully opened both for a 0-challenge and 1-challenge.
But then, we know from the properties of the atomic protocol described in
Section 3.4, that we can compute a satisfying assignment for 8 via EXTRACT^ (8,
R;, C;, Dl,i, Dm,i). (We use here the assumption, made in the lemma statement,
that the commitment setup strings in MI are good. See Sections 3.3 and 3.4.)

Now we need to analyze the running time of El. Say c is good if CHECK;(@,
R, C, c, D) = 1 where D = AV,~(M1M2M3,1 .c). The probability that a random
c is good is p so one is found in expected l/p tries. Another different one is then
found in expected l/(p-2-") tries. So the pair is found within 2/Cp-2-") tries.
Each try being poly(n) time, we have the claimed time bound on the expected
running time of El.

297

Finally, we need to specify the extractor E claimed in the lemma. We apply
a trick used in [BeGo] to prove the equivalence of Definitions 3 and 4. On input
cp, MlM2M3,l and with oracle access to A v , ~ , algorithm E produces M3,2 as V
would (this consists of just picking n random challenges), sets M3 = M3,1M3,2,

and runs A q , ~ to get the response M4 = Aq,~(M1M2M3) . If the resulting tran-
script is rejecting (as can be determined by running the verifier's check) then E
just aborts. If not, it nonetheless aborts with probability exactly 2-". If neither
of these aborts happens, it runs El . Since it runs El with probability p - 2-", it
finds the satisfying assignment with this probability, and moreover its expected
running time is poly(n) + (p - 2-") - poly(n)/(p - 2-") which is poIy(n). I

4.4

We will justify the first claim of Theorem 8 by proving the following:

Lemmalo. Assume f i s a one-way function. Then protocol /R-ZK is a com-
putationally sound proof for the NP-relation Satisfy, achieving negligible e m r -
probability.

We first remark and explain that there is indeed something (non-trivial) to be
proven here. Typically, error-reduction is done by (serial or parallel) repetition.
Firstly, that's not what we are doing; there is some repetition in the protocol,
but the protocol itself does not consist of independently repeating some atomic
protocol. Moreover, even when the input cp is unsatisfiable, the atomic sub-
protocols are actually being run on a satisfiable formula (namely @). So we are
not counting on the soundness of the atomic protocol to prove the soundness of
our protocol!

As mentioned earlier, our approach is to use proofs of knowledge, and in
particular Lemma 9. Let us now provide the proof.

Protocol 4R-ZK is computationally convincing

Proof of Lemma 10. It is easy to see that the specified polynomial time prover
strategy P in 4R-ZK will meet the efficient completeness condition of Definition 2.
The issue is to show that computational soundness is achieved, and with the
claimed negligible error.

Let us assume protocol 4R-ZK does not have negligible error-probability. As
per Definition 2 this means there is no negligible function E such that 4R-ZK
meets the computational soundness condition of Definition 2 with error set to c.
We will show this contradicts the assumption that f is one-way.

So we want to show that f is not one-way. As per Definition 7, this means
we are given an arbitrary negligible function d and must show that there is an
inverter I and an infinite set K of integers such that Inv:(n) > 6(n) for all
n E K. Let us set ~ (n) = d(n) - 64n. This is still a negligible function. So by
the above assumption, 4R-ZK does not achieve error-probability E . Hence there
exists a polynomial timelrover $ and an infinite set F of unsatisfiable boolean
formulae such that Acc(P,,V,) 2 c(lcpl) for all cp E F. Let K be the set of all
integers n for which F contains a formula cp of length n. For each n E K we
fix (arbitrarily) some formula pn E F. Before describing the inverter I for f we

298

need to isolate certain executions of the interaction between fi, and V,, where

GOOD EXECUTIONS. Let n E K and let cp = cpn. Let R be a random tape for
P9 and M I M ~ M ~ , ~ a partial transcript of an interaction between P,,R and V,.
(The transcript includes the first two messages of the protocol and the first part
of V’s third message.) We say that R, MlM2M3,1 is good if the commitment
setup string in MI is good (as defined in Section 3.3) and also Acc(P~,R, V,, Mi
M2&,1) 1 ~(n)/2 (the probability here is only over the choice of the verifier’s
challenge vector c, since all other quantities are fixed). Since Acc(Fp,V,) 2
e(n) it must be that the probability (over R and the coins of V leading to
M I M ~ M ~ , ~) that Acc(P,,~,v, , M I M ~ M ~ , ~) 2 e(n)/2 is at least 1/2. On the
other hand the probability that the commitment setup string in MI is bad is
2-” (cf. Section 3.3). So the probability that R, M I M ~ M ~ , ~ is good is at least,
say, e(n)/4. (This is because we can assume wlog that d(n) = ~ (n) / (6 4 n) is, say,
at least 2-”12, whence 2-” 5 e(n)/2.) In the sequel we will focus on these good
transcript prefixes.
STRUCTURE OF INVERTER. We now describe an inverter I for f . The inverter
I is a polynomial sized collection of circuits { I,, : n 2 1 } as described in
Section 3.1. (Meaning there is a polynomial p ~ (-) such that the size of In is
a most pz(n) for all n 2 1.) We will show that that for all n E K we have
Inv:(n) > d(n) = ~(n) / (64n) . I,, has embedded into it the formula (P,, (which by
assumption is unsatisfiable). The input to I,, is a n-bit string y = f(z) where x
was chosen at random from (0 , l) ” . I,, wants to output a pre-image of y under
f . We describe I , as a randomized algorithm. (The coins can always be later
eliminated by using the non-uniformity). Think if I,, as having oracle access
to Pv where cp = (P,,. (Meaning it will feed it messages and run it, sometimes
“backing it up” and so forth. It implements this by running 9 a subroutine
with the common input fixed to cp. It is importan: here that P is polynomial
time). It begins by picking a random string R for P, and initializing the latter
with that.
FIRST MOVE. I,, will mimic the first move of V, with a slight twist. It picks
a c [n] and p & (0 , l) . Then for i = 1,. . . ,n and j = 0 , l it does the following:
If (i ,j) = (alp) then set y i j = y , else pick zi,j t (0,l)” and set yi,j =
f(xi,j). We let @i,j = F O R M U L A ~ (Y ~ , ~) be the boolean formula resulting from
applying Cook’s theorem to the “f(.) = -” relation on input yi,j, as described in
Section 3.2. Now I,, also picks random strings R1, . . . , h, of appropriate length,
as setup strings for the bit commitment to be used in the atomic protocol. It
lets MI consist of the strings yi,j for i = 1,. . . ,n and j = 0,1, together with
R1, . . . , I&,. This, thought of as the first message of V to F,, is then “sent” to

SECOND MOVE. I,, runs pv to get its response M2 = F9(Ml ; R) to the ver-
ifier message M I . This response has the form M2 = M2,1M2,2 where MZJ =
(bl , . . . , bn) and M z , ~ = (CI, . . . , C,,). Here Ci is (supposed to be) a committal for
arun of the atomic protocol on input 8 = cpVh, where pi = @l,l-bl V . . .V@n,l-b, -

rP = (Pn.

h

A

Fv.

299

h

OPENING. Recall that V, is supposed to return q , b i to Pw for all i = 1,. . . , n.
In would like to do the same. But if 6, = p then this means it must return a
pre-image of y,,p under f, and it does not know such a pre-image. (Indeed, the
goal of In is to find one). So in this case I,, aborts. But this can only happen
with probability 1/2 since p was a random bit. In case b, # p, our In sets
M3,1 = x = (z l , b l , . . . , z n , b m) . This is the first part of a verifier message M3 to
be sent to pv.
FINDING A WITNESS FOR 9. Now comes the important step. I,, Will run an
“extractor” for the protocol which consists of n parallel runs of the atomic pro-
tocol on input 8 and find a satisfying assignment for @. Specifically, we apply
Lemma 9. Let E be as in that lemma and let PI(.) be the polynomial which is
its expected running time. I,, runs E on input cp, MiM2M3,1, giving it oracle
access to Pq,~. However, this execution is halted in 2pl(n) steps. (Recall E has
an expected polynomial running time, but I,, needs to halt within a fixed poly-
nomial amount of time.) If E finds, within this time, a satisfying assignment T to
0 = cpV @, then I,, will be able to find what it wants, namely a point x satisfymg
f (z) = y. The crucial observation is that since cp is unsatisfiable, the assignment
T must satisfy 9. Hence it must satisfy 9 i , 1 - b i for some i E In]. Since a was
chosen at random from [n] it will be the case that i = a with probability at least
l / n . We know b, # ,O (since otherwise we aborted above) meaning 6, = 1 - P.
So we have an assignment to 9,,p. Now recall that @,,p = FORMULA^(^). Ap-
plying the witness transformation t f , 2 discussed in Section 3.2, we can compute
a string z such that f (z) = y. I,, does this and outputs z.
ANALYSIS. The running time of I , is clearly poly(n). We must analyze its success
probability. We assume R, M I M ~ M ~ , ~ is good in the sense defined above: we
saw this happens with probability at least 1/4. This means the commitment
setup strings in M I are good and p = Acc(P9,~,Vv, MlM2M3,1) 2 e(n)/2. Now
Lemma 9 says that E would find a satisfying assignment to 0 with probability
at least p - 2-” 2 ~ (n) / 2 - 2-n > e(n)/4. (Recall we assumed wlog that 6(n) =
~ (n) / (6 4 n) is at least 2-n /2 , whence the last inequality.) Since we halt E within
twice its expected running time, Markov’s inequality says we find the assignment
with at least half the original probability. So In finds z with probability at least
e(n)/8. Putting this together with the other probability losses, all together, In
succeeds with probability at least e(n)/(64n) = d(n), as desired. I

h

4.5

The second claim of Theorem 8 is justified by the following lemma.
L e m m a l l . Assume f ia a one-way function. Then protocol 4R-ZK is a compu-
tational proof of knowledge (with negligible knowledge error) for the NP-relation
Satisfg.

Before proving it let us discuss the issues. _Given a satisfiable formula cp and
oracle access to a polynomial time prover P, the goal is to extract a satisfy-
ing assignment to cp, with a success probability only marginally less than the

Protocol 4R-ZK is a computational proof of knowledge

300

probability that gv convinces Vv to accept. We can easily run the extractor of
Lemma 9 to find a satisfying assignment T , but for 8, not 50. But 8 = cpV9. Our
worry is that T satisfies 9, not cp. However, intuitively not, because a satisfying
assignment to Q, corresponds to the ability to invert f , and thus should appear
only with negligible probability. To capture this intuition we must show that
were T to satisfy 9 too often then there would be a way to invert f . We can do
this similarly to the proof of Lemma 10.

Proof of Lemma 11. We will exhibit an extractor El such that the conditions of
Definition 3 are met for some negligible function K (.) . (Recall Definition 3 and
Definition 4 are equivalent.) El has input satisfiable formula cp, and has oracle
access to P v , ~ where R is some (randomly chosen and then fixed) random tape
for prover p . EL first picks a random a tape R' for V . It now plays the role
of V , invoking P for the role of the prover, and generates a partial transcript
MI M2M3,1 of the interaction between pv and V&.,R~. If the commitment setup
strings in A 4 1 are not good then El aborts. Else it runs the knowiedge extractor
E of Lemma 9 on input cp, MIM&f3,1, giving it oracle access to P&R. Whatever
the latter outputs (hopefully an assignment T to e) is what El outputs.

Since E runs in expected polynomial time, it is easy to see that El does
too. Similarly, given Lemma 9, it is easy to see that with probability at least
p - 2-n+1, algorithm El outputs a satisfying assignment T to 8 (not cp!), where
p = Acc(F,, Vv). (We loose the additional 2-" over the success probability of
E because the commitment setup strings are bad with probability at most 2-"
(cf. Section 3.3) and El aborts in this case.)

But our goal is to find a satisfying assignment to cp. Remember 8 = Qi V cp.
Our worry is that T satisfies 9 rather than cp. Intuitively, however, not, because
we know that the ability to find an assignment to pi corresponds to the ability to
invert f. Thus it might happen, but only negligibly often. We must now capture
this.

We must show there exists a negligible function K(.) such that T is a satisfying
assignment to cp with probability p - ~ (n) , for all cp of size at least NF, where
N p is an integer depending on F. Assume towards a contradiction that there is
no such n. So given any negligible function K there is a polynomial time prover P
and an infinite set F of formulas such that when 'p E F , the assignment T output
by El satisfies CP (rather than cp) with probability at least (~ - 2 - ~) - (p-n(n)) =
~ (n) - 2-". We must show that this implies f is not one-way.

We will not give the construction and proof for this last statement in full
because the idea is essentially the same as in the proof of Lemma 10. We use the
composite of EP as an algorithm to construct an inverter for f . Like in the proof
of Lemma 10, we are given a value y and want to find a pre-image of y under
f . We put y into the first message of the verifier in the same way as before.
Eventually when Ef gives us an assignment T to Qi, it has some probability
of satisfying FORMULA~(Y) and then we get a pre-image of y under f, just a~
before. The details can be filled in by looking at the proof of Lemma 10. I

h

A

h

A

301

4.6 Protocol 4R-ZK is zero-knowledge

The third claim of Theorem 8 is justified by the following lemma.

Lemma12. Assume f is a one-way function. Then protocol 4R-ZK i s a (corn-
pu tational) zero-know ledge protocol.

Proof. We must specify^a sirnulatoys for which Definition 6 is met. S has input
cp and oracle access to V& where V is any (possibly cheating) polynomial time
verifier algorithm and R is a randomly chosen random tape for vv. It must
produce a transcript 7 such that (R,T) is distributed like random members
of the view of the real interaction between Pq and cv. Before describing the
algorithm let us sketch the intuition.

S will be trying to produce the prover moves in a conversation with pV,~. Of
course, not knowing a satisfying assignment for cp, it can’t really play the prover.
But recall the atomic protocol is run not on input cp but on input 8 = ‘p V Qi.
The trick is that it suffices to know a satisfying assignment for 8.

Indeed, suppose we know some satisfying assignment for 6. This is not nec-
essarily a satisfying assignment for ‘p. Still, we can “mimic the prover” by using
this assignment in the atomic protocol. The verifier will never know it was not
an assignment to cp, because the proof is ZK and hence witness indistinguish-
able [FeSh]: views of the verifier for different witnesses held by the prover are
indistinguishable.

So if the simulator can find a satisfying asiignment to 6 it can complete a
simulation. How can it find one? It can force V v , ~ to give it one! It will do this
by forcing the verifier to reveal a pre-image Si,l-bi of Yi , l -b ; for some i E [n].
This corresponds effectively to a satisfying assignment to and hence to a
satisfying assignment to 9 and hence t o 2 satisfying assignment to 8.

But how does it get 2i,l-bi? What V v , ~ reveals is q b i , exactly to prevent
the prover from getting q J - b i , because if the prover had the latter, it could
cheat. But the simulator has an advantage: it can backup the verifier and run
it twice for different choices of b l , . . . , b,. First it runs it in a normal way on
some “dummy” challenges b’, , . . . , 6 ; , gets back the corresponding pre-images,
and then claims that the red challenges b l , . . . , b, were different, in particular
have b, = 1 - bb, for some Q E [n]. For the new challenges, it has the pre-image.

Let us now specifil all this in full. Here is the algorithm for S with input ‘p

and oracle access to V+,,R:

(1) S runs V v , ~ to get the first message M1 = M1,1M1,2. Here M ~ J consists of
strings Yi , j E {0,1}” for i = 1, . . . ,n and j = 0,1, and M1,2 = (Ri,. . . , En)
consists of n strings to play the role of commitment setup strings. We let
@i,j = FoFtMULAf(yi,j) be the formula corresponding to yi , j via Cook’s
theorem, as explained in Section 3.2.

(2) S picks at random b i , . . . ,b; E {0,1} and lets #’ = # I J - b ; v. . .v#,,l-b~. It
then lets 8’ = cpV@‘ and picks at random an assignment T‘ to the variables
of 8’. (This assignment is extremely unlikely to satisfy 8’, but that does

*

302

not matter!) For each i = 1, . . . , n it then picks at random some coins pi and
computes an encapsulated circuit Cl = ENcCIRC~(@',T', & , p i) for 8'. We
let M4,1 = (b i , . . . , b k) and = (Ci,. . . ,CA). We view Mi = M4,1M4,2
as the second protocol message (from the prover).

consists of values xi,b; for i = 1,. . . , n and Mi,2 is a challenge vector. S
checks that f (q , b :) = Yj,b: for i = 1 ,..., n. If this fails, it outputs the
current partial conversation and halts. Else it continues.

(4) S now picks at random another sequence of bits b l , ..., bn E {0,1}. If
(bl, . . . , bn) = (b; , . . . ,bL) then it aborts (but this happens only with prob-
ability 2-"). Else it fixes an index a E [n] such that bi # b:. It lets
@ = @ l J - b 1 V . . . V @,,,l-b, and 9 = cp V @. Now, notice that 1 - b, = 6:
and s knows Za,bh, a pre-image of va,b;, from the previous step. Because of
this, it can compute a satisfying assignment T to the formula 9,,b;. (This
is via the properties of Cook's reduction as explained in Section 3.2.) But
then T also satisfies @ and hence 8, so S has in its possession a satisfying
assignment to 8. Now the idea is to act like the real prover on input this
assignment. (Note this assignment does not satisfy cp, but the verifier will
never be able to tell, because it does satisfy the formula 6 on which the
atomic protocol is performed, and the bit commitments are secure.) So for
each a = 1,. . . ,n the simulator picks at random some coins pi and com-
putes an encapsulated circuit Ci = ENCCIRC~ (9, T, Ri, pi) for 8. We let
M2 = M2,1M2,2 where M2,l = (b l , . . . ,bn) and M2,z = (Cl , . . . ,Cn). We
view MZ as a second protocol message (from the prover).

(5) Backing up Fv,~, the simulator S computes C , , R (M ~ M Z) to get back its
response M3 = kf3,1M3,2. Here M3,1 consists of values q , b i for 2 = 1, . . . ,n
and M3,2 is a challenge vector c1, . . . , c,,. s checks that f(zi,bi) = yi,bi for
i = 1,. . . ,n. If this check fails S cannot abort or output this conversation.
(One can check this would lead to an incorrect simulation.) Instead, it must
return to Step 4 and try again, continuing this loop until the check does
pass. (This is a standard procedure, used for example in [BMOl], and as
there one can show that the expected number of tries in this process is at
most 2.) So we go on assuming the check did pass.

(6) Having a satisfying assignment T to 6, the simulator (now in guise of the
prover) is able to answer the challenges c1, . . . , c,, by opening the appropri-
ate parts of the encapsulated circuits CI, . . . , C, just as the prover would.
NamelyScancomputeDi =A~~~~~f(€l,T,R,,pi,ci)fori= 1, ..., nand
let M4 consist of D1,. . . , D,.

(7) Finally, S can output T = MlMzM&f4 as a transcript of the interaction
between the prover and v , ,~ .

h

(3) s runs V+,,R(MlMi) to get back its response Mi = M&ML,2. Here

Fix some witness selector W: SAT + {0,1}* for the relation Satiafi(.,-). That
is, W(cp) is a satisfying assignment to cp for every cp E SAT. As per Definition 6

303

h

we want to show that the probability ensembles El = { ? v (~) } v E s ~ ~ and
&2 = {VIEW(P, W, 0, P) } ~ ~ S A T are computationally indistinguishable. (Refer
to Section 2.4 for the definition of 9.) We will do this under the assumption that
f is a one-way function. We will provide here only a brief outline of the intuition
behind this proof.

The function f shows up in two places in the protocol. First, f is used
in the construction of Y-values underlying the formula P. Second, f underlies
the bit commitment scheme of the atomic protocol. The first use of f is not a
concern for the zero-knowledge, in the sense that the protocol would be ZK (but
not computationally convincing or a computational proof of knowledge!) even if
the function used to produce the Y-values was not one-way. The ZK depends
however on the security of the bit commitment scheme, and hence indirectly on
the one-wayness of f .

The privacy (cf. Section 3.3) of the bit commitment scheme means that when
S, in Step (2), forms an encapsulated circuit using a dummy truth assignment T’,
the verifier 0 has no feasible way to detect it, and its behavior can change “only
negligibly.” Now, in Step (4) the simulator uses a satisfying assignment for 8 that
is different from the one the prover would use. But since the atomic protocol is ZK
it is also witness indistinguishable in the sense of [FeSh]. Furthermore, they show
that witness indistinguishability is preserved under parallel repetition, so the
protocol consisting of n parallel repetitions of the atomic protocol is also witness
indistinguishable. So the transcripts produced for the two different witnesses in
protocol 4R-ZK have (computationally) indistinguishable distributions.

The formal proof would be by contradiction. We assume the ensembles are
not computationally indistinguishable. So for any negligible function 6(.) there
is a distinguisher D = { D v } v E ~ ~ ~ and an infinite set F of satisfiable boolean
formulae such that

is at least ~(IQI) whenever cp E F. Using D we would do one of the following.
Either construct a polynomial sized circuit family that defeated the privacy of
the bit commitment scheme, which would contradict the security of this scheme
as proven in pa, HILL]. Or, build a distinguisher that would contradict the
witness indistinguishability of n parallel repetitions of the atomic protocol. We
omit these proofs from this abstract. I

Acknowledgments

We thank the (anonymous) referees of Eurocrypt 97 for comments which im-
proved the presentation of the paper.

Mihir Bellare is supported in part by NSF CAREER Award CCR-9624439
and a Packard Foundation Fellowship in Science and Engineering.

304

References

[BeGo] M. BELLARE AND 0. GOLDREICH. On Defining Proofs of Knowledge. Ad-
vances in Cryptology - Crypto 92 Proceedings, Lecture Notes in Computer
Science Vol. 740, E. Brickell ed., Springer-Verlag, 1992.

[BMOl] M. BELLARE, S. MICALI AND R. OSTROVSKY. Perfect Zero-Knowledge in
Constant Rounds. Proceedings of the 22nd Annual Symposium on the Theory
of Computing, ACM, 1990.

[BM02] M. BELLARE, S. MICALI AND R. OSTROVSKY. The true complexity of statis-
tical zero-Knowledge. Proceedings of the 22nd Annual Symposium on the
Theory of Computing, ACM, 1990.
M. BELLARE AND M. YUNG. Certifying permutations: Non-interactive zero-
knowledge based on any trapdoor permutation. Journal of Cryptology, Vol. 9,
No. 1, pp. 149-166, Winter 1996.

[Bl] M. BLUM. Coin Flipping over the Telephone. IEEE COMPCON 1982,

[BDMP] M. BLUM, A. DE SANTIS, s. MICALI, AND G. PERSIANO. Non-Interactive
Zero-Knowledge Proof Systems. SIAM Journal on Computing, Vol. 20, No. 6,
December 1991, pp. 1084-1118.
M. BLUM AND s. MICALI. How to generate cryptographically strong se-
quences of pseudo-random bits. SIAM Journal on Computing, Vol. 13, No. 4,
pp. 850-864, November 1984.
G. BRASSARD AND C. C R ~ P E A U . Non-transitive Transfer of Confidence: A
perfect Zero-knowledge Interactive protocol for SAT and Beyond. Proceedings
of the 27th Symposium on Foundations of Computer Science, IEEE, 1986.
G. BRASSARD, D. CHAUM AND C. CR~PEAU. Minimum Disclosure Proofs of
Knowledge. J . Computer and System Sciences, Vol. 37, 1988, pp. 156-189.
G. BRASSARD, C. CRBPEAU AND M. YUNG. Constant round perfect zero
knowledge computationally convincing protocols. Theoretical Computer Sci-
ence, Vol. 84, No. 1, 1991.
U. FEIGE, A. FIAT, AND A. SHAMIR. ZerGKnowledge Proofs of Identity.
Journal of Cryptology, Vol. 1, 1988, pp. 77-94.
u. FEIGE, D. LAPIDOT, AND A. SHAMIR. Multiple Non-Interactive Zero-
Knowledge Proofs Based on a Single Random String. Proceedings of the
31st Sympmhm on Foundations of Computer Science, IEEE, 1990.
u. FEIGE AND A. SHAMIR. Witness Indistinguishable and Witness Hiding
Protocols. Proceedings of the 22nd Annual Symposium on the Theory of
Computing, ACM, 1990.

[Fo] L. FORTNOW. The Complexity of Perfect Zero-Knowledge. In Advances in
Computing Research, Ed. S. Micali, Vol. 18, 1989.

[GoKa] 0. GOLDREICH AND A. KAHAN. How to Construct Constant-Round Zero-
Knowledge Proof Systems for NP. Journal of Cryptology, Vol. 9, No. 3, 1996,

[GoKr] 0. GoLDREICH AND H. KRAWCZYK. On the Composition of Zero Knowledge
Proof Systems. SIAM J. on Computing, Vol. 25, No. 1, pp. 169-192, 1996.

[GMW] 0. GOLDREICH, s. MICALI AND A . WIGDERSON. Proofs that yield nothing
but their validity or all languages in NP have zero knowledge proof systems.
Journal of the Association for Computing Macbinery, Vol. 38, No. 1, July
1991.

[BeYu]

pp. 133-137.

[BlMi]

[BrCr]

[BCC]

[BCY]

[FFS]

[FLS]

[FeSh]

pp. 167-190.

305

[GoOr]

[GoMi]

[GMR]

0. GOLDREICH AND Y. OREN. Definitions and properties of zero-knowledge
proof systems. Journal of Cryptology, Vol. 7, No. 1, 1994, pp. 1-32.
S. GOLDWASSER AND S. MICALI. Probabilistic Encryption. J. Computer and
System Sciences, Vol. 28, 1984, pp. 270-299.
S. GOLDWASSER, S. MICALI AND C. RACKOFF. The knowledge complexity of
interactive proof systems. SIAM J . on Computing, Vol. 18, No. 1, pp. 186-
208, February 1989.
J. HASTAD, R. IMPAGLIAZZO, L. LEVIN AND M. LUBY. Construction of a
pseudo-random generator from any oneway function. Manuscript. Earlier ver-
sions in STOC 89 and STOC 90.

[ImLu] R. IMPAGLIAZZO AND M. LUBY. One-way Functions are Essential for
Complexity-Based Cryptography. Proceedings of the 30th Symposium on
Foundations of Computer Science, IEEE, 1989.
R. IMPAGLIAZZO AND M. YUNG. Direct Minimum-Knowledge Computations.
Advances in Cryptology - Crypto 87 Proceedings, Lecture Notes in Computer
Science Vol. 293, C. Pomerance ed., Springer-Verlag, 1987.
T. ITOH AND K. SAKURAI. On the complexity of constant round ZKIP of
possession of knowledge. IEICE !lkansactions on findamentab of Electronics,
Communications and Computer Sciences, Vol. E76-A, No. 1, January 1993.
M. NAOR. Bit Commitment using Pseudo-Randomness. Advances in Cryptol-
ogy - Crypto 89 Proceedings, Lecture Notes in Computer Science Vol. 435,
G. Brassard ed., Springer-Verlag, 1989.

[NOVY] M. NAOR, R. OSTROVSKY, R. VENKATASAN, M. YUNG. Perfect zero knowl-
edge arguments for N P can be based on general complexity assumptions. Ad-
vances in cqyptology - Crypto 92 Proceedings, Lecture Notes in Computer
Science Vol. 740, E. Brickell ed., Springer-Verlag, 1992.
R. OSTROVSKY AND A. WIGDERSON. One-way functions are essential for non-
trivial zero-knowledge. Proceedings of the Second Israel Symposium on The-
ory and Computing Systems, IEEE, 1993.

[Towo] M. TOMPA AND H. WOLL. Random Self-Reducibility and Zero-Knowledge
Interactive-Proofs of Possession of Information. Proceedings of the 28th Sym-
posium on Foundations of Computer Science, IEEE, 1987.
A. C. YAO. Theory and Applications of Trapdoor functions. Proceedings of
the 23rd Symposium on Foundations of Computer Science, IEEE, 1982.

[HILL]

[ImYu]

[Is11

[Na]

[OsWi]

[Ya]

A
The protocol stated in Figure 1 as obtained by combining [Bl, FLS] is folklore.
First use Blum’s coin flipping in the well protocol [Bl] to get a common random
string, then do a NIZK [BDMP] proof, which can be done with a trapdoor per-
mutation [FLS, BeYu]. In somewhat more detail, the first move is the verifier
committing. For a four round ZK protocol we need a “certified one-way permu-
tation.” (Based on algebraic assumption, e.g. Discrete Logarithm. An arbitrary
trapdoor permutation won’t suffice.) After this the prover sends bits in the clear,
the verifier de-commits, and the XOR of the prover bits and the verifier’s de-
comitted bits is declared to be the common random string. The non-interactive
ZK (NIZK) proof is run on the latter. The reason the full protocol is an argu-
ment, not a proof, is that the verifier’s first round committals are done using a
computational assumption.

Constant round ZK via coin flipping plus NIZK

	Round-Optimal Zero-Knowledge ArgumentsBased on Any One-way Function
	1 Introduction
	1.1 The big picture
	1.2 Complexity measures and optimality
	1.3 Our result
	1.4 Open problems

	2 Definitions
	2.1 Preliminaries
	2.2 Arguments, or computationally convincing proofs
	2.3 Computational proofs of knowledge
	2.4 Zero-knowledge

	3 Building blocks for our protocol
	3.1 One-way functions
	3.2 Formulas and satisfiability
	3.3 Naor’s commitment scheme
	3.4 The atomic protocol

	4 Protocol 4R-ZK and its properties
	4.1 Protocol description
	4.2 Result
	4.3 The e-Extraction Lemma
	4.5 Protocol 4R-ZK is a computational proof of knowledge
	4.6 Protocol 4R-ZK is zero-knowledge

	Acknowledgments
	References

