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Abstract. We fill a gap in the theory of zero-knowledge protocols by 
presenting NP-arguments that achieve negligible error probability and 
computational zero-knowledge in four rounds of interaction, assuming 
only the existence of a one-way function. This result is optimal in the 
sense that four rounds and a one-way function are each individually 
necassary to achieve a negligible error zero-knowledge argument for NP. 

1 Introduction 

In a zero-knowledge (ZK) protocol, a prover P wants to  “convince” a verifier V 
that some claim is true, without “revealing” any extra information [GMR]. In the 
theory of ZK protocols, researchers have looked at the complexity assumptions 
based on which protocols can be constructed, and the resources necessary to  
do so. Here we fill a gap in this area. Let us begin by explaining the various 
dimensions of such protocols. 

1.1 The big picture 

The interaction between P and V takes place on some common input z, and 
P is trying to  convince V that x belongs to some underlying language L. The 
length of x is denoted n and one measures complexity in terms of n. The verifier 
is always a (probabilistic) polynomial time algorithm. Typically (and here) L 
is in NP. The system has two dimensions: “conviction” and ‘L~ro-kn~wledge.” 
Each can be formalized in one of two ways, a weak and a strong, depending 
on whether or not we restrict the adversary involved to polynomial time. To 
describe these dimensions, we use a terminology from [BCY] (which they credit 
to Chaum). 

DEGREES OF CONVICTION. Conviction is about “soundness.” If x $ L we ask 
that no matter how the prover behaves, it cannot convince V to accept, except 
with low probability (called the error probability, and denoted E ( - ) ) .  This has 
been formalized in two ways: 
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Statistical conviction: This is the notion of [GMR]. Even a computationally 
unrestricted prover should be unable to make the verifier accept x $! L, 
except with probability ~ ( n ) .  Protocols providing this strong degree of con- 
viction are usually called “proofs.” 
Computational conviction: This is the notion of [BrCr, BCC]. A prover re- 
stricted to (randomized) polynomial time should be unable to make the 
verifier accept x $ L ,  except with probability ~ ( n ) . ~  (But a more powerful 
prover might succeed in making the verifier accept with high probability.) 
Although weaker, this kind of soundness is good enough for cryptographic 
protocols. The soundness will typically depend on the assumed intractability 
of some computational problem, like factoring or computing discrete loga- 
rithms. Protocols meeting this condition are usually called “arguments.” 

DEGREES OF ZERO-KNOWLEDGE. Roughly, the zero-knowledge condition of [GMR] 
asks that when x E L,  the transcript of an interaction between the prover and 
a verifier yield no information (other than the fact that z E L )  to an adver- 
sary who gets to examine the transcript. Again, this adversary may be weak or 
strong: 

Statistical ZK: Even a computationally unrestricted adversary will not get 
useful information out of a transcript, except with low (negligible) proba- 
bility. Protocols meeting this are usually called SZK. 
Computational ZK: A (randomized) polynomial time adversary will not get 
useful information out of a transcript. (But a computationally unrestricted 
adversary might.) This will be the case when the transcript contains encryp- 
tions of sensitive data, which are useless to a polynomial time adversary, 
but can be opened by an unrestricted one. This type of ZK is usually called 
CZK and, although weaker, is good enough for cryptographic protocols. 

We clarify that this discussion is very informal. The definitions talk of the indis- 
tinguishability of ensembles. (See Section 2.4.) We also don’t make perfect ZK 
a special case, considering it included as a sub-case of statistical. 

A NOTE ON COMPLETENESS. In addition, a basic completeness condition is d- 
ways required. It asks that if x E L then there is a strategy via which the prover 
can make V accept. The definition of [BrCr, BCC] asks (as appropriate for a 
cryptographic protocol) that this be efficiently achievable: if P is given a witness 
for the membership of z in the NP language L then it can make V accept in 
polynomial time. The definition of [GMR] does not make such a requirement. 
However, ad known proofs (statistically convincing) for NP languages do meet 
this efficient completeness requirement, so we won’t discuss it further, assuming 
it always to be true. 
A NOTE ON PROOFS OF KNOWLEDGE. One usually also wants that when x E L, 
the ability of a prover to convince V to accept should be indicative of “knowl- 
edge” of a witness. Like soundness, in proofs it holds for arbitrary provers and 
in arguments for polynomial time ones. (The notion was suggested in [GMR], 

* This description masks some subtleties. See Definition 2 and the following discussion. 
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and an appropriate formalization has emerged in [BeGo]. See Section 2.3 for 
more.) Again, we will not discuss it further here, concentrating just on the two 
dimensions mentioned above. 
FOUR KINDS OF PROTOCOLS. Since the dimensions discussed above are orthog- 
onal, we get four kinds of protocols: 

CZK arguments: Cornputationdy convincing, computational ZK. The weak- 
est kind, but still adequate for cryptographic protocols. For example the 
arguments for all of NP in [BrCr, BCC] when a standard bit commitment 
is used. 
CZK proofs Statistically convincing, computational ZK. For example the 
proofs for all of NP in [GMW]. 
SZK arguments: Computationally convincing, statistical ZK. For example 
the arguments for all of N P  in [BrCr, BCC] when a discrete logarithm 
based bit commitment is used; also [NOVY]. 
SZK proofs: Statistically convincing, statistical ZK. The strongest kind, but 
not possible for all of N P  unless the polynomial time hierarchy collapses 
[Fo]. But there are examples for special languages: quadratic residuosity 
and its complement [GMR]; graph isomorphism and its complement [GMW]; 
constant round SZK proofs for quadratic residuosity and graph isomorphism 
[BMOl]. 

1.2 Complexity measures and optimality 

Recall that the error-probability is the probability e(.) in the soundness con- 
dition, whether in a proof or an argument. Most atomic ZK protocols have 
constant error. But one really wants low error. A standard goal is to make the 
error negligible. (That is, a function vanishing faster than the reciprocal of any 
polynomial.) We will have the same goal. 
COMPLEXITIES TO MINIMIZE. Theoretical research in ZK proofs has focused on 
achieving this low error while trying to minimize other complexity measures. 
Two main ones are: 

Rounds: The round complexity is the number of messages exchanged, or 
rounds of interaction in the protoc01.~ 
Assumptions: The complexity assumption underlying the protocol, it under- 
lies either the computational ZK or the computational conviction (or both). 
For example it may be an algebraic assumption like the hardness of factoring 
or discrete log computation, or a general assumption like the existence of 
claw-free pairs, trapdoor permutations, one-way permutations, or one-way 
functions. 

There may be some danger of confusion in terminology. We call each sending of a 
message by a party a round. Some works like [FeSh] call this a move, and say a round 
is two consecutive moves. In their terminology, our four round protocols would be 
four move or two round protocols. 
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Rounds 

polylnl 

Assumption Reference Type 

One-way function Combine [GMW, HILL, Nal CZK proof 

poly(n) 

6 
6 

5 

I 4 !Algebraic ICZK argument! 

SZK argument 

Claw-free pairs W Y I  SZK argument 

Claw-free pairs [GoKa] CZK proof 

One-way function [FeShl CZK argument 

One-way permutation “ O W  I -- 

I 4 (Trapdoor perm. + AlnebraiclCombine [Bl, FLS, BeYul ICZK argument) 

4 
~~ ~ ~~~~~ 

One-way function This paper CZK argument 

Fig. 1. Negligible error ZK protocols for NP. We list round complexity, complexity 
assumption used, and type (CZK or SZK, proof or argument). Remember four rounds 
is optimal. 

LOWER BOUNDS. We know that things can’t go too low. Four rounds and a 
one-way function are each individually necessary to get low-error ZK: 

0 Four rounds needed: Goldreich and Krawczyk [GoKr] show that there do not 
exist three round, negligible emr (whether proof or argument) ZK (whether 
computational or statistical) protocols for NP unless NP g BPP. (There is 
a technical condition saying the ZK must be of a certain form called black- 
box. But all known ZK protocols are of this type. In this paper whenever we 
talk of ZK we always mean black box. See Definition 6.) Accordingly, four is 
the minimal number of rounds required to achieve ZK with low error. (The 
result also holds if the protocol is not sound but just a proof of knowledge, 
SO that four rounds is also necessary for negligible knowledge error [ISl].) 

One-way function needed: ZK arguments can be used to implement many 
kinds of cryptographic schemes, whence by [ImLu] require a one-way func- 
tion to implement. Even for the proof case with a computationally un- 
bounded prover, it is known that for “hard” languages some kind of “one- 
way function” is necessary [OsWi]. Thus, a one-way function is a minimal 
assumption required to achieve ZK. 

0 

THE PROBLEM. There are many secalled “atomic” ZK protocols for NP that 
achieve constant error-probability in constant (three or four) rounds. Serial rep- 
etition lowers the error and preserves ZK [GoOr, ToWo], but at the cost of 
increasing the number of rounds to non-constant. So we would like to do parallel 
repetition. However, this is ruled out: first, we have the above mentioned results 
of [GoKr]; second, the latter also showed that in general parallel repetition does 
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not preserve ZK. So one must build low error ZK protocols directly. 
PREVIOUS WORK. A good deal of effort has gone into this, and a variety of 
ingenious constructions have been proposed. We summarize the known results 
in Figure 1. (One that may need elaboration is the protocol of [Bl, FLS, BeYu]. 
We discuss it briefly in Appendix A.) 

Notice that prior to our work optimality had not been achieved in any proto- 
col category. That is, neither for CZK arguments, SZK arguments or CZK proofs 
did we have four round, low error protocols based on any one-way function. In 
this paper we have filled the first of these gaps. 

We also clarify that we are only tabulating ZK protocols for all of N P  (ie. for 
NP-complete languages). There is also a lot of work on constant round ZK 
(especially statistical ZK) for special languages which we don’t get into. 

1.3 Our result 

RESULT. We look at low error CZK arguments for all of NP. Figure 1 tells US 

that it is possible to do it in four rounds using an algebraic assumption (hardness 
of discrete log) [FeSh]; or in five rounds using a one-way function [FeSh]. This 
leaves a (small but noticeable) gap, which we fill: we provide an optimal protocol, 
that uses only four rounds and a one-way function. 

Theoreml. Suppose there exists a one-way function. Then for any language 
in NP, there exiats a protocol which has four rounds of interaction; is compu- 
tationally convincing (ie. an argument) with negligible error probability; is corn- 
putational zero-knowledge; and is a computational proof of knowledge (for the 
underlying NP-relation) with negligible knowledge-error. 

TECHNIQUES. Our protocol is for the NP-complete language SAT. Let cp be the 
input formula. We use the idea of Feige and Sharnir [FeSh] of ORing to cp some 
formula Qi which represents some choices of the verifier, and then having the 
prover run a standard ZK proof on input 8 = cpvd. However, Feige and Shamir 
[FeSh] begin their protocol by having the verifier give a witness indistinguishable 
proof of knowledge of something underlying Qi. Instead, we work directly with 
the one-way function, having the verifier give a cut-and-choose type proof that @ 
meets some conditions. This is interleaved with a standard ZK proof run on 8. 
To implement the latter with a one-way function we use Naor’s bit commitment 
scheme [Na] which can be based on a one-way function via [HILL]. 

The tricky part is getting the protocol to be ZK. When the protocol is finally 
designed, however, the ZK is not hard to see. It turns out the technically more 
challenging part is to prove computational soundness. We introduce what seems 
to be a new technique, proving the soundness by using proofs of knowledge, 
relying on the strong formulation of the latter given in [BeGo]. 

1.4 Open problems 

We have filled the (small) existing gap between upper and lower bounds for 
CZK arguments. For other protocol categories, the existing gap is larger and still 
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unfilled. For CZK proofs, it is not known whether constant error can be achieved 
with a one-way function (let alone with what value of the constant). For SZK 
arguments, it is not known whether it can be done at all (ie. in polynomially 
many rounds) with a one-way function. 

2 Definitions 

We provide definitions for zero-knowledge arguments and computational proofs 
of knowledge. 

2.1 Preliminaries 

NP-RELATIONS. Let p ( - ,  .) be a binary relation. We say that p is an NP-relation 
if it is polynomial time computable and, moreover, there exists a polynomial p 
such that p ( x , w )  = 1 implies 12.1 5 ~ ( 1 x 1 ) .  For any x E {O,l}* we let p ( x )  = 
{ w E {O,l}* : p ( x ,  w) = 1 } denote the witness set of x .  We let L, = { x E 
{0,1}* : p ( x )  # 8 } denote the language defined by p. Note that a language L 
is in N P  iff there exists an NP-relation p such that L = L,. We say that p is 
NP-complete if L, is NP-complete. 

The example we will concentrate on is satisfiability. Let cp be a boolean 
formula (circuit) and T an assignment of 0/1 values to its variables. We let 
Satisfy('p,T) = 1 if T satisfies 'p (makes it true) and 0 otherwise. This is an 
NP-relation, and the corresponding language L ~ ~ t , ~ f y  is of course just SAT = 
{ 'p : cp is a satisfiable boolean formula }. 
NEGLIGIBILITY. Recall that a function 6: N + R is negligible if for every poly- 
nomial p ( . )  there exists an integer np such that 6(n) 5 l/p(n) for every n 1 np. 

INTERACTIVE ALGORITHMS. Parties in our protocols (provers and verifiers) are 
modeled as interactive functions. An interactive function A takes input x (the 
common input), the conversation MI . . . Mi so far, and coins R to output A(%, M I  
. . . Mil R) ,  which is either the next message, or some indicator to stop, perhaps 
accepting or rejecting in the process. Probabilities pertaining to this function 
are over the choice of R. We let A,(. ,  .) = A(z, .? .) and A,,R(*) = A ( x ,  -, R) .  
Typically we will have fixed x and will be talking about A,; sometimes we will 
also have fixed R and are talking about the deterministic function A,,R. A may 
also take an auxiliary input 2u (when A is the prover, this is a witness w E p(s)) 
and we write AW for this algorithm. Thus we can have A,W or A&. 

The transcript of a conversation between a pair of interactive functions is the 
entire sequence of messages exchanged between them until one of them halts. 
We let Acc(A,, B,) denote the probability (over the coins of both parties) that 
B accepts when talking to A on common input x .  We let Acc(A,, B,, MI . . . Mi) 
denote the conditional probability that B accepts in talking to A on common 
input x when the conversation so far is MI . . . Mi. 

We refer to the sending of a message by one party as a round of interaction. 
So the number of rounds is the total number of messages sent. 
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2.2 Arguments, or computationally convincing proofs 

The protocol must satisfy a standard completeness condition saying that a prover 
knowing a witness for z E L, can convince the verifier to accept z. Soundness 
pertains to what happens when x $ L,,. We want to say that it is unlikely that 
one can make the verifier accept, even if one is allowed to modify the strategy 
of the prover. The error-probability measures how unlikely. For the purpose of 
this paper we are interested in arguments of negligible error, but the definition 
that follows is for any error. 

Definition 2.  Let P, V be polynomial time interactive algorithms and let p be 
an NP-relation. We say that (P, V) is a computationally convincing proof (or 
argument) for p, with error-probability e ( . ) ,  if the following two conditions are 
met: 

(1) EFFICIENT COMPLETENESS: For every 5 E L, and every witness w E p ( x )  
it is the case that Acc(P,V, Vz) = 1. 

(2) COMPUTATIONAL SOUNDNESS: For every polynomial time interactive algo- 
rithm 2 there is a constant Np such Acc(gz,Vz) 5 c(Ix1) for all x $! L, 
which have length at least Np. 

If e is negligible then we say that the error-probability is negligible. 

We highlight the case of negligible error: the system has negligible error as long 
as there is some negligible function E(.) such that the error is e ( * ) .  

Notice one difference with defining interactive proofs: wz ask that the point 
at which the error goes down to e(.) depend on the prover P. This is necessary, 
as the discussion below explains. 
ISSUES IN COMPUTATIONAL SOUNDNESS. In the interactive proof setting [GMR], 
the error-probability of a protocol (P, V) is E ( . )  if for any 2 $! L and any inter- 
active algorithm playing the role of the prover, Acc(Fz,Vz) 5 c(IxI). The 
question of what is the error-probability of a computationally sound proof (ar- 
gument) is more subtle. The first thought is that we say the same thing, ex- 
cept restricting our attention to p$momial time prover algorithms. Namely, 
the error-probability is e(.) if Acc(P,,V,) 5 c(lsl) for any polynomial time in- 
teractive algorithm and any x # L. But this is not right. Underlying the 
argument is some computationally hard problem like inverting a one-way func- 
tion. The size of this problem is proportional to Izl. So for any j k e d  z there is 
some polynomial time prover who can convince the verifier with high probability, 
by solving the underlying computational problem. In other words, we cannot, 
for a fixed x pC L, hope that the probability of convincing the verifier is at most 
~(1x1) for all polynomial time provers. (Unless the argument is in fact a proof.) 
However, for any fixed polynomial time prover, as 1x1 grows, the probability of 
convincing the verifier decreases, because the size of the underlying hard com- 
putatgnal problem is increasing. In particular it is reasonable to ask that for 
each P the error eventually goes below the desired error-probability e(n), which 
is what we did above. 



In particular, the probability of convincing the verifier to accept x # L in 
a computationally convincing proof cannot be reasonably expected to be ex- 
ponentially small. It is restricted by the probability of solving the underlying 
computational problem. Since the typical assumption is that the latter is neg- 
ligible (not but less), the error of the argument too is negligible but not less. 
In particular, independent repetition will not lower the error to exponentially 
small. 

Another way to resolve the issue is to have a security parameter k that is 
separate from the input z and measures the size of the underlying hard problem. 
For any fixed x, the error-probability still goes down as we increase k. This 
formulation is probably better for protocol design, but in the current theoretical 
setting, we stick, for simplicity, to just one input, and adopt the definition above. 

2.3 Computational proofs of knowledge 

We want to say that if an interactive algorithm can convince V to accept 2 E 
L then it must actually “know” a witness w E p(z) .  This notion of a “proof 
of knowledge” was suggested in [GMR]. It was formalized in [BeGo] both for 
the standard interactive proof setting and the argument, or computationally 
convincing setting. (They discuss the latter in [BeGo, Section 4.71.) We adopt 
their notion. It comes in two equivalent forms. We present both. 

Recall an oracle algorithm E is an algorithm that can be equipped with 
an oracle. An invocation of the oracle counts y one step. We will talk of an 
“extractor” E which will be given an oracle for Pz, a prover algorithm on input 
5, and will then try to find a witness w to the membership of 5 in L,. The first 
definition below is what [BeGo] refer to as the “alternative form of validity.” 

Definition3. [BeGo] We say that verifier V defines a computational proof of 
knowledge for NP-relation p,  with knowledge-error ti,(.), if there is a an expected 
polynomial time oracle algorithm E (the extractor) such that for every polyno- 
mial time interactive algorithm @ there is a constant N p  such that if z E L, 
has length at least IVp then 

Pr [ ER(X) E p(x ) ]  2 A ~ ~ ( F ~ , , V , )  - t i , (~x/ )  . 

If K ( . )  is negligible then we say the proof has negligible knowledge-error. 

In other words, if E has oracle access to then it can output a witness for 
membership of 2 in L, with a probability only slightly less than the probability 
that would convince V to accept x. Again, note negligible knowledge error 
means the above is true for some negligible function K ( - ) .  

In the next formulation (the main one of [BeGo]) the extractor must find a 
witness with probability one. It is not limited to (expected) polynomial time, but 
must run in time inversely proportional to the excess of the accepting probability 
over the knowledge error. 
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Definition4. [BeGo] We say that verifier V defines a computational proof of 
knowledge for NP-relation p ,  with knowledge-error ti,(-), if there is a an oracle 
algorithm E (the extractor) and a constant c such that for every polynomial 
time interactive algorithm there is a constant N p  such that if x E L,  has 

length at least N p  and satisfies Acc(Fz,V,) > +), then Ep*(x)  E p(x), and 
moreover this computation halts in an expected number of steps bounded by 

* 

IzlC 
Acc(Sz, Vz) - ~ ( z )  ’ 

I€ .(a) is negligible then we say the proof has negligible knowledge-error. 

See [BeGo] for the proof that these two notions are equivalent. Sometimes it is 
convenient to use one, sometimes the other. 

2.4 Zero-knowledge 

ENSEMBLES AND COMPUTATIONAL INDISTINGUISHABILITY. We recall these no- 
tions of [GoMi, GMR]. An ensemble indexed by L g {0,1}* is a collection 
{E(Z)},EL of probability spaces (of finite support), one for each 2 E L .  Let 
Ei = {EI(z)},EL and €2 = {&(x)}zE~ be ensembles over a common index set 
L. A distinguisher is a polynomial sized family of circuits D = (Dt}zEL, with 
one circuit for each x E L. We say that E1,&2 are (computationally) indistin- 
guishobZe if there is a negligible function 6(.) such that for every distinguisher D 
there is a constant ND such that if 2 E L has length at least ND then 

ZERO-KNOWLEDGE. Let P, V be interactive algorithms. The definition of a zere  
knowledge interactive proof [GMR] refers to a language L. It begins by defining 
a probability space, the view of a cheating verifier 6 in talking to P on input 
x E L. (And then says there is a simulator that on input x produces an “indis- 
tinguishable” view.) The basic idea is the same in the argument setting, but one 
must be careful about a couple of things. Recall prover P begins with a witness 
w to x. The view generated by P and V depends not just on P but on w .  An 
elegant way to bring this into the picture is via the notion of a witness selector 
[BeYu] . 

Definition 5. [BeYu] A witness selector for an NP-relation p is a map W: L, + 
{0,1}* with the property that W ( x )  E p(x) for each z E L,. 

That is, a witness selector is just a way of fixing an association of a particular 
witness to each input. When p = Satisfy and L,  = SAT this just means associ- 
ating to any formula z = p E SAT a particular satisfying assignment to it, out 
of all the possible satisfying assignments. 
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Now we can define the view. Let P,V be interactive algorithms, p an NP- 
relation, and W a witness selector for p. We let VIEW(P, W, V, 2) be the proba- 
bility space whose points are of the form (R,  T), where R is a random tape for Vz 
and T is a transcript of an interaction between F'F(') and V,,R. The associated 
probability is that over the choice of R and the coins of P?('). The collection 
{VIEW(P, W, Q, z)},~~, becomes an ensemble. 

We define zereknowledge in a strong "black-box" simulation fozm. The sim- 
ulator S is an oracle algorithm given input z and oracle access to V.,R where R 
has been chosen at random. (The simulator does not have to pick R. It is done 
automatically and the simulator only sees the interface to the oracle V,,R.) It 

will output a transcript 7 of a conversation between Pz and &R. We let sv" (z) 
denote the probability space of pairs (R, r )  where R was chosen at random and 

A 

A 

h 

7 4- SV-Jqz). 

Definition 6. We say that (P, V )  is a (computational) zero-knowledge protocol 
for NP-relation p if there exists an expected polynomial time oracle algorikhm S 
(the simulator) such that for every polynomial time interactive algorithm V (the 

cheating verifier) and every witness selector W for p, the ensembles {? ( z ) } ~ E L ,  

and {VrEw(P, W, 0, z)},EL, are computationally indistinguishable. 

A 

Note formally, zero-knowledge is no longer a property of the language L, but of 
the relation p itself. 

Under this definition of zero-knowledge, we know that any negligible error 
probability zero-knowledge argument for an NP-complete relation p must have 
at least four rounds, assuming N P  is not in BPP [GoKr]. We want to meet this 
bound given only a one-way function. 
REMARK. The above notion of black-box simulation zero-knowledge is stronger 
than those of [GoOr, GoKr, BM021 in the following sense. In our notion, the 
simulator has no control over the coins R of q,: they are automatically chosen 
(at random) and then fixed. The simulator does not even have direct access 
to them: it just gets an oracle for pzz ,~ .  In the notions of [GoOr, GoKr], the 
simulator could choose these coins as it liked, even try running V, on many 
different random tapes. In the notion of [BM02] it could not choose them, but 
did have direct access to them, and could try several random tapes. However, 
since our results are positive, making a more stringent definition only strengthens 
them. Also, all known zero-knowledge protocols do meet our definition. 

For simplicity we do not talk of non-uniform verifiers, but of course the above 
definition could be extended to include them. 

h 

3 Building blocks for our protocol 

Our protocol uses one-way functions, satisfiability, and a standard bit commit- 
ment based atomic ZK protocol for satisfiability. 
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3.1 One-way functions 

Let f :  {0,1}' + {0,1}' be some length-preserving function. An inverter for 
f is a family I = {I,,},,>l where each I,, is a circuit, taking n bit inputs and 
yielding n bit outputs, and having size at most p(n) for some polynomial p( . ) .  
We let 

denote the probability that I,, successfully inverts f at the point y = f(z), taken 
over a random choice of x E (0, l}". 

Definition 7. Let f: (0,l)' + (0,l) '  be apolynomial time computable, length- 
preserving function. We say f is one-way if there is a negligible function a(.) such 
that for every inverter I there is an integer Nr such that Invi(n) 5 b(n) for all 
n> N I .  

Hereafter we fix a one-way function f, and the notation f will always refer to 
this fixed function. 

3.2 Formulas and satisfiability 

We will present ZK arguments for the NP-complete language SAT. More pre- 
cisely let Satisfy be the NP-relation defined by Satish(cp,T) = 1 if assign- 
ment T satisfies formula 'p. The corresponding language Lsctish is of course 
SAT = { 'p : cp is a satisfiable boolean formula }. We will present ZK argu- 
ments for the NP-relation Satisfs, meeting the definitions in Section 2. (In terms 
of those definitions, the NP-relation here is p = Satisfar, the common input is 
x = cp, a boolean formula, and the witness w is a satisfying assignment T to 9.) 

We will be encoding statements about the one-way function f as formu- 
las, and need some standard features of the Cook-Levin theorem. The NP- 
completeness of SAT as proved in this theorem implies the following. There is 
a polynomial time computable transformation  FORMULA^ (.) such that for any 
y E {0,1}* it is the case that  FORMULA^(^) is a boolean formula which is satis- 
fiable iff there exists an x E {0,1}' such that f(z) = y. More important, there 
are polynomial time computable maps t f ~ ,  t f , 2  (called witness transformations) 
with the following properties. Given z, map tf,l outputs a satisfying assignment 
T = t j , ~  (5) to FoF~MuLA~(~(z)) .  Conversely, given a satisfying assignment T to 
 FORMULA^(^), map t f , 2  outputs a point z = t f , z (T)  such that f(x) = y. We will 
refer to both the transformation  FORMULA^ and to the accompanying witness 
transformations in what follows. What is important to remember is that knowl- 
edge of a satisfying assignment T to  FORMULA^(^) is tantamount to knowledge 
of a pre-image z of y under f .  
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3.3 Naor’s commitment scheme 

We will use Naor’s commitment scheme [Na] which can be based on any one-way 
function via [HILL]. Some special properties of the scheme are important for us. 

It work like this. Suppose A has some data d E { O , l } m  that she wants to 
commit to B. First, B must send A a random string R, which we call the com- 
mitment setup string, and which has length polynomial in the security parameter 
n and the data length m. Then, A picks at random some string s to use as coins, 
and computes a function a = COMMIT~(R, d, 3). (This function depends on a 
pseudorandom bit generator [BlMi, Ya], constructed out of f via [HILL], but we 
don’t need to know that.) This a is A’s commitment to d and is sent to B. At 
a later stage, B can ask A to “open” the commitment, at which point A sends 
d and 3, and B checks that CY = COMMIT~(R, d ,  8 ) .  

The protocol must have two properties. First is privacy: a gives B no infor- 
mation about d. Second is aoundness: A can’t create commitments which she 
can open in more than one way. 

In Naor’s scheme “a], the privacy is true in a computational sense. That is, 
as long as B cannot invert the underlying one-way function f, it gets no partial 
information about d. Soundness however is true in a strong, unconditional sense, 
and since this is important for us, we need to discuss it further. 

A de-committal of a is a pair (d,  s) such that a = C O M M I T ~ ( R , ~ , ~ ) .  We say 
that A opens a as d if she provides a de-committal ( d , s )  of a. We say that a 
commitment setup string R is bad if there exists a pair ( d l ,  SI), (dz,  32) of de- 
committals of a such that dl # &. We say R is good if it is not bad. Naor’s 
scheme has the property that a randomly chosen commitment setup string is bad 
with probability exponentially small in n [Na, Claim 3.11. For our purposes we 
set the parameters of the scheme so that this probability is 2-2n. (The length 
of R required to make this true depends not only on n but also on the data 
length m. In what follows, we assume R is of the right length to make this true 
with respect to whatever data length we have.) It follows that the probability 
that even one out of n random commitment setup strings R1,. . . , R, is bad is 
at most n .2-’” 5 2-”. This will be used repeatedly in what follows. 

3.4 The atomic protocol 

We use as a primitive a atomic four round ZK argument achieving error 1/2. 
We now specify the properties we want of it and the notation used to describe 
it. To avoid depending on the details of any specific protocol, it is described via 
generic components and steps. 

THE PROTOCOL. In the literature there are several commitment-based three 
round ZK arguments with error 1/2. For concreteness, take the one of Brassard, 
Crkpeau and Chaum [BCC], or the one based on general commitment in [ImYu]. 
To set it up using one-way function based commitment, we first have the verifier 
send a commitment setup string, and then run a protocol such as the ones in 
[BCC, ImYu], so that we have four rounds. 
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To avoid depending on the details of any specific underlying protocol, we 
describe the protocol via generic components and steps. Let 8 denote the boolean 
formula which is the common input. The prover is assumed to have a satisfying 
assignment T for 8. We now specify the instructions for the parties, with the 
nomenclature to be explained later: 

(1) Verifier picks at random a commitment setup string R and sends it to the 
prover. 

(2) Prover picks a random string p and computes an encapsulated circuit C = 
ENcCIRC~(&),T, R,p). This is sent to the verifier. 

(3) Verifier picks a random challenge bit c and sends it to the prover. 
(4) Prover computes an answer D = ANsWERf(8 ,  T,  R, p, c) and sends it to 

the verifier. 
(5) Verifier checks that C H E c K f ( 8 ,  R, C, c, 0) = 1. If this is true it accepts, 

else rejects. 

Now let us explain the components. In the second step, the prover computes an 
object C we call an “encapsulated circuit.” This step will involve a number of 
bit commitments which is proportional to the size of 8, and they are performed, 
here, using the scheme of Section 3.3, which can be implemented given f. The 
commitment setup string used (for all the commitments) is R, and p represents 
some random choices that underly the encapsulation. (Roughly, the prover will 
first create a randomized version of 8 that is annotated with the values given 
by the truth assignment T. This annotated circuit, call it  d, would reveal T, 
but the prover does not send it directly. Instead, he commits to it, sending 
C O M M I T ~ ( R , ~ ,  s) where s is part of p. But the details, such as what is d,  will 
not matter: later we will summarize all the properties we need.) As in a typical 
cut-and-choose protocol, the verifier then poses a random challenge question, 
which is the bit c, and prover must “open” the encapsulated circuit in one of two 
ways. This “answer” of the prover, denoted D, is computed as a function of the 
truth assignment, the challenge, and the random choices underlying the original 
encapsulation. It consists of de-committing certain parts of C. The answer being 
sent to the verifier, the latter checks that it is correct. The check is a function 
of the encapsulated circuit, the commitment setup string, the challenge, and the 
answer provided. 

PROPERTIES. We assume certain properties of this protocol. The standard ex- 
ample protocols (eg. [BCC]) do have these properties. 

We assume that if an encapsulated circuit C is successfully “opened” in both 
ways, ie. for both a 0-challenge and a 1-challenge, then one can obtain the truth 
assignment underlying 8. This is true no matter how C was constructed, and 
is the technical fact underlying the protocol being a (computational) proof of 
knowledge with knowledge error 1/2. 

More precisely, there is a polynomial time algorithm  EXTRACT^ such that the 
following is true. Suppose R is a good commitment setup string. Let C be some 
string sent by the prover in the first step. (It purports to be a correctly computed 
encapsulated circuit.) Let DO, D1 be strings such that  CHECK^(@, R, C, 0, DO) = 
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CHECKf(@, R, C, l ,&) = 1. Then EXTRACTf(@, R, C, DO, 01) = 2‘” is a truth 
assignment that satisfies 8. 

We stress that this requires the commitment setup string R to be good as 
defined in Section 3.3. We are using the fact that when this happens, it is im- 
possible (not just computationally infeasible) for the commiter (here the prover) 
to open a commitment in two different ways. 

We will need (to show our protocol is ZK) that one can compute ENCCIRC~ (8, 
T ,  R, p)  for any T ,  not just a T that satisfies p. The underlying annotated circuit 
d will be non-sensical in this case, but the verifier will not know, because the 
annotated circuit is provided in committed form. (Of course, a prover providing 
such an encapsulated circuit will be hard put to answer the challenges, but that 
will not matter for us.) 

Finally, of course, we also need that the protocol is ZK. (Actually, all we will 
use is that it is witness indistinguishable in the sense of FeSh], something which 
follows from its being ZK.)  

4 Protocol 4R-ZK and its properties 

We now describe our protocol and its properties. We call the protocol 4R-ZK 
for “four round ZK.” 

4.1 Protocol description 

We give instructions for the prover P and the verifier V to execute protocol 
4R-ZK. The common input is a formula ‘p of size n, and the prover is assumed 
in possession of a satisfying assignment T to cp. Refer to Section 3 for the notation 
and components referred to below. 

(1) The verifier’s message M I  = M1,1M1,2 consists of two parts computed as 
we now describe. 
(1.1) For i = 1, .  . . , n and j = 0 , l  the verifier chooses xj,j & {O, 1)“ and 

sets yi,, = f(zi,,). These points are hereafter called the “Y-values.” 
It lets MI,J  consist of these 2n strings. 

(1.2) The verifier picks at random commitment setup strings R1,. . . , R,. 
It is thereby initiating n parallel runs of the atomic protocol: Ri will 
play the role of the commitment setup string for the i-th run. (But 
the input formula 8 for these runs has however not yet been defined! 
That will appear later.) It sets M1,2 = ( R I ,  . . . ,Rn). 

The verifier sends Mi = M1,1M1,2 to the prover. Now for i = 1, .  . . ,n and 
j = 0 , l  we let @i,, =  FORMULA^(^^,,) as per Section 3.2. This is a formula 
both parties can now compute. 

(2) The prover receives M I .  Its reply Mz = Mz,lM2,Z consists of two parts 
computed as we now describe. 
(2.1) The prover picks bits 61, .  . . , 6, e (0 , l )  and sets M z , ~  = (61 ,  . . . , bn). 

The bit bi is viewed as selecting the Y-value Yi,bi, and the verifier is 
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being asked to reveal the pre-image of this value, which he will do 
in the next step. 

(2.2) We now set CP = @1J-b1 V . . , V G , , J - ~ ~ .  (This is the OR of all 
formulas corresponding to Y-values which the prover has n o t  asked 
be revealed. As long as f is oneway, the prover has very little chance 
of knowing a satisfying assignment to CP.)  We then set €3 = @ V 'p. 

Notice that T (the satisfying assignment to 'p that the prover has) 
is also a satisfying assignment to 6, so the prover has a satisfying 
assignment to 8 (even though he does not have one for @). Viewing 
R1,. . . , R, as commitment setup strings initiating n parallel runs 
of the atomic protocol on common input 6, the prover will now 
perform the second step for each of these executions of the atomic 
protocol. Namely, for i = 1,. . . , n it picks at random a string pi 
to be used as coins in the encapsulated circuit computation, and 
computes Ci = ENCCIRC~(@,T, Ri, p i )  for i = 1,. . . ,n. He now sets 
Mz,z = (Cl,. . ., Cn). 

The prover sends M2 = Mz,lM2,2 to the verifier. 

(3) The verifier receives M2 = M2,1M2,2. Its reply M3 = M3,1M3,2 consists of 
two parts computed as we now describe: 
(3.1) It sets M3,1 = ( Z l , b l , .  . . , z,,b,), meaning it returns the pre-images 

for the Y-values selected by the bits bl, . . . , b, that the prover sent 
in MZJ = (bl,. . . , b,).  

(3.2) Having bl, . . . , b,, the verifier knows @ and hence 8, these formulas 
being as defined above. It now picks challenges c1, . . . , c, c (0, l}, 
one for each run of the atomic protocol on input 8, and sets M3,2 = 
(Cl,. . . ,cn). 

The verifier sends A43 = M3,1hf3,2 to the prover. 

(4.1) say M3,1 = (21,. . . ,zn). The prover checks that f(zi) = Yj,bi for 
i = 1 , .  . . , n, and if this check fails then it aborts the protocol. Else 
it goes on to the next step. 

(4.2) Say M3,2 = (a,. . . , c,). The prover computes the answers to these 
challenges. Namdy for i = 1,. . . , n it sets Di = ANSWERf(e ,  T ,  a, pi ,  ci). 
(Recall pi  was the coins used to produce the encapsulated circuit Ci, 
so that here the prover is opening this encapsulated circuit according 
to challenge ci.) 

(4) The prover receives M3 = M3,1M3,2. 

The prover sends M4 = (Dl,. . . , Dn) to the verifier. 

( 5 )  The verifier receives M4 and makes its final check. For i = 1 , .  . . ,n it checks 
that  CHECK^(€^, Ri, Ci, ci, Di) = 1. (Recall the verifier received the encap- 
sulated circuit Ci in M3,2 and the opening Di in M4.) If this is true it 
accepts, else it rejects. 

Notice that the protocol is indeed of four rounds. Next we address its properties. 
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4.2 Result 

Our claims about the above protocol are summarized in the following theorem. 
Refer to Section 2 for definitions of the various notions. 

Theorem 8. Assume f is a one-way function. Then protocol 4R-ZK is: 

(1) A computationally convincing proof (ie. an argument) with negligible error 
probability, 

( 2 )  A computational proof of knowledge with negligible knowledge error, and 
( 3 )  A (computational) zero-knowledge protocol, 

all for the NP-relation Satisfy corresponding to the NP-complete language SAT. 

We will prove these items in turn. As one might imagine, the difficulty in the 
protocol design was making sure it was ZK. Having done the design to make this 
work out, however, it will be relatively easy to show. The other claims turn out 
to be more non-trivial. In particular the soundness is shown via a novel use of 
proofs of knowledge. We begin with a technical lemma that underlies the first 
two claims above. 

4.3 The e-Extraction Lemma 

The first two claims about the protocol are that it is computationally convincing 
and a computational proof of knowledge. The first says that if cp is unsatisfiable 
then a polynomial time prover has little chance of convincing the verifier to 
accept, and the second says that if cp is satisfiable then any prover convincing 
the verifier to accept actually “knows” a satisfying assignment to ‘p. Both these 
claims pertain to the input formula ‘p. Yet our main technical lemma is a claim 
not about cp but about the formula 6 constructed in the protocol. Remember 
this formula (a random variable depending on other choices in the protocol) is 
the one on which the atomic protocol is actually run. The crucial property of 
this formula is that (as long as the verifier is honest, namely is V )  it is always 
satisfiable: whether or not cp is satisfiable, 8 is, because 0 is always satisfiable. 

We claim that if a prover A convinces V to accept cp then we can extract a 
satisfying assignment for 6, regardless of whether or not cp is satisfiable. Further- 
more, this extraction can be done to meet the kinds of conditions asked in the 
definition of [BeGo]. This will help prove both the above mentioned claims, and, 
as motivation, it may help to say why. bughly, an assignment to 0 corresponds 
to knowledge of inverses of f on random points. But remember 8 = cp V CP. SO if 
cp is unsatisfiable, then an assignment to 8 must be an assignment to G, and this 
will enable us to say in Lemma 10 that significant success in making the verifier 
accept when cp is unsatisfiable translates to inverting the one-way function f .  
On the other hand, if cp is satisfiable then an assignment to 6 will with high 
probability be one to ‘p since otherwise someone is inverting f .  Now let us state 
and prove the lemma. 
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Lemma9. There is an expected polynomial time oracle algorithm E (the ex- 
tractor) such that for any prover A and formula cp the following is true. Let 
R be a mndom tape for A,  and M ~ M ~ M ~ , J  a partial transcript of an intemc- 
tion between A,+,,R and V,. (The transcript includes the first two messages of 
the protocol and the first part of V 's third message). Assume the commitment 
setup strings in M I  are good. Let n = IqI. Let p = A C C ( A ~ , R , V # ,  MlMZM3,I) be 
the probability that V accepts given the current partial transcript. Then on input 
p, M I M ~ M ~ , ~  and with oracle access to A V , ~ ,  algorithm E outputs a satisfying 
assignment to the formula 8 defined by  the above partial transcript as in the 
descraption of our protocol, and this with probability at least p - 2-". 

Proof. Let R = (R1, .  . . , &) be the sequence of commitment setup strings in 
M I .  We know that MZ = (b, C )  where C = (Cl , .. . , C,) and C; is (supposed to 
be) an encapsulated circuit as per an execution of the atomic protocol on input 
8. Say c = ( ~ 1 , .  . . , c,) is a challenge vector playing the role of message M3,2 in 
the protocol, and D = (Dl  , .. . , D,)  = A44 is some response. It is useful to let 

CHECK;(@,R,C,c,D) = /\y=lCHECKf(@, Ri ,Ci ,c i ,  Di )  

be the final evaluation predicate of our verifier. We first describe a different 
oracle algorithm El .  It takes the same inputs as E should. It always returns a 
satisfying assignment to 8, and this within an expected number of steps bounded 
by poly(n)/(p-2-"). (We can assumep > 2-" since otherwise there is nothing to 
show.) Algorithm El will sample responses of A V , ~  for different random challenge 
vectors c, keeping other information fixed, until it finds a pair of challenge vectors 
that are accepted by V but are different in at least one component. Namely, 
repeat the following steps: 
(1) Pick ct = ( q , ~ , .  . . ,q,,,) 4 (0, l}n and let M;' = M3,1 .ct 

until 3 1 ,  m E [t] such that cl # cm but 
(2) Let Df. = (Dt,l i - * i Dt,n) A,,R(Ml M2M&) 

CHECK?(@,R,C,cl,DI) = CHECK;(@,R,C,C,,D,) = 1 .  

NOW let l,m satisfy the halting condition. Let i E [n] be such that C l , i  # 
c,,,,i. By definition of CHECK? it must be that CHECKf(e,Ri,Cj,Ci,j,Di,j) = 
CHECKf(@, R;, Ci ,  k,~ ,  D,,i) = 1, meaning encapsulated circuit C; of the atomic 
protocol has been successfully opened both for a 0-challenge and 1-challenge. 
But then, we know from the properties of the atomic protocol described in 
Section 3.4, that we can compute a satisfying assignment for 8 via  EXTRACT^ (8, 
R;, C;, Dl,i, Dm,i). (We use here the assumption, made in the lemma statement, 
that the commitment setup strings in MI are good. See Sections 3.3 and 3.4.) 

Now we need to analyze the running time of El. Say c is good if CHECK;(@, 
R, C, c, D) = 1 where D = AV,~(M1M2M3,1 .c). The probability that a random 
c is good is p so one is found in expected l/p tries. Another different one is then 
found in expected l/(p-2-") tries. So the pair is found within 2/Cp-2-") tries. 
Each try being poly(n) time, we have the claimed time bound on the expected 
running time of El. 
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Finally, we need to specify the extractor E claimed in the lemma. We apply 
a trick used in [BeGo] to prove the equivalence of Definitions 3 and 4. On input 
cp, MlM2M3,l and with oracle access to A v , ~ ,  algorithm E produces M3,2 as V 
would (this consists of just picking n random challenges), sets M3 = M3,1M3,2, 

and runs A q , ~  to get the response M4 = Aq,~(M1M2M3) .  If the resulting tran- 
script is rejecting (as can be determined by running the verifier's check) then E 
just aborts. If not, it nonetheless aborts with probability exactly 2-". If neither 
of these aborts happens, it runs El .  Since it runs El with probability p - 2-", it 
finds the satisfying assignment with this probability, and moreover its expected 
running time is poly(n) + (p - 2-") - poly(n)/(p - 2-") which is poIy(n). I 

4.4 

We will justify the first claim of Theorem 8 by proving the following: 

Lemmalo. Assume f i s  a one-way function. Then protocol /R-ZK is a com- 
putationally sound proof for the NP-relation Satisfy, achieving negligible e m r -  
probability. 

We first remark and explain that there is indeed something (non-trivial) to be 
proven here. Typically, error-reduction is done by (serial or parallel) repetition. 
Firstly, that's not what we are doing; there is some repetition in the protocol, 
but the protocol itself does not consist of independently repeating some atomic 
protocol. Moreover, even when the input cp is unsatisfiable, the atomic sub- 
protocols are actually being run on a satisfiable formula (namely @). So we are 
not counting on the soundness of the atomic protocol to prove the soundness of 
our protocol! 

As mentioned earlier, our approach is to use proofs of knowledge, and in 
particular Lemma 9. Let us now provide the proof. 

Protocol 4R-ZK is computationally convincing 

Proof of Lemma 10. It is easy to see that the specified polynomial time prover 
strategy P in 4R-ZK will meet the efficient completeness condition of Definition 2. 
The issue is to show that computational soundness is achieved, and with the 
claimed negligible error. 

Let us assume protocol 4R-ZK does not have negligible error-probability. As 
per Definition 2 this means there is no negligible function E such that 4R-ZK 
meets the computational soundness condition of Definition 2 with error set to c. 
We will show this contradicts the assumption that f is one-way. 

So we want to show that f is not one-way. As per Definition 7, this means 
we are given an arbitrary negligible function d and must show that there is an 
inverter I and an infinite set K of integers such that Inv:(n) > 6(n) for all 
n E K. Let us set ~ ( n )  = d(n) - 64n. This is still a negligible function. So by 
the above assumption, 4R-ZK does not achieve error-probability E .  Hence there 
exists a polynomial timelrover $ and an infinite set F of unsatisfiable boolean 
formulae such that Acc(P,,V,) 2 c(lcpl) for all cp E F.  Let K be the set of all 
integers n for which F contains a formula cp of length n. For each n E K we 
fix (arbitrarily) some formula pn E F.  Before describing the inverter I for f we 
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need to isolate certain executions of the interaction between fi, and V,, where 

GOOD EXECUTIONS. Let n E K and let cp = cpn. Let R be a random tape for 
P9 and M I M ~ M ~ , ~  a partial transcript of an interaction between P,,R and V,. 
(The transcript includes the first two messages of the protocol and the first part 
of V’s third message.) We say that R,  MlM2M3,1 is good if the commitment 
setup string in MI is good (as defined in Section 3.3) and also Acc(P~,R, V,, Mi 
M2&,1) 1 ~(n)/2 (the probability here is only over the choice of the verifier’s 
challenge vector c,  since all other quantities are fixed). Since Acc(Fp,V,) 2 
e(n) it must be that the probability (over R and the coins of V leading to 
M I M ~ M ~ , ~ )  that Acc(P,,~,v, ,  M I M ~ M ~ , ~ )  2 e(n)/2 is at least 1/2.  On the 
other hand the probability that the commitment setup string in MI is bad is 
2-” (cf. Section 3.3).  So the probability that R,  M I M ~ M ~ , ~  is good is at least, 
say, e(n)/4. (This is because we can assume wlog that d(n) = ~ ( n ) / ( 6 4 n )  is, say, 
at least 2-”12, whence 2-” 5 e(n)/2.) In the sequel we will focus on these good 
transcript prefixes. 
STRUCTURE OF INVERTER. We now describe an inverter I for f .  The inverter 
I is a polynomial sized collection of circuits { I,, : n 2 1 } as described in 
Section 3.1. (Meaning there is a polynomial p ~ ( - )  such that the size of In is 
a most pz(n) for all n 2 1.) We will show that that for all n E K we have 
Inv:(n) > d(n) = ~(n) / (64n) .  I,, has embedded into it the formula (P,, (which by 
assumption is unsatisfiable). The input to I,, is a n-bit string y = f(z) where x 
was chosen at random from ( 0 , l ) ” .  I,, wants to output a pre-image of y under 
f .  We describe I ,  as a randomized algorithm. (The coins can always be later 
eliminated by using the non-uniformity). Think if I,, as having oracle access 
to Pv where cp = (P,,. (Meaning it will feed it messages and run it, sometimes 
“backing it up” and so forth. It implements this by running 9 a subroutine 
with the common input fixed to cp. It is importan: here that P is polynomial 
time). It begins by picking a random string R for P, and initializing the latter 
with that. 
FIRST MOVE. I,, will mimic the first move of V, with a slight twist. It picks 
a c [n] and p & (0 , l ) .  Then for i = 1,. . . ,n and j = 0 , l  it does the following: 
If (i ,j)  = (alp) then set y i j  = y ,  else pick zi,j t (0,l)” and set yi,j = 
f(xi,j). We let @i,j = F O R M U L A ~ ( Y ~ , ~ )  be the boolean formula resulting from 
applying Cook’s theorem to the “f(.) = -” relation on input yi,j, as described in 
Section 3.2. Now I,, also picks random strings R1, .  . . , h, of appropriate length, 
as setup strings for the bit commitment to be used in the atomic protocol. It 
lets MI consist of the strings yi,j for i = 1,. . . ,n  and j = 0,1, together with 
R1, . . . , I&,. This, thought of as the first message of V to F,, is then “sent” to 

SECOND MOVE. I,, runs pv to get its response M2 = F9(Ml ; R) to the ver- 
ifier message M I .  This response has the form M2 = M2,1M2,2 where MZJ = 
(bl ,  . . . , bn) and M z , ~  = (CI, . . . , C,,). Here Ci is (supposed to be) a committal for 
arun of the atomic protocol on input 8 = cpVh, where pi = @l,l-bl V . .  .V@n,l-b, - 

rP = (Pn. 

h 

A 

Fv. 
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OPENING. Recall that V, is supposed to return q , b i  to Pw for all i = 1,. . . , n. 
In would like to do the same. But if 6, = p then this means it must return a 
pre-image of y,,p under f, and it does not know such a pre-image. (Indeed, the 
goal of In is to find one). So in this case I,, aborts. But this can only happen 
with probability 1/2 since p was a random bit. In case b, # p, our In sets 
M3,1 = x = ( z l , b l , .  . . , z n , b m ) .  This is the first part of a verifier message M3 to 
be sent to pv. 
FINDING A WITNESS FOR 9. Now comes the important step. I,, Will run an 
“extractor” for the protocol which consists of n parallel runs of the atomic pro- 
tocol on input 8 and find a satisfying assignment for @. Specifically, we apply 
Lemma 9. Let E be as in that lemma and let PI(.) be the polynomial which is 
its expected running time. I,, runs E on input cp, MiM2M3,1, giving it oracle 
access to Pq,~. However, this execution is halted in 2pl(n) steps. (Recall E has 
an expected polynomial running time, but I,, needs to halt within a fixed poly- 
nomial amount of time.) If E finds, within this time, a satisfying assignment T to 
0 = cpV @, then I,, will be able to find what it wants, namely a point x satisfymg 
f (z) = y. The crucial observation is that since cp is unsatisfiable, the assignment 
T must satisfy 9. Hence it must satisfy 9 i , 1 - b i  for some i E In]. Since a was 
chosen at random from [n] it will be the case that i = a with probability at least 
l / n .  We know b, # ,O (since otherwise we aborted above) meaning 6, = 1 - P. 
So we have an assignment to 9,,p. Now recall that @,,p =  FORMULA^(^). Ap- 
plying the witness transformation t f , 2  discussed in Section 3.2, we can compute 
a string z such that f (z) = y. I,, does this and outputs z. 
ANALYSIS. The running time of I ,  is clearly poly(n). We must analyze its success 
probability. We assume R, M I M ~ M ~ , ~  is good in the sense defined above: we 
saw this happens with probability at least 1/4. This means the commitment 
setup strings in M I  are good and p = Acc(P9,~,Vv, MlM2M3,1) 2 e(n)/2.  Now 
Lemma 9 says that E would find a satisfying assignment to 0 with probability 
at least p - 2-” 2 ~ ( n ) / 2  - 2-n > e(n)/4. (Recall we assumed wlog that 6(n) = 
~ ( n ) / ( 6 4 n )  is at least 2-n /2 ,  whence the last inequality.) Since we halt E within 
twice its expected running time, Markov’s inequality says we find the assignment 
with at least half the original probability. So In finds z with probability at least 
e(n)/8. Putting this together with the other probability losses, all together, In 
succeeds with probability at least e(n)/(64n) = d(n), as desired. I 

h 

4.5 

The second claim of Theorem 8 is justified by the following lemma. 
L e m m a l l .  Assume f ia a one-way function. Then protocol 4R-ZK is a compu- 
tational proof of knowledge (with negligible knowledge error) for the NP-relation 
Satisfg. 

Before proving it let us discuss the issues. _Given a satisfiable formula cp and 
oracle access to a polynomial time prover P, the goal is to extract a satisfy- 
ing assignment to cp, with a success probability only marginally less than the 

Protocol 4R-ZK is a computational proof of knowledge 
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probability that gv convinces Vv to accept. We can easily run the extractor of 
Lemma 9 to find a satisfying assignment T ,  but for 8, not 50. But 8 = cpV9. Our 
worry is that T satisfies 9, not cp. However, intuitively not, because a satisfying 
assignment to Q, corresponds to the ability to invert f ,  and thus should appear 
only with negligible probability. To capture this intuition we must show that 
were T to satisfy 9 too often then there would be a way to invert f .  We can do 
this similarly to the proof of Lemma 10. 

Proof of Lemma 11. We will exhibit an extractor El such that the conditions of 
Definition 3 are met for some negligible function K ( . ) .  (Recall Definition 3 and 
Definition 4 are equivalent.) El has input satisfiable formula cp, and has oracle 
access to P v , ~  where R is some (randomly chosen and then fixed) random tape 
for prover p .  EL first picks a random a tape R' for V .  It now plays the role 
of V ,  invoking P for the role of the prover, and generates a partial transcript 
MI M2M3,1 of the interaction between pv and V&.,R~. If the commitment setup 
strings in A 4 1  are not good then El aborts. Else it runs the knowiedge extractor 
E of Lemma 9 on input cp, MIM&f3,1, giving it oracle access to P&R. Whatever 
the latter outputs (hopefully an assignment T to e) is what El outputs. 

Since E runs in expected polynomial time, it is easy to see that El does 
too. Similarly, given Lemma 9, it is easy to see that with probability at least 
p -  2-n+1, algorithm El outputs a satisfying assignment T to 8 (not cp!), where 
p = Acc(F,, Vv). (We loose the additional 2-" over the success probability of 
E because the commitment setup strings are bad with probability at most 2-" 
(cf. Section 3.3) and El aborts in this case.) 

But our goal is to find a satisfying assignment to cp. Remember 8 = Qi V cp. 
Our worry is that T satisfies 9 rather than cp. Intuitively, however, not, because 
we know that the ability to find an assignment to pi corresponds to the ability to 
invert f. Thus it might happen, but only negligibly often. We must now capture 
this. 

We must show there exists a negligible function K(.) such that T is a satisfying 
assignment to cp with probability p - ~ ( n ) ,  for all cp of size at least NF,  where 
N p  is an integer depending on F. Assume towards a contradiction that there is 
no such n. So given any negligible function K there is a polynomial time prover P 
and an infinite set F of formulas such that when 'p E F ,  the assignment T output 
by El satisfies CP (rather than cp) with probability at least ( ~ - 2 - ~ )  - (p-n(n)) = 
~ ( n )  - 2-". We must show that this implies f is not one-way. 

We will not give the construction and proof for this last statement in full 
because the idea is essentially the same as in the proof of Lemma 10. We use the 
composite of EP as an algorithm to construct an inverter for f .  Like in the proof 
of Lemma 10, we are given a value y and want to find a pre-image of y under 
f .  We put y into the first message of the verifier in the same way as before. 
Eventually when Ef gives us an assignment T to Qi, it has some probability 
of satisfying FORMULA~(Y) and then we get a pre-image of y under f, just a~ 
before. The details can be filled in by looking at the proof of Lemma 10. I 

h 

A 

h 
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4.6 Protocol 4R-ZK is zero-knowledge 

The third claim of Theorem 8 is justified by the following lemma. 

Lemma12. Assume f is a one-way function. Then protocol 4R-ZK i s  a (corn- 
pu tational) zero-know ledge protocol. 

Proof. We must specify^a sirnulatoys for which Definition 6 is met. S has input 
cp and oracle access to V& where V is any (possibly cheating) polynomial time 
verifier algorithm and R is a randomly chosen random tape for vv. It must 
produce a transcript 7 such that (R,T) is distributed like random members 
of the view of the real interaction between Pq and cv. Before describing the 
algorithm let us sketch the intuition. 

S will be trying to produce the prover moves in a conversation with pV,~. Of 
course, not knowing a satisfying assignment for cp, it can’t really play the prover. 
But recall the atomic protocol is run not on input cp but on input 8 = ‘p V Qi. 
The trick is that it suffices to know a satisfying assignment for 8. 

Indeed, suppose we know some satisfying assignment for 6. This is not nec- 
essarily a satisfying assignment for ‘p. Still, we can “mimic the prover” by using 
this assignment in the atomic protocol. The verifier will never know it was not 
an assignment to cp, because the proof is ZK and hence witness indistinguish- 
able [FeSh]: views of the verifier for different witnesses held by the prover are 
indistinguishable. 

So if the simulator can find a satisfying asiignment to 6 it can complete a 
simulation. How can it find one? It can force V v , ~  to give it one! It will do this 
by forcing the verifier to reveal a pre-image Si,l-bi  of Yi , l -b ;  for some i E [n]. 
This corresponds effectively to a satisfying assignment to and hence to a 
satisfying assignment to 9 and hence t o 2  satisfying assignment to 8. 

But how does it get 2i,l-bi? What V v , ~  reveals is q b i ,  exactly to prevent 
the prover from getting q J - b i ,  because if the prover had the latter, it could 
cheat. But the simulator has an advantage: it can backup the verifier and run 
it twice for different choices of b l ,  . . . , b,. First it runs it in a normal way on 
some “dummy” challenges b’, , . . . , 6 ; ,  gets back the corresponding pre-images, 
and then claims that the red challenges b l ,  . . . , b, were different, in particular 
have b, = 1 - bb, for some Q E [n]. For the new challenges, it has the pre-image. 

Let us now specifil all this in full. Here is the algorithm for S with input ‘p 

and oracle access to V+,,R: 

(1) S runs V v , ~  to get the first message M1 = M1,1M1,2. Here M ~ J  consists of 
strings Yi , j  E {0,1}” for i = 1, .  . . ,n  and j = 0,1,  and M1,2 = (Ri,. . . , En) 
consists of n strings to play the role of commitment setup strings. We let 
@i,j = FoFtMULAf(yi,j) be the formula corresponding to yi , j  via Cook’s 
theorem, as explained in Section 3.2. 

(2) S picks at random b i , .  . . ,b; E {0,1} and lets #’ = # I J - b ;  v. .  .v#,,l-b~. It 
then lets 8’ = cpV@‘ and picks at random an assignment T‘ to the variables 
of 8’. (This assignment is extremely unlikely to satisfy 8’, but that does 

* 
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not matter!) For each i = 1, . . . , n it then picks at random some coins pi and 
computes an encapsulated circuit Cl = ENcCIRC~(@',T', & , p i )  for 8'. We 
let M4,1 = ( b i , .  . . , b k )  and = (Ci,. . . ,CA). We view Mi = M4,1M4,2 
as the second protocol message (from the prover). 

consists of values xi,b; for i = 1,. . . , n and Mi,2 is a challenge vector. S 
checks that f ( q , b : )  = Yj,b: for i = 1 ,..., n. If this fails, it outputs the 
current partial conversation and halts. Else it continues. 

(4) S now picks at random another sequence of bits b l ,  ..., bn E {0,1}. If 
(bl, . . . , bn) = (b; ,  . . . ,bL) then it aborts (but this happens only with prob- 
ability 2-"). Else it fixes an index a E [n] such that bi # b:. It lets 
@ = @ l J - b 1  V . . . V @,,,l-b, and 9 = cp V @. Now, notice that 1 - b, = 6: 
and s knows Za,bh, a pre-image of va,b;, from the previous step. Because of 
this, it  can compute a satisfying assignment T to the formula 9,,b;. (This 
is via the properties of Cook's reduction as explained in Section 3.2.) But 
then T also satisfies @ and hence 8, so S has in its possession a satisfying 
assignment to 8. Now the idea is to act like the real prover on input this 
assignment. (Note this assignment does not satisfy cp, but the verifier will 
never be able to tell, because it does satisfy the formula 6 on which the 
atomic protocol is performed, and the bit commitments are secure.) So for 
each a = 1,. . . ,n the simulator picks at random some coins pi  and com- 
putes an encapsulated circuit Ci = ENCCIRC~ (9, T, Ri, pi) for 8. We let 
M2 = M2,1M2,2 where M2,l = ( b l , .  . . ,bn) and M2,z = (Cl , .  . . ,Cn). We 
view MZ as a second protocol message (from the prover). 

(5) Backing up Fv,~, the simulator S computes C , , R ( M ~ M Z )  to get back its 
response M3 = kf3,1M3,2. Here M3,1 consists of values q , b i  for 2 = 1, .  . . ,n 
and M3,2 is a challenge vector c1, . . . , c,,. s checks that f(zi,bi) = yi,bi for 
i = 1,. . . ,n. If this check fails S cannot abort or output this conversation. 
(One can check this would lead to an incorrect simulation.) Instead, it must 
return to Step 4 and try again, continuing this loop until the check does 
pass. (This is a standard procedure, used for example in [BMOl], and as 
there one can show that the expected number of tries in this process is at 
most 2.) So we go on assuming the check did pass. 

(6) Having a satisfying assignment T to 6, the simulator (now in guise of the 
prover) is able to answer the challenges c1, . . . , c,, by opening the appropri- 
ate parts of the encapsulated circuits CI, . . . , C, just as the prover would. 
NamelyScancomputeDi =A~~~~~f(€l,T,R,,pi,ci)fori= 1, ..., nand 
let M4 consist of D1,.  . . , D,. 

(7) Finally, S can output T = MlMzM&f4 as a transcript of the interaction 
between the prover and v , ,~ .  

h 

(3)  s runs V+,,R(MlMi) to get back its response Mi = M&ML,2. Here 

Fix some witness selector W: SAT + {0,1}* for the relation Satiafi(.,-). That 
is, W(cp) is a satisfying assignment to cp for every cp E SAT. As per Definition 6 
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we want to show that the probability ensembles El = { ? v ( ~ ) } v E s ~ ~  and 
&2 = {VIEW(P, W, 0, P ) } ~ ~ S A T  are computationally indistinguishable. (Refer 
to Section 2.4 for the definition of 9.) We will do this under the assumption that 
f is a one-way function. We will provide here only a brief outline of the intuition 
behind this proof. 

The function f shows up in two places in the protocol. First, f is used 
in the construction of Y-values underlying the formula P. Second, f underlies 
the bit commitment scheme of the atomic protocol. The first use of f is not a 
concern for the zero-knowledge, in the sense that the protocol would be ZK (but 
not computationally convincing or a computational proof of knowledge!) even if 
the function used to produce the Y-values was not one-way. The ZK depends 
however on the security of the bit commitment scheme, and hence indirectly on 
the one-wayness of f .  

The privacy (cf. Section 3.3) of the bit commitment scheme means that when 
S, in Step (2), forms an encapsulated circuit using a dummy truth assignment T’, 
the verifier 0 has no feasible way to detect it, and its behavior can change “only 
negligibly.” Now, in Step (4) the simulator uses a satisfying assignment for 8 that 
is different from the one the prover would use. But since the atomic protocol is ZK 
it is also witness indistinguishable in the sense of [FeSh]. Furthermore, they show 
that witness indistinguishability is preserved under parallel repetition, so the 
protocol consisting of n parallel repetitions of the atomic protocol is also witness 
indistinguishable. So the transcripts produced for the two different witnesses in 
protocol 4R-ZK have (computationally) indistinguishable distributions. 

The formal proof would be by contradiction. We assume the ensembles are 
not computationally indistinguishable. So for any negligible function 6(.) there 
is a distinguisher D = { D v } v E ~ ~ ~  and an infinite set F of satisfiable boolean 
formulae such that 

is at least ~(IQI)  whenever cp E F. Using D we would do one of the following. 
Either construct a polynomial sized circuit family that defeated the privacy of 
the bit commitment scheme, which would contradict the security of this scheme 
as proven in pa,  HILL]. Or, build a distinguisher that would contradict the 
witness indistinguishability of n parallel repetitions of the atomic protocol. We 
omit these proofs from this abstract. I 
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A 
The protocol stated in Figure 1 as obtained by combining [Bl, FLS] is folklore. 
First use Blum’s coin flipping in the well protocol [Bl] to get a common random 
string, then do a NIZK [BDMP] proof, which can be done with a trapdoor per- 
mutation [FLS, BeYu]. In somewhat more detail, the first move is the verifier 
committing. For a four round ZK protocol we need a “certified one-way permu- 
tation.” (Based on algebraic assumption, e.g. Discrete Logarithm. An arbitrary 
trapdoor permutation won’t suffice.) After this the prover sends bits in the clear, 
the verifier de-commits, and the XOR of the prover bits and the verifier’s de- 
comitted bits is declared to be the common random string. The non-interactive 
ZK (NIZK) proof is run on the latter. The reason the full protocol is an argu- 
ment, not a proof, is that the verifier’s first round committals are done using a 
computational assumption. 

Constant round ZK via coin flipping plus NIZK 
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