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Abstract. The Wire-Tap Channel of Wyner [19] shows that a Binary 
Symmetric Channel may be used as a basis for exchanging a secret key, 
in a crypt,ographic scenario of two honest people facing an eavesdropper. 
Later CrCpeau and Kilian [9] showed how a BSC may be used to im- 
plement Oblivious Transfer in a cryptographic scenario of two possibly 
dishonest people facing each other. Unfortunately this result is rather im- 
practical as it requires f l (n”)  bits to be transmitted through the BSC to 
accomplish a single OT. The current paper provides efficient protocols to 
achieve the cryptographic primitives of Bit Commitment and Oblivious 
Transfer based on the existence of a Binary Symmetric Channel. Our 
protocols respectively require sending O(n) and O(n3)  bits through the 
BSC. These results are based on a technique known as Generalized Pri- 
vacy Amplification [l] that allow two people to extract secret information 
from partially compromised data. 

1 Introduction 

The cryptographic power of a noisy channel has been demonstrated by Wyner 
[19] who showed that two honest parties, say A and 8, can exchange a secret 
key on which an eavesdropper & may obtain only a small fraction of the infor- 
mation as long as A and B are connected by a Binary Symmetric Channel of 
better quality than a similar Channel connecting them to 1. More recently, a 
result of Bennett, Brassard, Crkpeau and Maurer 111 provides a technique called 
Generalized Privacy Amplification to ensure that E’s information is an arbitrary 
small fraction of a bit under the same conditions. 

But cryptogra,phy is no longer interested solely in protecting communications. 
As a result of public-key cryptography, a large number of other cryptographic 
tasks have emerged. Examples of such tasks are Coin-flipping by telephone [3] 
and Mental Poker. These may involve two or more parties, some of which may 
be dishonest. The general concept of Distributed Function Evaluation was first 
introduced by Yao [20] and later extended to  “Mental Games” by Goldreich, 
Micali and Wigderson [la]. 
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Distributed Function Evaluation and Mental Games are multi-party algo- 
rithms which involve secret data that the parties want to keep from one an- 
other. In the model where we are ready to accept computational assumptions, 
such general tasks can be achieved from basic assumptions such as the existence 
of a One-way Trapdoor Function [la]. 

The lesson derived in the computational model is that very simple protocols 
are sufficient to achieve the general ones. The two primitives known as Bit Com- 
mitment (defined in Section 3) and Oblivious Transfer (defined in Section 4) 
are elementary protocols that are sufficient in general to accomplish any Mental 
Games, even in a non-computational scenario [14, 81. 

The current paper considers a scenario where only two people, A and B, are 
involved and where we put no limitation on their computing power. If we made 
no further assumption, it would be impossible to  accomplish Mental Games. 
Thus, the extra assumption we make is that A and B are connected by a Binary 
Symmetric Channel (BS,), that is a channel that will change the value of a bit 
b with probability E as it travels from one party to the other. 

A first protocol to accomplish Oblivious Transfer from a Noisy Channel 
was presented in [9]. Unfortunately, that protocol is quite complex and requires 
Q(n l l )  bits sent through the BSC to perform a single Oblivious Transfer, where 
n is a security parameter that specifies the reliability of the protocol. As a con- 
sequence, any two-party computations may be performed from the assumption 
that there exists a reliable BSC. The current solution is by far more efficient than 
those suggested earlier. The current paper provides a protocol for Bit Commit- 
ment that uses O(n)  times the BS, and a protocol for Oblivious Transfer that  
uses O(n3) times that primitive, where n is a security parameter that specifies 
the probabilities of failure of the protocols. These probabilities are all exponen- 
tially small in n. 

2 General Tools 

2.1 Error Channel 

We consider a standard error model: the binary symmetric channel. In the binary 
symmetric channel A sends a bit to B that is flipped with probability t 

5 with prob. E 

x with prob. 1 - t. BSc(x) = 

By extension, we also write BS,(w) as a shorthand for BS, (W~)BS~(WZ) ... BSf(wn)  
when w = W ~ W Z  ... wn is an n-bit word. Let H(c) = -tIgc - (1 - t) lg(1 - c) he 
the binary entropy function. We define the channel capacity of the BS, to  be 

A nice property of the binary symmetric channel is that it is totally symmet- 
rical between the participants: if B wants to send a bit z via BS,(x) to A when 
it is only available from A to B, they can do as follows: 

C, 1 - H(t) .  
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Protocol 2.1 ( BS,(x)  ) 
1: A picks P' ER {0,1} and runs BS,(r) with B who gets r', 
2: 8 announces y t z 6, r'  t,o A, 
3: A returns y @ r .  

In general, for the binary symmetric channel, any protocol may be inverted 
by permuting A and B and replacing BS, by E,. Therefore the protocols of 
sections 3 and 4 may be achieved from a noisy channel running either way. This 
is not the case wi th  all charinels. The following is an example of the opposite 
type. 

An alternative to  the binary symmetric channel would have been to consider 
the erasure channel where bits are either received without errors, or cornpletly 
lost with probalities 1 - t and E .  However this situation has been previously 
analyzed since the erasure channel is the same as Rabin's Oblivious Transfer 
[16]. Protocols for Wit Commitment and (:)-OT using Rabin's O.T. are available 
in [14] and [7]. 

2.2 Coding theory 

An [n,  k, dj linear code C is a linear subspace of (0, l}n of dimension k (and 
cardinality 2k) such that no two words c1, c2 from C are such that d ~ ( q  , ca) < d ,  
except if c1 = c2, where d H ( Z ,  y) is the Hamming distance between z and y: the 
number of positions where lhey differ. 

Such a code is defined as the linear combinations of the rows of a generating 
matrix G of dimension k x n. Alternatively, C m a y  be defined as the kernel of 
a parity check matrix H of dimension 72. x ( n  - k ) .  Knowledge of G or H is 
coniputationally equivalent as it is easy to get one from the other. 

For section 3 we need the well known fact, [15, chap. 17, prob. (30)] that t,here 
exists a constant p > 1 such that a random binary matrix G of size Kn x n defines 
a binary linear code with minimal distance at least En, except with probability 
not grealer than p ( R - C c ) " ,  for values of R < C,. 

For section 4 we need codes that are efficiently decodable with high correction 
rate and high dimension. For this purpose we use concatenated codes defined in 
[ll] t'hat are efficiently encoded and decoded. Asymptot,ically, very long [n, Rn, d] 
concatenated codes may be constructed in such a way that for every t > 0 there 
exists a constant p > 1 such that the codes fail to correct tn errors except; 
wit,h probability not greater than p(R-Cc)", for values of R < CF (although the 
minimum distance d ma,y be somewhat smaller than m ) .  Please consult [Ill for 
more information on asymptotic performances of concatenated codes. 

In some situations the information transmitted is not a codeword. In such a 
case, as long as the syndrome syn(w) = H T w  of a word w is known the decoding 
algorithm may be used to  recover w from a noisy version of that word and the 
value of syn(w). Please consult [15] for more inforniatiori on coding theory. 
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2.3 Generalized Privacy Amplification 

Let W be a random variable uniformly distributed over (0, l}n and let BS,(W) 
be another random variable obtained from W through a binary symmetric chan- 
nel of error rate t ,  i.e. 

Prob [BS,(W) I vlW = w] = (1 - ~ ) n - d H ( w ~ u ) ~ d H ( w ~ " ) ,  

Let G be a random variable taking values g : {0,1}" + {0,1}' uniformly 
distributed from a ,universal2 class of hash functions [6]. It is shown in [l] that 

Theorem 1. For any 6 > 0 and all suficiently large n ,  for s = n(H(6)  - 6) - r 

2-$ 
H(G(W)(BSc(W),G) 2 r -  ~ 2 '  

Moreover, according to [2, 5, 11 for the special case where we have a linear 
function syn : (0, I}" -+ (0, 

Theorem2. For any (T E ( 0 ,  l}tl 6 > 0 and all sufficiently large n , 
for s = n(H(c) - 6 )  - r 

2 t - 3  
H ( G ( W ) l s p ( W )  = U ,  BS,(W),  G) 2 T - - 

In2 ' 

Since H(G(  W )  Isyn(W) = CT, BS,(W), G) = r means that no information about 
G(W)  is given by syn(W) = a ,BS, (W),G,  the above result is exponentially 
close to the best possible: the latter contains almost no information about G ( W ) .  

3 Bit Commitment 

Assume that a party, A, has a bit b in mind, to which she would like to be 
committed toward another party, t?. That is, A wishes, through a procedure 
BC(b), to provide f? with a piece of evidence w that she has a bit b in mind 
and that she cannot change it (binding). Meanwhile, B should not be able to tell 
from that evidence what b is (concealing). At a later time, A can reveal, through 
an unveiling procedure UN(b,p), the value of b and prove through p to B that 
the piece of evidence sent earlier (2u) really corresponded to that bit. 

Bit commitment schemes have several applications in the field of crypto- 
graphic protocols. In particular one can implement zero-knowledge proofs of a 
variety of statements using bit commitment schemes [13, 41. The first implemen- 
tations of bit commitment schemes were given in a computational complexity 
scenario [3]. Unfortunately, proofs of their (computational) security have always 
required an unproven assumption since otherwise they would imply very strong 
results such as P # NP. 

This section is inspired by that work of [5] to achieve Bit Commitment in 
the model of Quantum Cryptography. 
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3.1 Bit Commitment from Binary Symmetric Channel 

Intuition behind Protocols BC & UN After establishing a proper error- 
correcting code, A sends a codeword from that code to  B through the BS,. 
The code is such that B should have many candidates for A’s codeword after 
seeing it through the BS,. The secret bit of A is given by applying a random 
function from a universal2 class to the codeword. To unveil her bit, A discloses 
her codeword. She should not be able to announce two codewords that R will 
find close enough to the word he received to believe her. 

Formal Protocol Let E be the error probability of the channel, and y < 1 be 
a positive number. Let 6 > 0 be such that H ( E )  - 6 > H(yc) and such that 
(H(E) - S)n is an integer. The following protocols work for any value o f t  such 
that 0 < E < 1/2,  in contrast to the protocols of Section 4. 

Protocol 3.1 ( BC(b) ) 

1: B chooses and announces Lo A a binary linear [n,  k, d]-code C 
with parameters k = (1 - H(e) + 6)” and d 2 yen. 
2: A 

picks a random n-bit string m and announces it to B, 
- picks a random codeword c E C such that c 

- DO runs SS,(cl) with B who receives c: ,  

- returns c ,  b. 
3: B sets c’ t (tic: . . .c’,) and returns ( C ,  m, c’). 

m = b,  
n 

e= 1 

B keeps c’ secret forever, whereas A keeps b and c secret until (and if) unveiling 
takes place. If A subsequently decides to unveil her commitment, she initiates the 
next protocol with B. There exists a positive number X < y( 1/2 - c) /2  such that 
an honest A is likely to  satisfy the following with overwhelming probability while 
a dishonest A is unable to  open the commitment as both bits with overwhelming 
probability. 

Protocol 3.2 ( UN(c, b ) ,  (C, rn, c’) ) 

1: if ( c  E c) A ( b  = c om) A (dH(c,c’) < m + An) 
then B accepts else 8 rejects. 

Details of the Protocol In the above Protocol BC we ask L? to choose a code 
with specific parameters. The effect of these parameters on the security of the 
protocol explain why we require l? to do this job and not A: the bigger (d is, the 
more unlikely it is for A to cheat and the bigger k is, the more unlikely it is 
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for I3 to cheat. Coding theory give us limits on how big d and k can be at  the 
same time. In order to have them as large as possible at  the same time, the best 
construction known to this day is to  pick the generating matrix of the code at 
random. Nevertheless, in this case the value of k is easy to figure out from the 
matrix (the rank of the matrix) while the exact value of d is more difficult to 
determine. All we know is that it is likely to be high. 

As discussed in Sect. 2.2, a random binary matrix G of size Rn x n defines 
a binary linear code with minimal distance at least en except with probability 
p ( R - C e ) n ,  thus I3 has an exponentially small probability of having d too small 
when he picks a k x n matrix at random. A can easily verify t h a t  the value of k 
is correct. 

The random vector m is used to define a Privacy Amplification Function of 
(0 , l )”  to (0 , l ) .  

3.2 Analysis of the Protocol 

Concealing Let C and M be the random variables describing a’s possibilities for 
c and m. Before c is sent through the BSC, C is uniformly distributed among 
all the possible codewords of C and M among all possible whit strings. Let 
0 < 6’ < 6. We are in the scenario of Theorem 2 with r = 1, t = (H(c) - d)n, 
and s = (H(c)-d’)n-l. We therefore conclude that seeing a codeword c through 
a BSC and learning m is not enough to know much about c 0 m: 

Theorem 3. For any all sufliciently large n, 

q( 6’ - 6 )n+ 1 
H ( C  0 M l s y n ( C )  = 

Binding An honest A sends a random codeword c through the channel. Con- - 
sider the random variable d ~ ( c ,  BS,(c)). Tt is clear that E ( d ~ ( c , B s , ( c ) ) )  = cn 
and by Bernstein’s law of large numbers [17, Chap. VII, Sect. 4, Theorem 21 
Prob [ d ~ ( c ,  BS,(c)) > m + An] is exponentially small in n for all A sufficiently 
small, and all sufficiently large n. A dishonest A sends any word w through 
the channel and later would like to claim co or c1 to unveil as 0 or 1. One 
of these, say c , ,  is such t,hat d H ( c , ,  w )  > ycn/2. Consider the random variable 
d ~ ( c , ,  BS,(w)).  It is easy to calculate that E ( d ~ ( c , ,  BS,(w))) 2 cn+y(l /2-~)n 
and by Bernstein’s law of large numbers Prob [ d ~  (cz, BS,(w)) < en + y(1/2 - 6 ) .  - An] 
is exponentially small in n for all X sufficiently small, and all sufficiently large n. 

Thus any X < y( l / 2  - c ) /2  will satisfy our requirements that an honest A 
succeeds except with probability exponentially small in n,  while a dishonest A 
succeeds to open both ways only with probability exponentially small in n. 
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4 Oblivious Transfer 

One-out-of-two Oblivious Transfer, denoted (Y)-OT, is a primitive that origi- 
nates with [18] (under the label of “multiplexing”). According to  this primitive, 
one party d owns two secret strings wo and 201, and another party B wants to 
learn w, for a secret bit c of his choice. A is willing to collaborate provided that 
t? does not learn any information about wE, but t? will only participate if A 
cannot obtain information about c. 

Similarly, in an Oblivious Transfer [16], A sends a message to B that is 
received with probability E (this fact is out of their control) while the message 
is otherwise lost. A does not find out what happened. t? knows if he got the 
message or nothing. We note this protocol OT,. Independently from [lS] but 
inspired by [16], (?)-OT was introduced subsequently in [lo] with applications 
to contract signing protocols. 

These two simple cryptographic tools have been extensively studied by sev- 
eral researchers because they turned out to be elementary blocks to build more 
elaborate cryptographic tasks known as (‘secure computations”. This idea intro- 
duced by Yao [20] allows A and B to  compute a two-argument function on data 
they would like to keep secret from one another. They find out the output of the 
function but not their respective inputs. It was shown in a computational model 
that One-out-of-two Oblivious Transfer suffices to perform general secure com- 
putations by Goldreich, Micali and Wigderson [12] and later in an abstract (not 
necessarily computational) model by Kilian [14]. Cripeau showed [7] that indeed 
Rabin’s Oblivious Transfer can also do the job by describing a general technique 
to turn an Oblivious Transfer into a One-out-of-two Oblivious Transfer. The 
result of the current section is an extension of that technique. 

4.1 

Basic Idea For E > 1/2, simulate OT,(b) with protocol O^T,(b) obtained by 
sending b twice through the BSC of error probability ’p = and then 
reduce (:)POT to O^Tc(b) with a Protocol similar to that of [7]. 

Oblivious Transfer from Binary  Symmetr ic  Channel 

Protocol 4.1 ( CTE(b) ) 

1: A runs BS,+,(b)BS,(b) with f? who receives bobl ,  for cp = *. 
2: if bo = bl then B returns bo else B returns E .  

The problems with this approach are that 6?,(b) makes errors and that A can 
send bad pairs bb: if A is honest and sends bb through the binary symmetric 
channel then 

2 4 1  - p) if z = E 
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B receives a bit with probability c = ‘p2 + (1  - (p)’. If instead A is dishonest 
and sends 6 b  or b6 through the binary symmetric channel then the probability 
that B receives a bit is 1 - E = 2 4  1 - p). If no extra checks are performed, A 
could send bad pairs and figure out in Protocol 4.2 which set is good and which 
set is bod by the fact that good pairs are more likely to have been received. 

The errors are first solved (in Protocol 4.2) by the same trick as in [2] using 
codes to  fix them, while the cheating by A is later taken care of (in Protocol 
4.3) by running statistics on the frequency of bb pairs. Protocol 4.2 introduces 
another kind of cheating A could perform that is also solved in Protocol 4.3. 

Intuition behind Protocol (:)-ô T For this first protocol we assume A 
behaves honestly and will remove this assumption in the final protocol. The h idea 
of the first protocol is that A sends 2n random bits T I  ~ 2 )  ...) rzn to  Busing OT,. 
B should receive roughly 2cn of these and lose 2(1-  c)n.  B forms two sets 1 0 , 1 1  

of size n and thus defines two strings T:, , ri ,  of size n (T’ restricted to 10 and 11) .  

String TI, should be entirely known by B ,  while string should be partially 
unknown by B. Nevertheless, because OT, is imperfect, we expect an average 
of <n differences between r I ,  and riC.  

A code is established between the parties to correct more than G n  errors 
except with exponentially small probability in n. 

The errors are corrected by having ,4 send the syndrome of the two words 
syn(rI , ) ,  syn(r1,). Using riC and syn( r~ , )% B may recover rI, except with small 
probability of failure. Nevertheless, this correction information is not sufficient 
to find out both words T I , ,  ~1~ accurately, as long as the dimension of the code 
is somewhat greater than en. 

A privacy amplification function is finally used to  extract one secret bit per 
string, so that one bit may be recovered by B but not both. This function is the 
scalar product by a random n-bit word m. 

h 

Incomplete Protocol Let y be a number greater than 1. r Protocol 4.2 (;)-*(bO, bl)(c)  
2n h 

I= 1 
1: DO A picks a random bit rc and runs OT,(r,) with B who gets r:. 
2: B picks and sends two random disjoint sets l o ,  I1 s.t. 1101 = 1111 = n, and 

3: A and f3 agree on a parity check mat,rix H of a concatenated code C 
with parameters [n, k > (c + 6)n, d] correcting r < n  errors. 
4: A 
- computes and sends SO t syn(r1,) and s1 t syra(rr ,) ,  
- picks and sends a ranAdom n-bit word m, 
- computes and sends bo t 4 @ (m @ rlo) and 6 1  t bl @ ( m  0 r ~ ~ ) .  

- recovers rIc using ric ,  3, and the decoding algorithm of C, 
~ computes and returns iC @ (m @ TI=). 

(W E I ,  [r: # €1). 

5:  fJ 
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Details and discussion of Protocol (:)-ô T The code used for this protocol 
requires the extra property that it must be efficiently decodable. This can be 
done by using concatenated codes. For cp < 0.1982 the conditions of Step 3 can 
be satisfied. Therefore, contrary to Protocol BC, this new protocol works only 
for reliable enough channels BS, (not for all p). 

B is unable to cheat this protocol because whatever way he splits the ‘(good” 
bits (r: # E) between Io , I l ,  he will not be able to  put more (c + S/2)n good 
bits in at  least one of 10 or 11. Since k > ( E  + S)n then s y n ( ~ ~ ~ ) ,  syn(rrl)  each 
contain n - lc bits of information, i.e. no more than (1 - E - S / 2 ) n  bits. Thus, 
at  least one of the two words TI , ,  rIl will be undetermined by at  least dn/2 = 
n-(l+d)n/2-(1/2--d)n bits. Using privacy amplification, this word will contain 
an exponentially small amount of information about its related bit. Therefore, 
K? cannot learn both of A’s bits. 

Unfortunately, A can cheat this protocol in two different ways that allow her 
to figure out B’s secret input c: at  Step 2 A can send (‘bad” pairs rifi or Firi 
instead of riri increasing the probability that it is lost (r:  = E )  by 8 and at  
Step 4 she can send a “bad” syndrome leading B to  a decoding error. In the first 
cheat, “bad” pairs are more likely to end up in the ‘(bad” set thus indicating 
to A which one is more likely to be the “good” and (‘bad” sets. In the second 
cheat, if A makes only one syndrome bad then U might have to  abort depending 
on which bit he is trying to get. Protocol 4.3  solves these two problems. 

Intuition behind Protocol (;)-OT The general idea of this new protocol is 
to repeat Protocol (;)-OT several times for random he,o,  he,l and ce and combine 
these instances in such a way to  pxvent A’s cheating as above. 

More precisely, Protocol (?)-OT is repeated n2 times. We combine the n2 
instances of (;)-OT in such a way that A must cheat in each instance if she wants 
to  discover the value of c .  Protocol ô T is used a total of 2n3 times. In order to 
obtain information A must send at  least n2 bad pairs in these protocols. This 
will make a statistical difference that will he detected with probability almost 
1. If A uses less than n2 bad pairs, she f i g s  out nothing about c. Similarly, 
if A sends bad syndromes in protocol (f)-OT with probability 1/2 she will be 
detected by l3 because he reads according to a random choice. If she uses O(n)  
such syndromes it is almost certain that B will detect her cheating. 

Let n be an odd number. The instances are combined by requesting that 
n2 n2 

be,o @ be,l = bo @ bl  for 1 5 t 5 n 2 .  Let bo,o = @be,o and bo, l  = @ b e , l .  These 

requirements cause that @be,c, = bo,= for z = 0.1. Thus in order to find out 

h 

e = i  e = i  
n2 

e = i  e = i  
which of bo,o or bo,l B is trying to get, A must find out all the c ~ .  

Full Protocol Let y be a number grea.ter than 1 and n be an odd2umber.  An 
extra index l is added to each variable of the lth iteration of (X)-OT. 
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Protocol 4.3 ( (:)-OT(bo, b , ) ( c )  ) 

1: A picks n2 random bits bl ,o ,  bz,o,  ..., bn2,0 and sets be,, t bo @ bl @ br .0 ,  for 

2: 8 picks n2 random bits cl ,cz ,  ..., c , ~ .  

3: DO 

1 5 c 5 n2. 

na 

1= 1 

1. A runs (;)-6?'(bl,o, br , l ) (ce)  with 8 who gets b6, 
2 .  if dH(r[ , r t ,=!  , r i , l t , c t )  > r<n then B aborts. 

#{.el a I r;,* # E }  < Zen3 - w n 2 )  then B aborts 

else B computes and sends c' t c 63 

5: A computes and sends & t bo @ 

to t? 

6: B computes and returns &, @ @ b: ) 

Details of the Protocol The test of Step 3.2 is to decide if the syndrome 
sent by A was valid. The value -yen is the scope of the decoding algorithm of 
the concatenated code. If the decoded word was  further than this distance then 
clearly the syndrome was wrong. If the test of Step 4 is negative then t? is almost 
certain that A has not cheated n2 times over the 2n3 transmissions. 

4.2 Analysis of the protocol 

0 i f d . z ~  
' j 3  

1 if rl.i # E 
. When .4 sends valid pairs r,,jr,,j in Protocol 4.3 clearly Let z i j  = 

we have E (52 z i , j )  = 2 m 3 .  On the other hand, if A wants to take advan- 
i= l  j = 1  

tage of this kind of cheating, she must cheat in each of the n2 iterations of the 
protocol (if not she will loose completely one of the ct and thus c). In that case 

i=l  j=1 
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Theorem4. There ex'ists a constant p < 1 with the foilowing properties: when 
A does not use "bad" pairs then 

z i , j  < 2cn3 - - 2p)2 n2 < p" 

2 1 
whereas, when she cheats n2 times, 

Proof (sketch). Follows from Bernstein's law of large numbers. 
Thus, except with exponentially small probability, an honest A will pass the 

test of Step 4 while a dishonest A will fail that same test. 
If A is honest, the probability that more than y c n  errors occur during 

transmission by accident is exponentially small. Thus an honest A who sends 
correct syndromes, is unlikely tjo fail the test of Step 3.2 while a dishonest A 
who deliberately sends a wrong syndrome will be detected with probability 1/2, 
if I3 happens to use that syndrome at random. 

Finally, for the same reasons discussed in Sect. 3.2, because of Privacy Ampli- 
fication I3 cannoEbtain information about both bo and bl through the instances 
of protocol (;)-OT. 

5 Conclusion and Open Question 

We have obtained two new protocols for the cryptographic primitives of Bit 
Commitment and One-out-of-Two Oblivious Transfer based on the existence of 
a BSC using Privacy Amplification. The protocol for BC requires O ( n )  uses 
of the BSC, while the protocol for (Z)-OT requires O(n3)  uses of the BSC. 
If we combine these protocols with the protocol of Crepeau, van de Graaf and 
Tapp [8] for Private Multi-Party Computation to  achieve any two-party function 
evaluation which requires O(n2)  BCs and O(n)  (:)-OT per gate, we end up with 
a protocol requiring a total of O(n4) uses of the BSC per gate of the computation. 
Our main open question is to obtain (Z)-OT with only O(n2)  uses of the BSC 
and thus any two-party computation at  a cost of O(n3) uses of the BSC per 
gate. Another open question is to find an equally efficient protocol for (:)-OT 
using a BS, for values of E above 0.1982. 
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