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Abstract. We introduce the relationship between incremental crypto- 
graphy and memory checkers. We present an incremental message au- 
thentication scheme based on the XOR MACs which supports inser- 
tion, deletion and other single block operations. Our scheme takes only a 
constant number of pseudorandom function evaluations for each update 
step and produces smaller authentication codes than the tree scheme 
presented in [BGG95]. hrthermore, it is secure against message substi- 
tution attacks, where the adversary is allowed to tamper messages before 
update steps, making it applicable to virus protection. From this scheme 
we derive memory checkers for data structures based on lists. Conversely, 
we use a lower bound for memory checkers to show that so-called mes- 
sage substitution detecting schemes produce signatures or authentication 
codes with size proportional to the message length. 

1 Introduction 

The notion of incremental cryptography has been introduced by Bellare, Gol- 
dreich and Goldwasser in [BGG94] and refined by the same authors in [BGG95]. 
Suppose that we are given a block-by-block message M and its cryptographic 
form p, i.e. encryption, signature or authentication code. Let M i  be a message 
that is obtained by applying a text modification from a set M of modifications 
to  M .  With an incremental scheme supporting the text modifications M a cryp- 
tographic form p' for M' can be produced much faster from p and A4 than it 
would take to  compute it from scratch. 

Our results. We present the incremental authentication scheme IncXMACC that 
supports single block insertion and deletion, and therefore other operations like 
replacement. To update an authentication code for inserting or deleting a sin- 
gle block at a given position, this scheme performs only a constant number of 
pseudorandom function evaluations. Additionally, insertion can be done without 
accessing the message and deletion merely needs the corresponding block. 
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Security against Message Substitution Attacks. Our scheme remains secure if 
an adversary is allowed to alter messages before applying the update algorithm 
- while the shorter authentication code must be kept on some secure medium. 
Security against these message substitution attacks implies application to virus 
protection. To protect a large file stored on some insecure medium against unau- 
thorized alternation, authenticate this file and store the shorter authentication 
code in some incorruptible memory. Whenever an authorized user modifies the 
file, we can update the authentication code very fast using the incremental algo- 
rithm. Conversely, it is very unlikely that an attacker, e.g. a virus, will be able 
to produce a forgery even if he tampers the documents before update steps. In 
this sense, message substitution attacks lie between (total) substitution attacks, 
where both the message and signature can be tampered before update steps, and 
basic attacks, where the adversary isn’t allowed to alter messages or signatures 
before updating. 

Related Work. In [BGG94] a hash-and-sign scheme based on an incremental hash 
function was presented. The signature consists of the hash value h and a signature 
for h produced by an arbitrary non-incremental signature scheme. To update a 
signature, increment the hash value and sign this new hash value. Unfortunately, 
this scheme only supports single block replacement and it is provably not secure 
against message substitution attacks. 

In [BGG95] the same authors present the tree scheme supporting single block 
operations like insertion and deletion (and the more powerful modifications cut 
and paste to devide a text into two documents resp. to append a document to 
another). The tree scheme takes R (logn) verification and authentication steps 
for the abovementioned operations, where n is the number of blocks of the docu- 
ment. For the cut modification, the tree scheme is much faster than IncXMACC, 
while our scheme supports the insert, delete and paste modifications applying a 
pseudorandom function only a constant number of times. Moreover, our scheme 
produces considerably smaller authentication codes than the tree scheme, though 
the authentication code must be kept on a secure medium. In contrast to that, 
signatures and authentication codes produced by the tree scheme can be stored 
in the insecure memory. A randomized version of the tree scheme is given in 
[M97]. This scheme hides the fact whether the incremental or non-incremental 
algorithm has been used to produce a signature. 

Our scheme IncXMACC refines the incremental authentication scheme pre- 
sented in [BGG95], which is also based on the XOR MACs. This scheme has 
several disadvantages in comparison to our scheme: It doubles the key size by 
using two pseudorandom functions and it requires many random bits. For an 
update step the incremental algorithm reads more than the corresponding block 
and security has only been proven for basic attacks. 

Memory Checkers. Using IncXMACC, we present a method to obtain memory 
checkers for lists and similar data structures. The memory checker model has 
been introduced by Blum et al. in [BEG+94] (a prelimary version appeared in 
[BEGf91]). Informally, a memory checker for a data structure D verifies that 
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for a given sequence of operations, an implementation of 2) works correctly for 
this sequence. If not, the checker outputs some error message. There are two 
sources of errors: The program implementing the data structure can be buggy 
or the memory where the elements are stored can be tampered by an adversary, 
e.g. a virus. Intuitively, incremental schemes that are secure against message 
substitution attacks seem to provide a suitable method to design such checkers. 
To do so, keep a signature for the current memory content and update the 
signature accordingly for an operation for D. Nevertheless, in some settings the 
checker should be able to update the signature given only the old signature and 
the element resp. block that for example shall be deleted or inserted, without 
accessing other parts of the memory content. IncXMACC has this property. 

Making the connection between memory checkers and incremental schemes 
we transfer a lower bound for checkers to incremental schemes. Informally, an 
incremental scheme is message substitution detecting, if it detects when relevant 
parts of message have been altered before calling the update algorithm. We give 
a sufficient condition under which an incremental message substitution detecting 
scheme that is secure against basic attacks, is also secure against message substi- 
tution attacks. The lower bound states that the length of a signature produced 
by a substitution detecting scheme must be very large, roughly proportional to 
the size of the message. 

For a discussion about the differences between the memory checker setting 
and the program checking model (which has been introduced by Blum and Kan- 
nan in [BK89]) resp. the software protection model of Goldreich and Ostrovsky 
[GO961 we refer the reader to [BEG+94]. 

Emct Security. We follow the paradigm presenting our results in terms of ez- 
act security [BKR94,BGR95]. Informally, the notion c;f exact security can be 
described as follows. Assume that we have an adversary for IncXMACC with 
running time' t that makes at most q signature queries for messages of length 
at most L and achieves success probability e. Then we derive (in a constructive 
way) a distinguisher D for the underlying function family F with parameters 
t', g', e', such that D can distinguish F and the family of all functions with run- 
ning time t', making at most q' oracle queries and achieving advantage at least 
E'. Here, t ' ,  q', e' are determined by t ,  q, L,  E .  

2 Incremental Cryptography 

We briefly review the definitions of incremental cryptography. This part is mainly 
based on [BGG95]. See this work for further discussion. In section 2.2 we intro- 
duce the notion of message substitution attacks. 

To be precise, t describes the running time and the size of the adversary's algorithm. 
For simplicity, we will only deal with the issue of running time in this paper. 
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2.1 Incremental Schemes 

Let S = (Gen, Sig,Vf) be an ordinary (i.e. non-incremental) signature or message 
authentication scheme which allows to sign block messages. That is, on input a 
security parameter s and a block size b in unary, the Gen algorithm outputs in 
probabilistic polynomial time a pair of keys ( e ,  d). For simplicity we assume that 
s and b are recoverable from e or d and that b = poly ( 5 ) .  On input the key d 
and an admissible message M E C”, where C = {0,1}*, the signer Sig outputs a 
signature or message authentication code (MAC) p in probabilistic polynomial 
time in s (and b ) .  The polynomial time verifier Vf outputs a bit a where a = 1 
stands for ‘Laccept’l and a = 0 for “reject”. A scheme is called complete, if 
Vf (e, M ,  Sig(d, M ) )  = 1 for all keys produced with positive probability by Gen 
and all admissible messages M .  We say that a signature p for M is valid, if 
Vf(e, M ,  p)  = 1. Else it is called invalid. 

To every document we associate a name a E {0,1}* and a counter cnt,. For 
the rest of this paper, we assume that the counter value is bounded above by 2b 
and that the document name has length at most b, so that both values can be 
treated as message blocks, and that all messages M E Ci with 1 5 i 5 poly (3) 
are admissible. Let K ( M I  , . . . , M,, y) E C* denote the message that is obtained 
by applying text modification ?r to messages M I , .  . . , M,  with argument vector 
y. For example, K ( M ,  i, M,) = replace(A.4, i, M,) for y = (i, M,) is the message 
where the ith block in M is replaced by M,  E E. We only present the definition 
for incremental signature schemes. The definition for message authentication 
schemes is similar. 

Definition 1. Let S = (Gen, Sig, Vf) be a signature scheme and M a set of text 
modifications. An M-incremental scheme is an interactive machine such that: 

- The machine is initialized with a pair ( e ,  d )  of keys produced by Gen on input 

- For a create command with arguments a E {0,1}* and D E C*, the machine 
initializes a counter cnt, with 1 and produces a signature Sig(d, 0). (The Sig 
algorithm might take as additional input the name a and cnt,.) The machine 
stores the document D, the counter cnt, and the signature with reference 
to name a. If a document for this name already exists, it is replaced by D 
and cnt, is incremented instead of initialized before calling Sig. 

- On an edit command for the text modification T E M with argument vector 
y and document names a1 , . . . , a, and p, the machine works ils follows: 

(is, I*) .  

0 The machine increments the counter of document 0. 
0 It updates the signature of the document for 0. 
* It replaces the document specified by /3 by applying modification 7r with 

The update step is done by applying the incremental algorithm IncSig to the 
documents D,; and signatures pa; specified by the values a*, the modifica- 
tion K with argument vector y and the key d.2 The algorithm might take 

To be more precise, IncSig is passed a description of K, where we mume that IMI 
is constant. 

argument vector y to the documents defined by the values a*. 
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as additional input all the counter values and document names, including p 
and cntp. 

The incremental scheme is called complete, if S is complete and for all pairs 
(e, d )  of keys which are produced by Gen with positive probability and all valid 
signatures p,, for D,; , the output of IncSig satisfies 

q e ,  Da, IncSig(4 D,, , * 9 * , Da, , Pal I . . 7 pam , r, d) = 1, 

where the verifier Vf might take /3 and cntp as additional input. 

For simplicity, we also write S = (Gen, Sig, IncSig, Vf) for the incremental 
scheme. S(b, s) denotes the incremental scheme with fixed parameters b and s. 

2.2 Security 

In this section we review the notion of security for incremental signature and 
authentication schemes. Basically, an adversary performs an adaptive chosen 
message attack [GMRSS]. So far, all values are stored securely by the interactive 
machine. As done in [BGG95], we augment our model by an alter command that 
takes as arguments a document name a, a document D E C’ and a signature p. 
For an alter command the interactive machine replaces the document with name 
Q by D and the signature by p regardless of the current values. The counter 
value cnt, remains unchanged. 

The alter command models the following settings: Suppose that the docu- 
ments and signatures are kept on an insecure medium like a remote host. Then 
an adversary, e.g. a virus, might change the document before issuing an edit com- 
mand. If the adversary doesn’t use alter commands during his attack, we call 
it a basic attack. If he tampers only documents but no signatures, we call this 
a message substitution attack. This corresponds to the case when the possibly 
short signature is kept on a secure medium. If the adversary changes documents 
and signatures, it is called a (total) substitution attack. 

In substitution attacks, we must associate the signature or authentication 
code to some document. [BGG95] therefore introduce virtuaI documents. To ev- 
ery document D we define the virtual document virt(D) as follows: If the docu- 
ment D was issued by a create command, let virt(D) = D. If the document was 
obtained by an edit command applying ?r with argument vector y to documents 
Di, . . . , DL, let virt(D) be the document that is obtained by applying T with 
y to virt(Di). . . . ,virt(DL). If the document D was obtained by an alter com- 
mand replacing document D’, let virt(D) = virt(D’). An adversary is successfd, 
if he produces a signature or authentication code for a document which hasn’t 
appeared as a virtual document before. We define security in terms of exact 
security: 

Definition 2. Let S(b, s) be an incremental signature or message authentication 
scheme with block size b and security parameter 3. A (t, q, , q,, , qi , L,, L, , Li, e) -  
adversary E makes at most t steps (in a standard RAM model [AHU74)), queries 



Sig, IncSig, Vf at most qs, qi, q, times, each query with messages of no more than 
L,, Li, L,  blocks, and is successful with probability at least 6 .  S(b,  s) is said to be 
( t ,  q,, q,, qi, La ,  L,, Li, €)-secure against basic/message substitution/total substi- 
tution attacks, iff there is no (t ,  qa, q,, qi,  L,,  L,, Li, €)-adversary performing the 
corresponding attack. 

For the rest of this paper, we write ( t , q , L , ~ )  for q = ( q s , q i , q v )  and L = 
(La, Li, Lv) .  In some settings, parameters may be irrelevant, for example qv and 
L, in signature schemes. It this case, it is understood that q and L abbreviate 
(qslqi) and (La,&). 

3 Incremental Message Authentication: IncXMACC 

3.1 Notations and Definitions 

For two strings 5, y E (0 ,  l}', let 2 . y be the concatenation of x and y. For 
2, y E (0 ,  l}n, z @ y denotes the bitwise exclusive-or of z, y. For a number i E 
(0,. . . , 2m - l}, let ( i)m denote the rn-bit binary representation of i. 

Let Map(X, Y) denote the set of all functions with domain X and range Y. 
A function familg F E Map(X, Y) is a set of functions, where we associate a key 
a to each function f E F.  Let Fa be the function specified by key a. To draw 
a function f E F at random means to choose at random with equal probability 
a key a from the set of all keys of functions in F and to set f := Fa. For a 
function f from the family Map(X,Y) the associated key is the sequence of all 
1x1 function values in some fixed order. 

Let F,G s Map(X,Y) be two function families and D be a probabilistic 
algorithm. Define the advantage of D distinguishing between F and G as 

Advo(F,G) = ProbfEF [Df = 11 - PrObgEG [Dg = 11, 

where the probabilities are taken over the random choice of f E F resp. g E G 
and the coin tosses of D. We say that D is a ( t ,  q, €)-distinguisher if it makes at 
most t steps (in a standard RAM model), makes at most q oracle queries and 
achieves Advo(F,Map(X, Y ) )  2 E .  We say that the family F is (t,q,e)-secure if 
there exists no (t ,  q, c)-distinguisher. 

3.2 XQR Schemes 

Bellare, Gu6rin and Rogaway [BGR95] introduced the XOR MAC schemes, a 
general framework for designing message authentication schemes. Let F be a 
function family with domain (0,1}' and range (0, l}L and let Fa be a function 
in F according to key a. Given a message M = M[1]. + - M(n]  and some state 
information, e.g. a counter, an algorithm R outputs probabilistically some seed 
T .  On input T and M ,  a deterministic algorithm & produces a set 2 C (0 ,  l}'. 
Both algorithms must not dependend on the key a. The message authentication 
code for M is ( T ,  z ) ,  where z = eSEz Fa(s). The verifier knowing the key u 
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works as follows: On input a MAC ( r ' , ~ ' )  and a message M' ,  it runs E with 
input r' and M' to obtain a set 2' 

Security of such schemes can be reduced to the algebraic problem that an 
associated matrix has full rank. For a set 2 (0,l) '  let the characteristic 2'- 
bit vector be the vector where the zth entry is 1 iff z E 2. Assume that the 
underlying function family is Map({O,l}l, (0, l}L). Then the probability that 
the verifier accepts one of the q,, queries for a new message is bounded above by 
6 := qv . 2 - L  + maxM,, {NFRank,. ( M ,  T)} with 

(0,l)' and accepts iff eZEz, Fa(%) = 2'. 

NFRankqB ( M ,  T )  := Prob [Matr ix ,  ( M ,  r )  hasn't full rank I M $ {MI,. . . , M,,}] 

Here, Matrix,, ( M ,  r )  describes the random matrix over GF [2], consisting of the 
qs + 1 characteristic vectors, where the first qs vectors for the signing queries 
are defined by E's output for the random messages Mi and seeds Ri, and the row 
vector qs + 1 is specified by E's output for the possible forgery M and seed r 
in the first verify query. Note that these two values determine the MAC, since 
E is deterministic. Given an adversary A for such an XOR scheme based on a 
function family F such that A is successful with probability c', one can derive a 
distinguisher for F with comparable running time and advantage E 2 E' - 6. See 
for example [BGR95] or the proof of Theorem 4. 

3.3 The Scheme IncXMACC 

The scheme IncXMACCF,b is based on afunction family F C Map((0, l}', (0, l}L) 
and has block size b 5 1' where 1' = f l -  1. For notational convenience we as- 
sume that E is even. It supports the operations insert(M, i, M,) and delete(M, j )  
for inserting block M ,  at position i resp. deleting the jth block in message 
M = M[1] . - . M [ n ] ,  where 1 5 i 5 n + 1 and 1 5 j 5 n. Therefore, the scheme 
supports other operations like replace(M, i, M*) ,  swap(M, i, j )  or move(M, i, j )  
to replace block i by M,, to swap block i and j or to move block i to position 
j ,  respectively. We sometimes abbreviate delete(M, j )  by delete(j) if the corre- 
sponding message M is clear from the context. Similar for the other operations. 

We will first discuss the single document setting and then show how to pro- 
ceed in the multi document case. In the single document model, the scheme 
holds two counters dcnt and bcnt, a document counter resp. a block counter, 
both initialized with 0. For technical reasons, only messages with more than two 
blocks are allowed. In the multi document setting, only message with more than 
four blocks are admissible. In both cases, the counter values are bounded above 
by 2l*. The underlying idea is that we link every message block to a unique block 
counter value and incorperate the order of the message blocks by chaining the 
counter values. 

We define the algorithms Sig and IncSig. Assume that the user or adversary 
issues a create command for the document M[1] - . . M [ n ]  E En. Then Sig in- 
crements dcnt by one and produces the MAC ( dcnt, bcnt +1,. . . , bcnt +n, z ) ,  
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where z = esEZ Fa(z) with 

Z = (0-  (dent)(-,} U (10. (M[i]) l*  . {bcnt +i) l .  I i = 1,.  . . , n }  
U (11. (bcnt +i)*. . (bcnt +i t l)l. I i = 1,. . . , n - 1 )  

Finally, Sig increments bcnt by n. On an insert(i, M,) command for the current 
document M = M[l]. . . M[n]  and MAC 1-1 = ( d ,  c1,. . . , c,, z )  for MI the system 
works as follows: IncSig increments the counters dcnt and bcnt and outputs a new 
MAC (dcnt, c1, . . . , ci-1, bcnt, ci, . . . , c,, z’) for the document M[1]. . . M [ i  - 
1]M, M[i]-- .M[n] ,  where 

Z‘ = z CB Fa(0.  (4i-l) EI Fa(0.  ( d d l - , )  
BFa(10. (M*)l .  . (bcnt),.)$F,(11. (Ci-l)l* . (ci),.) 

@Fa(11 * ( ~ i - 1 ) ~ ~  - (bcnt)l.) @Fa(11 * {bcnt)l, * ( ~ i ) ~ . )  

That is, the old document counter value of the document is replaced by the new 
one and the new block M,  is linked to its block counter value bcnt. Moreover, 
bcnt is put in the chain between ci-1 and ci breaking up the link between ci-1 
and ci. For i = 1 (resp. i = n + 1) drop the fourth and fifth (resp. fourth and 
last) function value. 

A delete(i) command for 1 5 i 5 n is processed similarly. Having incremented 
dcnt, the new MAC for the document M[1]. . . M [ i  - 1]M[i + 11.. . M [ n ]  is given 
by ( dcnt, c1, . . . , ct-1, ci+l, . . . , cn , z’) where 

Z’ = z @ Fa(0 . (d)l-l) @ Fa(0 * (dcnt)l-l) 
€B Fa(1O. (M[i])*e . (ci)l*) eFa(11 * { ~ i - l ) l *  . (c i ) l*)  
~ F a ( 1 1 .  (ci)i* * {ci+1)l+)@Fa(11* (ci-~)I* (ci+l)p) 

In this case, the system doesn’t increment bcnt. For i = 1 or i = n adapt the 
last lines as above. 

Finally, we define the verify procedure Vf. Given M = M[l].  . . M [ n ]  and 
a MAC (d‘, ci, . . . , ck, , z‘), check that n’ = n and that all r[i values are dif- 
ferent and reject if one of these properties doesn’t hold. Otherwise compute 
z = esEZ F,(z) with 

2 = (0. (d’)l-l} u (10. (M[2]) l .  * (Ci)*. 1 2  = 1,. . . , n }  
u { 11 + (c;)** . ( c:,~),. I i = 1, . . . , n - 1 } 

Reject if z # z’,  otherwise accept. 
Security is proven as in [BGR95]. We first deal with the case F = R = 

Map((0, l}’, (0, l}L) and show an upper bound for the success probability. Due 
to space restriction we skip the rather technical proof. It will be given in the 
final version. 

Theorem 3.  Let R = Map((O,l}l, (0, l}L) and 2b+2 5 1 .  Let E be a computa- 
tionally unbounded adversary attacking the incremental scheme IncXMACCR,r, in 
a message substitution attack making at most qv verify queries. The probability 
that E is successful is bounded above by dr := qv 2-L.  
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Obviously, this bound is tight. Rom this Theorem we derive: 

Theorem 4. Let F 5 Map({O,l}l, (0, l}L) be afunction family with 2b+2 5 1 .  
I f F  is ( t ' ,q' ,d)-secure then IncXMACCF,b is ( t ,qs ,q , , ,qe ,  Ls ,Lv ,e ) -secure ,  where 

t' = t + C ( q s  + qv + qe) (L  + 1 + b ) ,  q' = 2q,L,, + 2qsLs + 6qe, C' = E - q v .  2 -L  

for a small constant c E IN dependang only on the computational model. 

Proof. (Sketch) Let E be an adversary for IncXMACC with the specified param- 
eters and success probability at least E .  From E we construct a distinguisher D 
for F .  D is given oracle access to a randomly chosen function g in F resp. R. D 
simulates E and IncXMACC's program by replacing each function evaluation Fa 
with the oracle values for g and outputs 1 iff E is successful. By Theorem 3, for 
g E R the adversary E is successful with probability at most q,, . 2 - L .  Therefore, 

ProbgEF [Dg = 11 - ProbgER [Dg = 11 

= ProbgEF [E is successful] - ProbgER [E is successful] 2 E - q,, . 2-L .  

Hence, D is a (t ' ,  q', d)-distinguisher for F .  0 

We compare IncXMACC and the tree scheme presented in [BGG95]. Our scheme 
is only secure when the MAC is kept on a secure medium, while the tree scheme 
is secure against total substitution attacks. The tree scheme can be applied with 
any secure signature or authentication scheme, but deleting or inserting a block 
takes R (log n) evaluations of the ordinary signature scheme, where n is the num- 
ber of message blocks of the document. Additionally the tree structure must be 
maintained. Nevertheless, the tree scheme supports the more powerful modifica- 
tions paste and cut. The advantage of our scheme is that it takes only a constant 
number of function evaluations for insert and delete (below we'll show that this 
holds also for the paste modification), that it merely accesses the corresponding 
message block in update steps, and that the size of the MAC is considerably 
smaller. Namely, let s be the output length of the pseudorandom function used 
by IncXMACC and the output length of the ordinary authentication scheme used 
in the tree scheme. Moreover, assume that both schemes have block size b. If 
the block counter is bounded above by sc, then IncXMACC produces MACs for 
messages of n blocks with bit size at most s + c(n + 1) logs = 0 (s + nlogs), 
while MACs produced by the tree scheme have size at least (is + 1)n = 0 (ns). 

The scheme IncXMACC is provably not secure against (nonadaptive) total 
substitution attacks. The adversary queries Sig for the document ABCD, where 
A,B,C,D are different blocks in {0, 1)". He alters the document to AABC and 
changes the MAC ( ~ , c ~ , c z , c ~ , c ~ , z )  to (d,c1,clrc2,c3,z). Then he asks IncSig 
to delete the third symbol. Replacing this MAC (d + ~ , c ~ , c I , c ~ ,  z') by (d + 
1, c1, c3, c4, z'), he obtains a valid MAC for the document ACD, which hasn't 
appeared as a virtual document. 

We now adress the multi document setting. For every document we associate 
a name a 6 (0,l)'. Additionaly, we keep a block counter bcnt, and a document 
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counter dcnt, for each document. Signing a document is similar to lncXMACC 
but we use the value OO.(dcnt,)l. .(a)r, instead of O.(dcnt)l-, for the source and 
00 . (dcntp +l)l. . ( p ) l .  instead of 0 (dcnt +1)1-1 for the destination. Security 
follows as in Theorem 3 and Theorem 4. 

Theorem 5 .  Let F 5 Map({O,l}l, (0, l}L) be a function family with 2b+2 5 1 .  
If F is ( t‘ ,  q’, €‘)-secure then IncXMACCF,b is ( t ,  qa, qw,  qe,  La, L,, €)-secure in the 
mvlti document setting with at most I documents, where 

t’ = t + CI(qa + Qv + qe)(L + 1 + b ) ,  q’ = 2qv-5, + 2qSLa + 6q,, 6‘ = e - qv . 2-L 

for a small constant c E IN. 

In the multi document setting, we can allow a paste modification if we use one 
block counter for all documents. The paste command for documents M ,  M‘ with 
names CYI, a 2  and MACs (d, c1, . . . , c,, z ) ,  (d’, 4 , .  . . , c i , ,  z’) produces the MAC 
(dcntp +1, c1,. . . ,cnr ci, . . . , ck,, 2 )  with 

2 = z @ z’ @I F,(OO. (dcntp +1)1* - ( P ) I . )  @ F,(OO. (ql. . ( a ~ ) ~ . )  
CB Fcc(O0. (d‘)l* . ( a 2 ) l . )  Fa(11* (cn)r* * (c\)I*) 

for the document M . M‘ with name @. 

4 Memory Checkers 

4.1 Definition 

Let 23 be a data structure with a set of operations that define the behaviour 
of 2, on an initial configuration. Consider for example the data structure stack. 
The sequence push(a), push@), pop, push(b), pop for an empty stack produces 
the output -, -, b, -, b, where - stands for “no output”. 

We assume that all arguments for the operations are specified by a parameter 
n. To emphasize this dependence we write 27,. We want to design a program C 
that checks whether an implementation D, of 21, works correctly for a sequence 
of operations for this data structure. We call these operations user or input 
operations. C filters the interaction between the user and the data structure 
resp. memory, so that the user can interact with the data structure only via 
the checker. After having read the next user operation, the program C shall 
return the output of that operation to the user or BUGGY if an error occurs, 
e.g. D, returns a different value than the expected one. Obviously, the worst 
case occurs if the user and the memory is totally under control of one adversary. 
Additionally, the adversary works adaptively, i.e. his next action depends on all 
previous steps. 

To allow multiple instances, we extend every operation by an argument taking 
values between 0 and I - 1 in binary, where I stands for the maximal number of 
instances available. Let 27; be the augmented version of 23,. The checker can use 
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further instances to save additional information like time stamps to the insecure 
medium. 

An execution is divided into rounds. Each round starts with the checker 
reading the next user operation. Then it performs some local computation and 
may interact arbitrarily with the data structure. After having finished this com- 
putation, the checker shall return the correct answer for the user operation to 
the user (or “-’I if the operation doesn’t produce an output) before reading the 
next operation. The checker shall output BUGGY if the data structure returns 
a faulty value at some point in the execution. On the other hand, it shall never 
output BUGGY if no error occurs. Before starting the first round, the checker 
might perform a preprocessing, and additionally, after having read the last user 
operation, it might do some “postprocessing” (and perhaps output BUGGY 
then). 

We use the RAM model to define our checker. The space complexity is mea- 
sured logarithmically, while time complexity can either be uniform or logarith- 
mic. In this work, time will be meassured uniformly. We assume that the ad- 
versary’s model of computation is a RAM, too, and that both RAM share a 
sufficient large number of registers to exchange information, while every other 
memory of each machine is private. See [GMR89,G096] for a more formal treat- 
ment of interactive machines. 

Definition 6. A (tpre, tpost, top, s, q, J)-memory checker for a data structure ’of, 
is a probabilistic RAM C such that for every execution with at most q user 
operations, C takes only tpre preprocessing steps, at most tpost postprocessing 
steps and only to, steps to process each user operation. Additionally, C’s private 
memory is bounded above by s bits and the checker uses at most J instances 
of 23,. A (tpre, tpost, top ,  s, q, J)-memory checker for Dfl is called (t ,  S, €)-secure if 
the following holds for every adversary A running in time t: 

- Completeness: If the output of D,” is correct for all operations issued by C ,  
then the probability that C returns BUGGY or that not all answers of C for 
the user operations are correct is at most 6, where the probability is taken 
over the coin tosses of C and A.  

- Soundness: If the output of 02 is false for some operation, then C should 
output BUGGY with probability at least 1 - E .  

In most settings we are interested in checkers for which 6 = 0 holds. These 
checkers are called complete. Definition 6 doesn’t rule out the trivial solution, 
that C simply keeps all values in his private memory. This would rather prevent 
errors and guarantee correct outputs than check the data structure. We are 
interested in checkers using only a few bits private memory and causing a small 
~ve rhead .~  So this trivial solution gives us an upper bound and a starting point 
to build more efficient solutions. A checker is called an on-line checker iff it 

Note that we don’t charge the checker’s running time e.g. for inserting or deleting 
an element using insert and delete commands passed to the implementation (except 
for the time to write the operation and to read the answer). 
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outputs BUGGY in that round in which an error occurs. Otherwise it is called 
an off-line checker. A checker is called noninvasive if at the end of each round, the 
insecure memory contains only values specified by the input operations when the 
checker reads the next operation. Otherwise it is called invasiwe. In particular, 
our checker based on IncXMACC is off-line and noninvasive with the additional 
property that the checker passes only user operations to the implementation. 

4.2 

In this section we show how we can derive a memory checker from IncXMACC. 
We prove that we can check any data structure based on the structure List,, 
where List, represents a list with elements from {0, l } , .  The initial configuration 
is empty. List, supports four operations: insert(i, T I )  to insert element E {O,1}” 
at position i ,  delete(i) to remove the element at position i and return this value 
to the user, replace(i,v) to replace the ith value by w and return this element, 
and read(i) to return the ith element to the user. 

We can design checkers for other data structures based on List, like stacks 
and queues. If the checker maintains a counter for the number m of elements 
currently in the list, the stack resp. queue commands pop, push(v), dequeue and 
enqueue(v) are equivalent to delete(m), insert(m+ 1, w), delete(1) and insert(m + 
1, w). If the data structure can be implemented with lists, we can combine the 
checker’s program and the list implementation of the data structure to obtain a 
method to securely store the data of this structure on an insecure medium. The 
following notion of a sound scheme will help us to prove stronger security: 

Designing Checkers via Incremental Schemes 

Definition 7. Let S(b, s) = (Gen, Sig, IncSig, Vf) be an M-incremental authen- 
tication or signature scheme. S(b, s) is called sound iff for all keys produced with 
positive probability by Gen the following holds: Let M be a message that is ob- 
tained by applying a text modification ?r E M with argument y to documents 
M I , .  . . , M ,  and let P I , .  . . ,p, and p = IncSig(M1,. . . , M,,,uI, . . . ,pmr ?r, y) 
the corresponding (valid or invalid) signatures. If W ( M ,  p )  = 1, then Vf(Mi, pi) = 
1 holds for all i = 1,. . . , m. 

Informally, a sound scheme is a scheme such that applying IncSig with an 
invalid signature p, for some Mi doesn’t yield a valid signature for M .  Note 
that the soundness property doesn’t guarantee security. It only states that one 
cannot produce a valid signature form invalid signatures directly. It may yet be 
possible to deduce a valid signature from an invalid one. 

Lemma 8. The {delete, insert}-incremental scheme IncXMACCF,b is sound. 

The proof is omitted. One can easily verify that the tree scheme is sound, too. 

Theorem 9. Let F be a function family with input length 1,  output length L 
and key length IC. Assume that IncXMACCF,b i s  ( t ,  q, L, €)-secure against mes- 
sage substitution attacks for block size b = n .  Then there exists a non-invasiwe 
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(tpre,  tpostr top,  s, q, I)-ofl-line checker for List:, which is ( t ’ ,  0 ,  €)-secure where 

tpre = Time(FGen), 
s = cg . (n + 1 + q log q + I L  + Space(F)) + K., 

t’ = t - c3(qtop + tpre + tpost), qi = q, I = min{q,, qv} .  

tpost = q q  . Time(F), top = c1 . (Time(F) + logq), 

fo r  small constants C ~ , C Z , C ~  E IN. Here, Time(F) resp. Space(F) denotes the 
time resp. space to evabate a function from F and Time(FGen) denotes the 
time to draw a key for a function in F .  

A sketch of the proof is given in Appendix A. It is easy to see that we can 
derive an on-line checker for List, from the tree scheme. Storing the signature 
in the checker’s private memory is too expensive. Hence, we need additional 
instances to store the nodes of the signature tree on the insecure memory. In 
this case, security is provided by the fact that the tree scheme is secure against 
total substitution attacks. However, this checker is invasive and we cannot for 
example efficiently apply this construction to stacks, because in this case we 
cannot access all parts of the signature fast. 

4.3 

First, we define a normal form for adversaries performing attacks on the mes- 
sage substitution detection property. Let S(b, s) = (Gen, Sig, IncSig, Vf) an M -  
incremental (signature or authentication) scheme. We assume that IncSig outputs 
the invalid signature I if, for some reason, it refuses to produce a valid one. An 
attack on the detection property is a message substitution attack, such that each 
IncSig query (a1,. . . , a,, p, n, y) has the following form: 

1. The adversary may replace any message Ma, with A4& by alter commands. 
Let MLTi, i = 1, . . . , m, be this sequence of messages (where we allow M& = 
Ma;). Additionally, the adversary stores the current content Mp. 

A Lower Bound for Substitution Detecting Schemes 

2. The adversary queries IncSig for (LY~,. . . ,arn, p, K, 9). 
3. The adversary replaces all messages with name a, by Ma< again. If IncSig 

has returned I, the adversary replaces the document with name B by the 
former value. 

Furthermore, the adversary doesn’t use additional alter commands. It is easy to 
see that every adversary can be assumed w.1.o.g. to be in normal form. Therefore, 
we can associate each alter command uniquely to an IncSig query. If IncSig doesn’t 
return I in step 2, the adversary may either replace Mp again or not. 

For notational convenience, let M[i]  = * for the message M[1] . . . M[n]  and 
i > n, where * denotes a special symbol * 4 C. In particular, we have M[i ]  # 
M’[i] for messages M[1] . . - M [ n ]  and M‘[1] . - M‘[n’] with n < i 5 n’. 
Definition 10. A (normal form) adversary for the detection property is suc- 
cessful, if IncSig returns in step 2 a signature different from I for a query 
(w,. . . ,a,, @, T ,  y), such that for the blocks b h ] ,  h = 1,. . . , k, that IncSig 
has read to produce this signature, we have M& [ j h ]  # Maih b h ]  for some h. 



406 

Note that Definition 10 doesn’t rule out the trivial solution that IncSig always 
outputs I resp. that IncSig never reads a block. 

Definition 11. Let S(b,  s) = (Gen, Sig, IncSig,Vf) be an M-incremental scheme. 
A ( t ,  q, L, 6)-adversary for the detection property is specified by the parameters 
in definition 2, where 6 is the success probability. S(6, s) is called ( t ,  q, L, 6)- 
detecting, if there exists no ( t ,  q, L, 6)-adversary for the detection property. 

Thus, message substitution detecting schemes can be viewed as on-line checkers. 
To prove that a detecting scheme which is secure against basic attacks, is also 
secure against message substitution attacks, we need the following definition: 

Definition 12. The M-incremental scheme S(b, s) = (Gen,Sig, IncSig,Vf) is a 
scheme with ppredictable IncSig-access, iff one can for all (with positive prob- 
ability generated) keys, all messages Mai with Mai = Mi[l] . . -  Mi[ni] and sig- 
natures psi, i = 1,. . . , m, predict the message blocks, which IncSig accesses to 
update the signature in response to (cq, . . . ,a,, /3, n,y)  in time p(max{ni}) (in 
the corresponding computational model) from psi, i = 1,. . . , m, and x ,  y. 

For simplicity, we have assumed that IncSig’s access is predictable from pa;, 
T, y in time p(max{ni}). Extensions to other parameters are straightforward. 
Clearly, the tree scheme is a detecting scheme with predictable Indig-access. 

Proposition 13. Let S(b,  s) = (Gen, Sig, IncSig, Vf) be a ( t ,  q, L, 6)-detecting 
M -incremental scheme with p-predictable IncSig-access, which is ( t ,  q, L, e) -secure 
against basic attacks. Then S(6, s) i s  ( t ’ ,  q, L, t’)-secure against message substi- 
tution attacks, where t‘ = t - qip(Li) and E’ = 6 + 6. 
Proof. (Sketch) Let E be a normal form adversary with parameters t ,  q, L, which 
is successful with probability at least E in a message substitution attack. From E 
we construct via black-box-simulation an adversary A performing a basic attack. 

A simulates each query E to Sig and Vf by its oracle access to S(6, s). If E 
issues an IncSig query without having used an associated alter command in step 
1 of the normal form specification, then A passes this query to IncSig and returns 
the signature to E. Assume, that E tampers messages Ma( to before. Then 
A computes in time p(Li) from pai , i = 1,. . . , m, and n, 9 the message blocks 
M i i h  Ijh], h = 1,. . . , k, which IncSig would read. If M i i h  [jh] # Maih I jh] for 
some h, A returns I to E without quering IncSig. Else A passes the query to 
IncSig without tampering the messages and returns the signature to E .  In this 
case, the signature does not depend on other (altered or unaltered) blocks and 
the answer is correct. 

As alter commands don’t change virtual documents, every virtual document 
appearing in A’s attack appears in E’s attack as well. Let Detect be the event, 
that E isn’t successful in an attack for the detection property. Furthermore, let 
SUCCA resp. S u c c ~  be the events that A resp. E performs a successful attack on 
the signature scheme. We have 

d 5 Prob [SUCCE] 5 Prob [SUCCE I Detect] i- Prob [l Detect] 5 Prob [SUCCA] + 6. 

Hence, A is successful with probability at least E .  
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We show that we cannot design detecting schemes producing small signatures: 

Proposition 14. Let S(b, s )  be a complete ( t ,  q, L, 6)-detecting scheme for t = 
cbn, qs = 1, q, = n, L, = Li = n, which supports the replace modification such 
that IncSig always accesses the ith block for valid replace(Ma, i, Me) commands. 
Then for A := 1 - 6 > 4 the bit length of a signature for a message M = 
M[1]. . - M[n] must be at least 

where /3 = 1 - 2(a - &)2  log, e < 1, y = < 1 for & < a < A. Here, t,,, i s  
the maximal number of blocks IncSig reads for an update step. 

The proof is a variation of the proof given in [BEG+94] for on-line checkers and 
is omitted. If A and a are close to 1, we have 1 - P w 5 and y M 1, i.e. a 
signature must have at least bits. 
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A Sketch of Proof of Theorem 9 

Clearly, the checker runs the incremental scheme IncXMACC to check the cor- 
rectness. For every instance we’ll have a signature for the content. Updating 
this signature when inserting, deleting, replacing or reading an element will be 
done with the insert, delete commands for the incremental scheme. To prevent 
repetition attacks, we prepend every “message” with a time stamp which the 
checker stores in its local memory, not in the insecure memory. This time stamp 
is updated before processing insert, delete commands. 

If no more operations are left, the checker empties the memory in a postpro- 
cessing phase: For each initialized instance it deletes the values in the instance 
using delete commands and checks that the obtained signatures are accepted by 
Vf. If some signature is not accepted, it outputs BUGGY, otherwise C accepts. 

If all operations work correctly, the checker never outputs BUGGY since 
IncXMACC is complete. Assume that there is a sequence of operations such 
that the checker is fooled. We design a adversary E for IncXMACC. E works as 
follows: Let A be the adversary for the checker. Then E first runs the whole 
execution simulating C and A by black-box-simulation using the oracle access 
for the incremental scheme. Moreover, E maintains the correct memory contents 
and stores all signatures. 

Since E has simulated the whole execution first, he knows the last user op- 
eration for which a wrong value has been returned. E builds a message M that 
consists of the time stamp, the correct memory content (at this point) and re- 
places the corresponding block with the wrong value. E outputs this message M 
and the signature p for this message as a forgery. As the scheme is sound and the 
checker doesn’t output BUGGY, i.e. the signature for the final value has been 
accepted, this signature p is valid for M .  Virtual documents are only changed by 
insert and delete commands, therefore all virtual documents are defined by the 
correct memory content and the counter values. Since there is some error in M ,  
and the time stamps make every virtual document unique, M hasn’t appeared 
as a virtual document during the execution. Hence, E is successful if A is. 
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