
Incremental Cryptography and
Memory Checkers

Marc Fischlin

Fachbereich Mathematik/Informatik
Johann Wolfgang Goethe-Universitat Frankfurt am Main

PSF 111932
60054 Frankfurt/Main, Germany

e-mail: marc Q informatik.uni-frankfurt.de
URL: http://www.uni-frankfurt.de/-roessner/group/marc/marc.html

Abstract. We introduce the relationship between incremental crypto-
graphy and memory checkers. We present an incremental message au-
thentication scheme based on the XOR MACs which supports inser-
tion, deletion and other single block operations. Our scheme takes only a
constant number of pseudorandom function evaluations for each update
step and produces smaller authentication codes than the tree scheme
presented in [BGG95]. hrthermore, it is secure against message substi-
tution attacks, where the adversary is allowed to tamper messages before
update steps, making it applicable to virus protection. From this scheme
we derive memory checkers for data structures based on lists. Conversely,
we use a lower bound for memory checkers to show that so-called mes-
sage substitution detecting schemes produce signatures or authentication
codes with size proportional to the message length.

1 Introduction

The notion of incremental cryptography has been introduced by Bellare, Gol-
dreich and Goldwasser in [BGG94] and refined by the same authors in [BGG95].
Suppose that we are given a block-by-block message M and its cryptographic
form p, i.e. encryption, signature or authentication code. Let M i be a message
that is obtained by applying a text modification from a set M of modifications
to M . With an incremental scheme supporting the text modifications M a cryp-
tographic form p' for M' can be produced much faster from p and A4 than it
would take to compute it from scratch.

Our results. We present the incremental authentication scheme IncXMACC that
supports single block insertion and deletion, and therefore other operations like
replacement. To update an authentication code for inserting or deleting a sin-
gle block at a given position, this scheme performs only a constant number of
pseudorandom function evaluations. Additionally, insertion can be done without
accessing the message and deletion merely needs the corresponding block.

W. Fumy (Ed.): Advances in Cryptology - EUROCRYPT '97, LNCS 1233, pp. 393-408, 1997.
0 Spnnger-Verlag Berlin Heidelberg 1997

394

Security against Message Substitution Attacks. Our scheme remains secure if
an adversary is allowed to alter messages before applying the update algorithm
- while the shorter authentication code must be kept on some secure medium.
Security against these message substitution attacks implies application to virus
protection. To protect a large file stored on some insecure medium against unau-
thorized alternation, authenticate this file and store the shorter authentication
code in some incorruptible memory. Whenever an authorized user modifies the
file, we can update the authentication code very fast using the incremental algo-
rithm. Conversely, it is very unlikely that an attacker, e.g. a virus, will be able
to produce a forgery even if he tampers the documents before update steps. In
this sense, message substitution attacks lie between (total) substitution attacks,
where both the message and signature can be tampered before update steps, and
basic attacks, where the adversary isn’t allowed to alter messages or signatures
before updating.

Related Work. In [BGG94] a hash-and-sign scheme based on an incremental hash
function was presented. The signature consists of the hash value h and a signature
for h produced by an arbitrary non-incremental signature scheme. To update a
signature, increment the hash value and sign this new hash value. Unfortunately,
this scheme only supports single block replacement and it is provably not secure
against message substitution attacks.

In [BGG95] the same authors present the tree scheme supporting single block
operations like insertion and deletion (and the more powerful modifications cut
and paste to devide a text into two documents resp. to append a document to
another). The tree scheme takes R (logn) verification and authentication steps
for the abovementioned operations, where n is the number of blocks of the docu-
ment. For the cut modification, the tree scheme is much faster than IncXMACC,
while our scheme supports the insert, delete and paste modifications applying a
pseudorandom function only a constant number of times. Moreover, our scheme
produces considerably smaller authentication codes than the tree scheme, though
the authentication code must be kept on a secure medium. In contrast to that,
signatures and authentication codes produced by the tree scheme can be stored
in the insecure memory. A randomized version of the tree scheme is given in
[M97]. This scheme hides the fact whether the incremental or non-incremental
algorithm has been used to produce a signature.

Our scheme IncXMACC refines the incremental authentication scheme pre-
sented in [BGG95], which is also based on the XOR MACs. This scheme has
several disadvantages in comparison to our scheme: It doubles the key size by
using two pseudorandom functions and it requires many random bits. For an
update step the incremental algorithm reads more than the corresponding block
and security has only been proven for basic attacks.

Memory Checkers. Using IncXMACC, we present a method to obtain memory
checkers for lists and similar data structures. The memory checker model has
been introduced by Blum et al. in [BEG+94] (a prelimary version appeared in
[BEGf91]). Informally, a memory checker for a data structure D verifies that

395

for a given sequence of operations, an implementation of 2) works correctly for
this sequence. If not, the checker outputs some error message. There are two
sources of errors: The program implementing the data structure can be buggy
or the memory where the elements are stored can be tampered by an adversary,
e.g. a virus. Intuitively, incremental schemes that are secure against message
substitution attacks seem to provide a suitable method to design such checkers.
To do so, keep a signature for the current memory content and update the
signature accordingly for an operation for D. Nevertheless, in some settings the
checker should be able to update the signature given only the old signature and
the element resp. block that for example shall be deleted or inserted, without
accessing other parts of the memory content. IncXMACC has this property.

Making the connection between memory checkers and incremental schemes
we transfer a lower bound for checkers to incremental schemes. Informally, an
incremental scheme is message substitution detecting, if it detects when relevant
parts of message have been altered before calling the update algorithm. We give
a sufficient condition under which an incremental message substitution detecting
scheme that is secure against basic attacks, is also secure against message substi-
tution attacks. The lower bound states that the length of a signature produced
by a substitution detecting scheme must be very large, roughly proportional to
the size of the message.

For a discussion about the differences between the memory checker setting
and the program checking model (which has been introduced by Blum and Kan-
nan in [BK89]) resp. the software protection model of Goldreich and Ostrovsky
[GO961 we refer the reader to [BEG+94].

Emct Security. We follow the paradigm presenting our results in terms of ez-
act security [BKR94,BGR95]. Informally, the notion c;f exact security can be
described as follows. Assume that we have an adversary for IncXMACC with
running time' t that makes at most q signature queries for messages of length
at most L and achieves success probability e. Then we derive (in a constructive
way) a distinguisher D for the underlying function family F with parameters
t', g', e', such that D can distinguish F and the family of all functions with run-
ning time t', making at most q' oracle queries and achieving advantage at least
E'. Here, t ' , q', e' are determined by t , q, L, E .

2 Incremental Cryptography

We briefly review the definitions of incremental cryptography. This part is mainly
based on [BGG95]. See this work for further discussion. In section 2.2 we intro-
duce the notion of message substitution attacks.

To be precise, t describes the running time and the size of the adversary's algorithm.
For simplicity, we will only deal with the issue of running time in this paper.

396

2.1 Incremental Schemes

Let S = (Gen, Sig,Vf) be an ordinary (i.e. non-incremental) signature or message
authentication scheme which allows to sign block messages. That is, on input a
security parameter s and a block size b in unary, the Gen algorithm outputs in
probabilistic polynomial time a pair of keys (e , d). For simplicity we assume that
s and b are recoverable from e or d and that b = poly (5) . On input the key d
and an admissible message M E C”, where C = {0,1}*, the signer Sig outputs a
signature or message authentication code (MAC) p in probabilistic polynomial
time in s (and b) . The polynomial time verifier Vf outputs a bit a where a = 1
stands for ‘Laccept’l and a = 0 for “reject”. A scheme is called complete, if
Vf (e, M , Sig(d, M)) = 1 for all keys produced with positive probability by Gen
and all admissible messages M . We say that a signature p for M is valid, if
Vf(e, M , p) = 1. Else it is called invalid.

To every document we associate a name a E {0,1}* and a counter cnt,. For
the rest of this paper, we assume that the counter value is bounded above by 2b
and that the document name has length at most b, so that both values can be
treated as message blocks, and that all messages M E Ci with 1 5 i 5 poly (3)
are admissible. Let K (M I , . . . , M,, y) E C* denote the message that is obtained
by applying text modification ?r to messages M I , . . . , M, with argument vector
y. For example, K (M , i, M,) = replace(A.4, i, M,) for y = (i, M,) is the message
where the ith block in M is replaced by M, E E. We only present the definition
for incremental signature schemes. The definition for message authentication
schemes is similar.

Definition 1. Let S = (Gen, Sig, Vf) be a signature scheme and M a set of text
modifications. An M-incremental scheme is an interactive machine such that:

- The machine is initialized with a pair (e , d) of keys produced by Gen on input

- For a create command with arguments a E {0,1}* and D E C*, the machine
initializes a counter cnt, with 1 and produces a signature Sig(d, 0). (The Sig
algorithm might take as additional input the name a and cnt,.) The machine
stores the document D, the counter cnt, and the signature with reference
to name a. If a document for this name already exists, it is replaced by D
and cnt, is incremented instead of initialized before calling Sig.

- On an edit command for the text modification T E M with argument vector
y and document names a1 , . . . , a, and p, the machine works ils follows:

(is, I*) .

0 The machine increments the counter of document 0.
0 It updates the signature of the document for 0.
* It replaces the document specified by /3 by applying modification 7r with

The update step is done by applying the incremental algorithm IncSig to the
documents D,; and signatures pa; specified by the values a*, the modifica-
tion K with argument vector y and the key d.2 The algorithm might take

To be more precise, IncSig is passed a description of K, where we mume that IMI
is constant.

argument vector y to the documents defined by the values a*.

397

as additional input all the counter values and document names, including p
and cntp.

The incremental scheme is called complete, if S is complete and for all pairs
(e, d) of keys which are produced by Gen with positive probability and all valid
signatures p,, for D,; , the output of IncSig satisfies

q e , Da, IncSig(4 D,, , * 9 * , Da, , Pal I . . 7 pam , r, d) = 1,

where the verifier Vf might take /3 and cntp as additional input.

For simplicity, we also write S = (Gen, Sig, IncSig, Vf) for the incremental
scheme. S(b, s) denotes the incremental scheme with fixed parameters b and s.

2.2 Security

In this section we review the notion of security for incremental signature and
authentication schemes. Basically, an adversary performs an adaptive chosen
message attack [GMRSS]. So far, all values are stored securely by the interactive
machine. As done in [BGG95], we augment our model by an alter command that
takes as arguments a document name a, a document D E C’ and a signature p.
For an alter command the interactive machine replaces the document with name
Q by D and the signature by p regardless of the current values. The counter
value cnt, remains unchanged.

The alter command models the following settings: Suppose that the docu-
ments and signatures are kept on an insecure medium like a remote host. Then
an adversary, e.g. a virus, might change the document before issuing an edit com-
mand. If the adversary doesn’t use alter commands during his attack, we call
it a basic attack. If he tampers only documents but no signatures, we call this
a message substitution attack. This corresponds to the case when the possibly
short signature is kept on a secure medium. If the adversary changes documents
and signatures, it is called a (total) substitution attack.

In substitution attacks, we must associate the signature or authentication
code to some document. [BGG95] therefore introduce virtuaI documents. To ev-
ery document D we define the virtual document virt(D) as follows: If the docu-
ment D was issued by a create command, let virt(D) = D. If the document was
obtained by an edit command applying ?r with argument vector y to documents
Di, . . . , DL, let virt(D) be the document that is obtained by applying T with
y to virt(Di). . . . ,virt(DL). If the document D was obtained by an alter com-
mand replacing document D’, let virt(D) = virt(D’). An adversary is successfd,
if he produces a signature or authentication code for a document which hasn’t
appeared as a virtual document before. We define security in terms of exact
security:

Definition 2. Let S(b, s) be an incremental signature or message authentication
scheme with block size b and security parameter 3. A (t, q, , q,, , qi , L,, L, , Li, e) -
adversary E makes at most t steps (in a standard RAM model [AHU74)), queries

Sig, IncSig, Vf at most qs, qi, q, times, each query with messages of no more than
L,, Li, L, blocks, and is successful with probability at least 6 . S(b, s) is said to be
(t , q,, q,, qi, La , L,, Li, €)-secure against basic/message substitution/total substi-
tution attacks, iff there is no (t , qa, q,, qi, L,, L,, Li, €)-adversary performing the
corresponding attack.

For the rest of this paper, we write (t , q , L , ~) for q = (q s , q i , q v) and L =
(La, Li, Lv) . In some settings, parameters may be irrelevant, for example qv and
L, in signature schemes. It this case, it is understood that q and L abbreviate
(qslqi) and (La,&).

3 Incremental Message Authentication: IncXMACC

3.1 Notations and Definitions

For two strings 5, y E (0 , l}', let 2 . y be the concatenation of x and y. For
2, y E (0 , l}n, z @ y denotes the bitwise exclusive-or of z, y. For a number i E
(0,. . . , 2m - l}, let (i)m denote the rn-bit binary representation of i.

Let Map(X, Y) denote the set of all functions with domain X and range Y.
A function familg F E Map(X, Y) is a set of functions, where we associate a key
a to each function f E F. Let Fa be the function specified by key a. To draw
a function f E F at random means to choose at random with equal probability
a key a from the set of all keys of functions in F and to set f := Fa. For a
function f from the family Map(X,Y) the associated key is the sequence of all
1x1 function values in some fixed order.

Let F,G s Map(X,Y) be two function families and D be a probabilistic
algorithm. Define the advantage of D distinguishing between F and G as

Advo(F,G) = ProbfEF [Df = 11 - PrObgEG [Dg = 11,

where the probabilities are taken over the random choice of f E F resp. g E G
and the coin tosses of D. We say that D is a (t , q, €)-distinguisher if it makes at
most t steps (in a standard RAM model), makes at most q oracle queries and
achieves Advo(F,Map(X, Y)) 2 E . We say that the family F is (t,q,e)-secure if
there exists no (t , q, c)-distinguisher.

3.2 XQR Schemes

Bellare, Gu6rin and Rogaway [BGR95] introduced the XOR MAC schemes, a
general framework for designing message authentication schemes. Let F be a
function family with domain (0,1}' and range (0, l}L and let Fa be a function
in F according to key a. Given a message M = M[1]. + - M(n] and some state
information, e.g. a counter, an algorithm R outputs probabilistically some seed
T . On input T and M , a deterministic algorithm & produces a set 2 C (0 , l}'.
Both algorithms must not dependend on the key a. The message authentication
code for M is (T , z) , where z = eSEz Fa(s). The verifier knowing the key u

399

works as follows: On input a MAC (r ' , ~ ') and a message M' , it runs E with
input r' and M' to obtain a set 2'

Security of such schemes can be reduced to the algebraic problem that an
associated matrix has full rank. For a set 2 (0,l) ' let the characteristic 2'-
bit vector be the vector where the zth entry is 1 iff z E 2. Assume that the
underlying function family is Map({O,l}l, (0, l}L). Then the probability that
the verifier accepts one of the q,, queries for a new message is bounded above by
6 := qv . 2 - L + maxM,, {NFRank,. (M , T)} with

(0,l)' and accepts iff eZEz, Fa(%) = 2'.

NFRankqB (M , T) := Prob [Matr ix , (M , r) hasn't full rank I M $ {MI,. . . , M,,}]

Here, Matrix,, (M , r) describes the random matrix over GF [2], consisting of the
qs + 1 characteristic vectors, where the first qs vectors for the signing queries
are defined by E's output for the random messages Mi and seeds Ri, and the row
vector qs + 1 is specified by E's output for the possible forgery M and seed r
in the first verify query. Note that these two values determine the MAC, since
E is deterministic. Given an adversary A for such an XOR scheme based on a
function family F such that A is successful with probability c', one can derive a
distinguisher for F with comparable running time and advantage E 2 E' - 6. See
for example [BGR95] or the proof of Theorem 4.

3.3 The Scheme IncXMACC

The scheme IncXMACCF,b is based on afunction family F C Map((0, l}', (0, l}L)
and has block size b 5 1' where 1' = f l - 1. For notational convenience we as-
sume that E is even. It supports the operations insert(M, i, M,) and delete(M, j)
for inserting block M , at position i resp. deleting the jth block in message
M = M[1] . - . M [n] , where 1 5 i 5 n + 1 and 1 5 j 5 n. Therefore, the scheme
supports other operations like replace(M, i, M*) , swap(M, i, j) or move(M, i, j)
to replace block i by M,, to swap block i and j or to move block i to position
j , respectively. We sometimes abbreviate delete(M, j) by delete(j) if the corre-
sponding message M is clear from the context. Similar for the other operations.

We will first discuss the single document setting and then show how to pro-
ceed in the multi document case. In the single document model, the scheme
holds two counters dcnt and bcnt, a document counter resp. a block counter,
both initialized with 0. For technical reasons, only messages with more than two
blocks are allowed. In the multi document setting, only message with more than
four blocks are admissible. In both cases, the counter values are bounded above
by 2l*. The underlying idea is that we link every message block to a unique block
counter value and incorperate the order of the message blocks by chaining the
counter values.

We define the algorithms Sig and IncSig. Assume that the user or adversary
issues a create command for the document M[1] - . . M [n] E En. Then Sig in-
crements dcnt by one and produces the MAC (dcnt, bcnt +1,. . . , bcnt +n, z) ,

400

where z = esEZ Fa(z) with

Z = (0- (dent)(-,} U (10. (M[i]) l* . {bcnt +i) l . I i = 1,. . . , n }
U (11. (bcnt +i)*. . (bcnt +i t l)l. I i = 1,. . . , n - 1)

Finally, Sig increments bcnt by n. On an insert(i, M,) command for the current
document M = M[l]. . . M[n] and MAC 1-1 = (d , c1,. . . , c,, z) for MI the system
works as follows: IncSig increments the counters dcnt and bcnt and outputs a new
MAC (dcnt, c1, . . . , ci-1, bcnt, ci, . . . , c,, z’) for the document M[1]. . . M [i -
1]M, M[i]-- .M[n] , where

Z‘ = z CB Fa(0. (4i-l) EI Fa(0. (d d l - ,)
BFa(10. (M*)l . . (bcnt),.)$F,(11. (Ci-l)l* . (ci),.)

@Fa(11 * (~ i - 1) ~ ~ - (bcnt)l.) @Fa(11 * {bcnt)l, * (~ i) ~ .)

That is, the old document counter value of the document is replaced by the new
one and the new block M, is linked to its block counter value bcnt. Moreover,
bcnt is put in the chain between ci-1 and ci breaking up the link between ci-1
and ci. For i = 1 (resp. i = n + 1) drop the fourth and fifth (resp. fourth and
last) function value.

A delete(i) command for 1 5 i 5 n is processed similarly. Having incremented
dcnt, the new MAC for the document M[1]. . . M [i - 1]M[i + 11.. . M [n] is given
by (dcnt, c1, . . . , ct-1, ci+l, . . . , cn , z’) where

Z’ = z @ Fa(0 . (d)l-l) @ Fa(0 * (dcnt)l-l)
€B Fa(1O. (M[i])*e . (ci)l*) eFa(11 * { ~ i - l) l * . (c i) l*)
~ F a (1 1 . (ci)i* * {ci+1)l+)@Fa(11* (ci-~)I* (ci+l)p)

In this case, the system doesn’t increment bcnt. For i = 1 or i = n adapt the
last lines as above.

Finally, we define the verify procedure Vf. Given M = M[l]. . . M [n] and
a MAC (d‘, ci, . . . , ck, , z‘), check that n’ = n and that all r[i values are dif-
ferent and reject if one of these properties doesn’t hold. Otherwise compute
z = esEZ F,(z) with

2 = (0. (d’)l-l} u (10. (M[2]) l . * (Ci)*. 1 2 = 1,. . . , n }
u { 11 + (c;)** . (c:,~),. I i = 1, . . . , n - 1 }

Reject if z # z’, otherwise accept.
Security is proven as in [BGR95]. We first deal with the case F = R =

Map((0, l}’, (0, l}L) and show an upper bound for the success probability. Due
to space restriction we skip the rather technical proof. It will be given in the
final version.

Theorem 3. Let R = Map((O,l}l, (0, l}L) and 2b+2 5 1 . Let E be a computa-
tionally unbounded adversary attacking the incremental scheme IncXMACCR,r, in
a message substitution attack making at most qv verify queries. The probability
that E is successful is bounded above by dr := qv 2-L.

401

Obviously, this bound is tight. Rom this Theorem we derive:

Theorem 4. Let F 5 Map({O,l}l, (0, l}L) be afunction family with 2b+2 5 1 .
I f F is (t ' ,q' ,d)-secure then IncXMACCF,b is (t ,qs ,q , , ,qe , Ls ,Lv ,e) -secure , where

t' = t + C (q s + qv + qe) (L + 1 + b) , q' = 2q,L,, + 2qsLs + 6qe, C' = E - q v . 2 -L

for a small constant c E IN dependang only on the computational model.

Proof. (Sketch) Let E be an adversary for IncXMACC with the specified param-
eters and success probability at least E . From E we construct a distinguisher D
for F . D is given oracle access to a randomly chosen function g in F resp. R. D
simulates E and IncXMACC's program by replacing each function evaluation Fa
with the oracle values for g and outputs 1 iff E is successful. By Theorem 3, for
g E R the adversary E is successful with probability at most q,, . 2 - L . Therefore,

ProbgEF [Dg = 11 - ProbgER [Dg = 11

= ProbgEF [E is successful] - ProbgER [E is successful] 2 E - q,, . 2-L .

Hence, D is a (t ' , q', d)-distinguisher for F . 0

We compare IncXMACC and the tree scheme presented in [BGG95]. Our scheme
is only secure when the MAC is kept on a secure medium, while the tree scheme
is secure against total substitution attacks. The tree scheme can be applied with
any secure signature or authentication scheme, but deleting or inserting a block
takes R (log n) evaluations of the ordinary signature scheme, where n is the num-
ber of message blocks of the document. Additionally the tree structure must be
maintained. Nevertheless, the tree scheme supports the more powerful modifica-
tions paste and cut. The advantage of our scheme is that it takes only a constant
number of function evaluations for insert and delete (below we'll show that this
holds also for the paste modification), that it merely accesses the corresponding
message block in update steps, and that the size of the MAC is considerably
smaller. Namely, let s be the output length of the pseudorandom function used
by IncXMACC and the output length of the ordinary authentication scheme used
in the tree scheme. Moreover, assume that both schemes have block size b. If
the block counter is bounded above by sc, then IncXMACC produces MACs for
messages of n blocks with bit size at most s + c(n + 1) logs = 0 (s + nlogs),
while MACs produced by the tree scheme have size at least (is + 1)n = 0 (ns).

The scheme IncXMACC is provably not secure against (nonadaptive) total
substitution attacks. The adversary queries Sig for the document ABCD, where
A,B,C,D are different blocks in {0, 1)". He alters the document to AABC and
changes the MAC (~ , c ~ , c z , c ~ , c ~ , z) to (d,c1,clrc2,c3,z). Then he asks IncSig
to delete the third symbol. Replacing this MAC (d + ~ , c ~ , c I , c ~ , z') by (d +
1, c1, c3, c4, z'), he obtains a valid MAC for the document ACD, which hasn't
appeared as a virtual document.

We now adress the multi document setting. For every document we associate
a name a 6 (0,l)'. Additionaly, we keep a block counter bcnt, and a document

402

counter dcnt, for each document. Signing a document is similar to lncXMACC
but we use the value OO.(dcnt,)l. .(a)r, instead of O.(dcnt)l-, for the source and
00 . (dcntp +l)l. . (p) l . instead of 0 (dcnt +1)1-1 for the destination. Security
follows as in Theorem 3 and Theorem 4.

Theorem 5 . Let F 5 Map({O,l}l, (0, l}L) be a function family with 2b+2 5 1 .
If F is (t‘ , q’, €‘)-secure then IncXMACCF,b is (t , qa, qw, qe, La, L,, €)-secure in the
mvlti document setting with at most I documents, where

t’ = t + CI(qa + Qv + qe)(L + 1 + b) , q’ = 2qv-5, + 2qSLa + 6q,, 6‘ = e - qv . 2-L

for a small constant c E IN.

In the multi document setting, we can allow a paste modification if we use one
block counter for all documents. The paste command for documents M , M‘ with
names CYI, a 2 and MACs (d, c1, . . . , c,, z) , (d’, 4 , . . . , c i , , z’) produces the MAC
(dcntp +1, c1,. . . ,cnr ci, . . . , ck,, 2) with

2 = z @ z’ @I F,(OO. (dcntp +1)1* - (P) I .) @ F,(OO. (ql. . (a ~) ~ .)
CB Fcc(O0. (d‘)l* . (a 2) l .) Fa(11* (cn)r* * (c\)I*)

for the document M . M‘ with name @.

4 Memory Checkers

4.1 Definition

Let 23 be a data structure with a set of operations that define the behaviour
of 2, on an initial configuration. Consider for example the data structure stack.
The sequence push(a), push@), pop, push(b), pop for an empty stack produces
the output -, -, b, -, b, where - stands for “no output”.

We assume that all arguments for the operations are specified by a parameter
n. To emphasize this dependence we write 27,. We want to design a program C
that checks whether an implementation D, of 21, works correctly for a sequence
of operations for this data structure. We call these operations user or input
operations. C filters the interaction between the user and the data structure
resp. memory, so that the user can interact with the data structure only via
the checker. After having read the next user operation, the program C shall
return the output of that operation to the user or BUGGY if an error occurs,
e.g. D, returns a different value than the expected one. Obviously, the worst
case occurs if the user and the memory is totally under control of one adversary.
Additionally, the adversary works adaptively, i.e. his next action depends on all
previous steps.

To allow multiple instances, we extend every operation by an argument taking
values between 0 and I - 1 in binary, where I stands for the maximal number of
instances available. Let 27; be the augmented version of 23,. The checker can use

403

further instances to save additional information like time stamps to the insecure
medium.

An execution is divided into rounds. Each round starts with the checker
reading the next user operation. Then it performs some local computation and
may interact arbitrarily with the data structure. After having finished this com-
putation, the checker shall return the correct answer for the user operation to
the user (or “-’I if the operation doesn’t produce an output) before reading the
next operation. The checker shall output BUGGY if the data structure returns
a faulty value at some point in the execution. On the other hand, it shall never
output BUGGY if no error occurs. Before starting the first round, the checker
might perform a preprocessing, and additionally, after having read the last user
operation, it might do some “postprocessing” (and perhaps output BUGGY
then).

We use the RAM model to define our checker. The space complexity is mea-
sured logarithmically, while time complexity can either be uniform or logarith-
mic. In this work, time will be meassured uniformly. We assume that the ad-
versary’s model of computation is a RAM, too, and that both RAM share a
sufficient large number of registers to exchange information, while every other
memory of each machine is private. See [GMR89,G096] for a more formal treat-
ment of interactive machines.

Definition 6. A (tpre, tpost, top, s, q, J)-memory checker for a data structure ’of,
is a probabilistic RAM C such that for every execution with at most q user
operations, C takes only tpre preprocessing steps, at most tpost postprocessing
steps and only to, steps to process each user operation. Additionally, C’s private
memory is bounded above by s bits and the checker uses at most J instances
of 23,. A (tpre, tpost, top , s, q, J)-memory checker for Dfl is called (t , S, €)-secure if
the following holds for every adversary A running in time t:

- Completeness: If the output of D,” is correct for all operations issued by C ,
then the probability that C returns BUGGY or that not all answers of C for
the user operations are correct is at most 6, where the probability is taken
over the coin tosses of C and A.

- Soundness: If the output of 02 is false for some operation, then C should
output BUGGY with probability at least 1 - E .

In most settings we are interested in checkers for which 6 = 0 holds. These
checkers are called complete. Definition 6 doesn’t rule out the trivial solution,
that C simply keeps all values in his private memory. This would rather prevent
errors and guarantee correct outputs than check the data structure. We are
interested in checkers using only a few bits private memory and causing a small
~ve rhead .~ So this trivial solution gives us an upper bound and a starting point
to build more efficient solutions. A checker is called an on-line checker iff it

Note that we don’t charge the checker’s running time e.g. for inserting or deleting
an element using insert and delete commands passed to the implementation (except
for the time to write the operation and to read the answer).

404

outputs BUGGY in that round in which an error occurs. Otherwise it is called
an off-line checker. A checker is called noninvasive if at the end of each round, the
insecure memory contains only values specified by the input operations when the
checker reads the next operation. Otherwise it is called invasiwe. In particular,
our checker based on IncXMACC is off-line and noninvasive with the additional
property that the checker passes only user operations to the implementation.

4.2

In this section we show how we can derive a memory checker from IncXMACC.
We prove that we can check any data structure based on the structure List,,
where List, represents a list with elements from {0, l } , . The initial configuration
is empty. List, supports four operations: insert(i, T I) to insert element E {O,1}”
at position i , delete(i) to remove the element at position i and return this value
to the user, replace(i,v) to replace the ith value by w and return this element,
and read(i) to return the ith element to the user.

We can design checkers for other data structures based on List, like stacks
and queues. If the checker maintains a counter for the number m of elements
currently in the list, the stack resp. queue commands pop, push(v), dequeue and
enqueue(v) are equivalent to delete(m), insert(m+ 1, w), delete(1) and insert(m +
1, w). If the data structure can be implemented with lists, we can combine the
checker’s program and the list implementation of the data structure to obtain a
method to securely store the data of this structure on an insecure medium. The
following notion of a sound scheme will help us to prove stronger security:

Designing Checkers via Incremental Schemes

Definition 7. Let S(b, s) = (Gen, Sig, IncSig, Vf) be an M-incremental authen-
tication or signature scheme. S(b, s) is called sound iff for all keys produced with
positive probability by Gen the following holds: Let M be a message that is ob-
tained by applying a text modification ?r E M with argument y to documents
M I , . . . , M , and let P I , . . . ,p, and p = IncSig(M1,. . . , M,,,uI, . . . ,pmr ?r, y)
the corresponding (valid or invalid) signatures. If W (M , p) = 1, then Vf(Mi, pi) =
1 holds for all i = 1,. . . , m.

Informally, a sound scheme is a scheme such that applying IncSig with an
invalid signature p, for some Mi doesn’t yield a valid signature for M . Note
that the soundness property doesn’t guarantee security. It only states that one
cannot produce a valid signature form invalid signatures directly. It may yet be
possible to deduce a valid signature from an invalid one.

Lemma 8. The {delete, insert}-incremental scheme IncXMACCF,b is sound.

The proof is omitted. One can easily verify that the tree scheme is sound, too.

Theorem 9. Let F be a function family with input length 1, output length L
and key length IC. Assume that IncXMACCF,b i s (t , q, L, €)-secure against mes-
sage substitution attacks for block size b = n . Then there exists a non-invasiwe

405

(tpre, tpostr top, s, q, I)-ofl-line checker for List:, which is (t ’ , 0 , €)-secure where

tpre = Time(FGen),
s = cg . (n + 1 + q log q + I L + Space(F)) + K.,

t’ = t - c3(qtop + tpre + tpost), qi = q, I = min{q,, qv} .

tpost = q q . Time(F), top = c1 . (Time(F) + logq),

fo r small constants C ~ , C Z , C ~ E IN. Here, Time(F) resp. Space(F) denotes the
time resp. space to evabate a function from F and Time(FGen) denotes the
time to draw a key for a function in F .

A sketch of the proof is given in Appendix A. It is easy to see that we can
derive an on-line checker for List, from the tree scheme. Storing the signature
in the checker’s private memory is too expensive. Hence, we need additional
instances to store the nodes of the signature tree on the insecure memory. In
this case, security is provided by the fact that the tree scheme is secure against
total substitution attacks. However, this checker is invasive and we cannot for
example efficiently apply this construction to stacks, because in this case we
cannot access all parts of the signature fast.

4.3

First, we define a normal form for adversaries performing attacks on the mes-
sage substitution detection property. Let S(b, s) = (Gen, Sig, IncSig, Vf) an M -
incremental (signature or authentication) scheme. We assume that IncSig outputs
the invalid signature I if, for some reason, it refuses to produce a valid one. An
attack on the detection property is a message substitution attack, such that each
IncSig query (a1,. . . , a,, p, n, y) has the following form:

1. The adversary may replace any message Ma, with A4& by alter commands.
Let MLTi, i = 1, . . . , m, be this sequence of messages (where we allow M& =
Ma;). Additionally, the adversary stores the current content Mp.

A Lower Bound for Substitution Detecting Schemes

2. The adversary queries IncSig for (LY~,. . . ,arn, p, K, 9).
3. The adversary replaces all messages with name a, by Ma< again. If IncSig

has returned I, the adversary replaces the document with name B by the
former value.

Furthermore, the adversary doesn’t use additional alter commands. It is easy to
see that every adversary can be assumed w.1.o.g. to be in normal form. Therefore,
we can associate each alter command uniquely to an IncSig query. If IncSig doesn’t
return I in step 2, the adversary may either replace Mp again or not.

For notational convenience, let M[i] = * for the message M[1] . . . M[n] and
i > n, where * denotes a special symbol * 4 C. In particular, we have M[i] #
M’[i] for messages M[1] . . - M [n] and M‘[1] . - M‘[n’] with n < i 5 n’.
Definition 10. A (normal form) adversary for the detection property is suc-
cessful, if IncSig returns in step 2 a signature different from I for a query
(w,. . . ,a,, @, T , y), such that for the blocks b h] , h = 1,. . . , k, that IncSig
has read to produce this signature, we have M& [j h] # Maih b h] for some h.

406

Note that Definition 10 doesn’t rule out the trivial solution that IncSig always
outputs I resp. that IncSig never reads a block.

Definition 11. Let S(b, s) = (Gen, Sig, IncSig,Vf) be an M-incremental scheme.
A (t , q, L, 6)-adversary for the detection property is specified by the parameters
in definition 2, where 6 is the success probability. S(6, s) is called (t , q, L, 6)-
detecting, if there exists no (t , q, L, 6)-adversary for the detection property.

Thus, message substitution detecting schemes can be viewed as on-line checkers.
To prove that a detecting scheme which is secure against basic attacks, is also
secure against message substitution attacks, we need the following definition:

Definition 12. The M-incremental scheme S(b, s) = (Gen,Sig, IncSig,Vf) is a
scheme with ppredictable IncSig-access, iff one can for all (with positive prob-
ability generated) keys, all messages Mai with Mai = Mi[l] . . - Mi[ni] and sig-
natures psi, i = 1,. . . , m, predict the message blocks, which IncSig accesses to
update the signature in response to (cq, . . . ,a,, /3, n,y) in time p(max{ni}) (in
the corresponding computational model) from psi, i = 1,. . . , m, and x , y.

For simplicity, we have assumed that IncSig’s access is predictable from pa;,
T, y in time p(max{ni}). Extensions to other parameters are straightforward.
Clearly, the tree scheme is a detecting scheme with predictable Indig-access.

Proposition 13. Let S(b, s) = (Gen, Sig, IncSig, Vf) be a (t , q, L, 6)-detecting
M -incremental scheme with p-predictable IncSig-access, which is (t , q, L, e) -secure
against basic attacks. Then S(6, s) i s (t ’ , q, L, t’)-secure against message substi-
tution attacks, where t‘ = t - qip(Li) and E’ = 6 + 6.
Proof. (Sketch) Let E be a normal form adversary with parameters t , q, L, which
is successful with probability at least E in a message substitution attack. From E
we construct via black-box-simulation an adversary A performing a basic attack.

A simulates each query E to Sig and Vf by its oracle access to S(6, s). If E
issues an IncSig query without having used an associated alter command in step
1 of the normal form specification, then A passes this query to IncSig and returns
the signature to E. Assume, that E tampers messages Ma(to before. Then
A computes in time p(Li) from pai , i = 1,. . . , m, and n, 9 the message blocks
M i i h Ijh], h = 1,. . . , k, which IncSig would read. If M i i h [jh] # Maih I jh] for
some h, A returns I to E without quering IncSig. Else A passes the query to
IncSig without tampering the messages and returns the signature to E . In this
case, the signature does not depend on other (altered or unaltered) blocks and
the answer is correct.

As alter commands don’t change virtual documents, every virtual document
appearing in A’s attack appears in E’s attack as well. Let Detect be the event,
that E isn’t successful in an attack for the detection property. Furthermore, let
SUCCA resp. S u c c ~ be the events that A resp. E performs a successful attack on
the signature scheme. We have

d 5 Prob [SUCCE] 5 Prob [SUCCE I Detect] i- Prob [l Detect] 5 Prob [SUCCA] + 6.

Hence, A is successful with probability at least E .

407

We show that we cannot design detecting schemes producing small signatures:

Proposition 14. Let S(b, s) be a complete (t , q, L, 6)-detecting scheme for t =
cbn, qs = 1, q, = n, L, = Li = n, which supports the replace modification such
that IncSig always accesses the ith block for valid replace(Ma, i, Me) commands.
Then for A := 1 - 6 > 4 the bit length of a signature for a message M =
M[1]. . - M[n] must be at least

where /3 = 1 - 2(a - &)2 log, e < 1, y = < 1 for & < a < A. Here, t,,, i s
the maximal number of blocks IncSig reads for an update step.

The proof is a variation of the proof given in [BEG+94] for on-line checkers and
is omitted. If A and a are close to 1, we have 1 - P w 5 and y M 1, i.e. a
signature must have at least bits.

Acknowledgements

We thank Roger Fischlin for pointing out the topic of memory checkers and
C.P. Schnorr and the anonymous referees for their comments. We also thank
Mihir Bellare and Daniele Micciancio for discussions about their works.

References

[AHU74]

[BGG94]

A.AHo, J.HOPCROFT, J.ULLMAN: The Design and Analysis of Computer
Algorithms, Addison Wesley, 1974.
M.BELLARE, O.GOLDREICH, S.GOLDWASSER: Incremental Cryptography:
The Case of Hashing and Signing, Crypto '94, Lecture Notes in Computer
Science, Vol. 839, Springer- Verlag, pp. 216-233, 1994.
M.BELLARE, ~ . G O L D R E I C H , S.GOLDWASSER: Incremental Cryptography
and Application to Virus Protection, Proceeddngs of the 27th Annual ACM
Symposium on the Theory of Computing, pp . 45-56, 1995.
M.BELLARE, R.GuBRIN, P.ROGAWAY: XOR MACs: New Methods for Mes-
sage Authentication Using Finite Pseudorandom Functions, Crypto '95,
Lecture Notes in Computer Science, Vol. 963, Springer- Verlag, pp . 15-29,
extended version available at http://www.cs.ucdavis.edu/-rogawayl, 1995.
M.BELLARE, J.KILLIAN, P.ROGAWAY: On the Security of Cipher Block
Chaining, Crypto '94, Lecture Notes in Computer Science, Vol. 839,

[BEG+91] M.BLuM, W.EVANS, P.GEMMELL, S.KANNAN, M.NAoR: Checking the Cor-
rectness of Memories, Proceedings of the 32nd IEEE Symposium on Foun-
dations of Computer Science, pp . 90-99, 1991.

[BEG+94] M.BLuM, W.EVANS, P.GEMMELL, S.KANNAN, M.NAoR: Checking the Cor-
rectness of Memories, Algorithmica, Volume 12, pp. 225-244, 1994.

[BK89] M.BLuM, S.KANNAN: Designing Programs that Check Their Work, Pro-
ceedings of the 81st Annual ACM Symposium o n the Theory of Computing,
pp . 86-97, 1989.

[BGGSS]

[BGR95]

[BKR94]

pp. 341-358, 1994.

408

[GGM86] O.GOLDREICH, S.GOLDWASSER, S.MICALI: How to Construct Random Fun-
tions, Journal of A C M , Vol. 33(4), p p . 792-807, 1986.

[GMR89] S.GOLDWASSER, S.MICALI, C.RACKOFF: The Knowledge Complexity of In-
teractive Proof Systems, SIAM Journal on Computation, Vol. 18, p p . 186-
208, 1989.

[GMR88] S.GOLDWASSER, S.MICALI, R.L.RIvEsT: A Digital Signature Scheme Se-
cure Against Adaptive Chosen Message Attacks, SIAM Journal on Compu-
tation, Vol. i7(2), p p . 281-308, 1988.

[GO961 O.GOLDREICH, R.OSTROVSKY: Software Protection and Simulation on
Oblivious RAM, Journal of ACM, Vol. 43(3), p p . 431473, 1996.

[M97] D .MICCIANCIO: Oblivious Data Structures: Application to Cryptography,
(to appear at) Proceedings of the 29th Annual Symposium on the Theory of
Computing, 1997.

A Sketch of Proof of Theorem 9

Clearly, the checker runs the incremental scheme IncXMACC to check the cor-
rectness. For every instance we’ll have a signature for the content. Updating
this signature when inserting, deleting, replacing or reading an element will be
done with the insert, delete commands for the incremental scheme. To prevent
repetition attacks, we prepend every “message” with a time stamp which the
checker stores in its local memory, not in the insecure memory. This time stamp
is updated before processing insert, delete commands.

If no more operations are left, the checker empties the memory in a postpro-
cessing phase: For each initialized instance it deletes the values in the instance
using delete commands and checks that the obtained signatures are accepted by
Vf. If some signature is not accepted, it outputs BUGGY, otherwise C accepts.

If all operations work correctly, the checker never outputs BUGGY since
IncXMACC is complete. Assume that there is a sequence of operations such
that the checker is fooled. We design a adversary E for IncXMACC. E works as
follows: Let A be the adversary for the checker. Then E first runs the whole
execution simulating C and A by black-box-simulation using the oracle access
for the incremental scheme. Moreover, E maintains the correct memory contents
and stores all signatures.

Since E has simulated the whole execution first, he knows the last user op-
eration for which a wrong value has been returned. E builds a message M that
consists of the time stamp, the correct memory content (at this point) and re-
places the corresponding block with the wrong value. E outputs this message M
and the signature p for this message as a forgery. As the scheme is sound and the
checker doesn’t output BUGGY, i.e. the signature for the final value has been
accepted, this signature p is valid for M . Virtual documents are only changed by
insert and delete commands, therefore all virtual documents are defined by the
correct memory content and the counter values. Since there is some error in M ,
and the time stamps make every virtual document unique, M hasn’t appeared
as a virtual document during the execution. Hence, E is successful if A is.

	Incremental Cryptography andMemory Checkers
	1 Introduction
	2 Incremental Cryptography
	2.1 Incremental Schemes
	2.2 Security

	3 Incremental Message Authentication: IncXMACC
	3.1 Notations and Definitions
	3.2 XQR Schemes
	3.3 The Scheme IncXMACC

	4 Memory Checkers
	4.1 Definition
	4.2 Designing Checkers via Incremental Schemes
	4.3 A Lower Bound for Substitution Detectin Schemes

	Acknowledgements
	References

