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Abstract: We show the weakness of several RSA signature schemes using 
redundancy (i.e. completing the message to be signed with some additional 
bits which are fixed or message-dependent), by exhibiting chosen-message 
attacks based on the multiplicative property of RSA signature function. Our 
attacks, which largely extend those of DeJonge and Chaum [DJC], make 
extensive use of an affine variant of Euclid's algorithm, due to Okamoto and 
Shiraishi [OS]. When the redundancy consists of appending any fixed bits to 
the message m to be signed (more generally when redundancy takes the form 
of an affine function of m). then our attack is valid if the redundancy is less 
than half the length of the public modulus. When the redundancy consists in 
appending to m the remainder of m modulo some fixed value (or, more 
generally, any function of this remainder), our attack is valid if the 
redundancy is less than half the length of the public modulus minus the length 
of the remainder. We successfully apply our attack to a scheme proposed for 
discussion inside ISO. 

1 Introduction 
Let (P, S) b e  a RSA [RSA] key pair, where P is the public function and S the secret 
one. It is well known that the "reciprocal property" (the fact that P o S = S o P = Id , 
the identity function) and the "multiplicative property" (the fact that 
S ( g )  = S ( x ) S ( y ) )  of RSA lead to potential weaknesses, especially when used for 
signatures. 
The reciprocal property trivially allows to perform an existential forgery: just choose 
X at  random and compute m = P(Z) ; then the pair (m, Z) is an apparently authentic 
signed message. The multiplicative property allows a selective forgery by performing 
a 2-chosen-message attack, i.e. a chosen-message attack requiring two messages. Let 
m be the message to be signed, choose x as you like in [ l ,  n-1] and compute 
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y = m/x mod n where n is the public modulus; obtain the signatures of x and y and 
compute the signature of m as the product S ( m )  = S(x)S(y) modn . 
Different ways exist to eliminate these potential weaknesses. We can either add some 
redundancy to the message to be signed [ISOlI, or use a hash-function in the signature 
scheme [ISO2], [BR]. The present paper is related to the redundancy solution. This 
solution is of particular interest when the message is short, because it prevents from 
specifying and implementing a hash-function (a rather delicate cryptographic 
challenge), and it allows to construct very compact signed messages, since messages 
can be recovered from the signatures themselves (and hence need not any longer be 
transmitted or stored). More precisely, let R be the (invertible) redundancy function. 
The signature of m is X(m) = S[R(rn)], and the signer only sends Z(m) to the receiver. 
The latter applies P to X(m), and verifies that the result complies with the redundancy 
rule, i.e. is an element of the image set of R. Then he recovers m by discarding the 
redundancy (i.e. by applying R') to this result. 
But it has been shown in the past [DJC] that too simple redundancy does not avoid all 
the chosen-message attacks. For instance, the redundancy defined by appending 
trailing '0 bits to the message is insufficient because it remains possible, for any m, to 
construct two integers x and y such that (m110..0) = (xllO..O)(ylD..O) mod n (implying 
S(mllO..O) = S(x110..0)S(y110..0) mod n )  by using Euclids algorithm. In the standard 
ISOIIEC 9796 Part 1 [ISOI], a redundancy function is described, the security of 
which is assessed as very good. But its expansion rate (at least two) is too high in 
many applications, e.g. public key certification. As a consequence, there remains a 
need for a sirnpldshort redundancy function providing adequate security. 
The main goal of this paper is to show that a number of attractive redundancy 
functions, some of which proposed here and there, are subject to a 2-chosen-message 
attack. It is organized as follows: in section 2, we summarize our results, in section 3, 
we describe the mathematical tools used by our attacks, in section 4, attacks on valid 
messages with fixed redundancy, in section 5, attacks on valid messages with fixed 
and modular redundancy, in section 6, some applications including an attack on a 
scheme proposed for discussion inside ISO. We explain how to defeat this forgery in 
section 7 and we conclude in section 8. 
Throughout this paper, we call valid message any message m completed with 
redundancy (i.e. any integer in the form R(m)). and bitlength (or length in short) of an 
integer the number of bits of its binary representation. We denote by Iml the bitlength 
of m. We also define mb as the maximum bitlength of message accepted in a signature 
scheme. 

2 OurResults 
First, we extend the results of De Jonge and Chaum [DJC]: if the redundancy consists 
in appending any fixed bits to m to be signed, or more generally if redundancy takes 
the form of an affine function of m, that is when the signature X(m) of m is computed 
as W n )  = S(wm t a),  for any constant a, any constant w and message m. then the 
signature scheme is subject to a chosen-message attack, provided the redundancy is 
less than half the length of the public modulus used by S and P. De Jonge and Chaum 
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exhibited similar attacks only in the cases when a = 0 (with the same amount of 
redundancy) or when o = 1 (with a smaller amount of redundancy). 
Next, we study the case of the redundancy obtained in appending to rn the remainder 
of rn modulo some fixed value. Then, the signature scheme is still subject to a 2- 
chosen-message attack, provided the redundancy is less than half the length of the 
public modulus minus the length of the remainder. In a particular case, it even works 
when the redundancy is up to half the length of the modulus. 
Here, the term "chosen-message attack means the following: for any arbitrary 
message m it is possible to construct two messages m,  and ni, such that 
X(m,) / C(m,) = q r n )  modulo the RSA-modulus used by S. Therefore, by obtaining the 
signatures of m, and m,, an enemy can forge the signature of rn. It must be stressed that 
rn can be entirely selected by the enemy; so this forgery is selective, not only 
existential. 
All the attacks make extensive use of an affine variant of Euclid's algorithm, due to 
Okamoto and Shiraishi [OS], which is described in the coming section. 

3 Basic Tools 
In all our attacks, we will face the following problem: 
Let n be a positive integer and d, &, X, Y ,  with X and Y "small", four positive integers 
less than n. Find solutions x and y to: 

dx = y + (modn) 

1x1 < 
lyl 

3.1 Case of z, = 0 

W. De Jonge and D. Chaum solved this problem [DJC]. There is at least one solution 
not equal to (0,O) if X Y  > n. Demonstration of this result uses the "pigeon-hole 
principle". It is useful to remark [GTV] that finding small x and y satisfying (S) comes 
to finding a good approximation of the fraction dln. So, we find such a solution by 
developing it in continued fractions i.e. applying extended Euclidean algorithm to d 
and n. 

Algorithm EE 
0 Input: 
0 Ourput: nothing or some x such that 1x1 c X and I" (mod n)l< Y 

Method: apply extended Euclidean algorithm to d and n; one obtains coefficients 1, 

(1) 

n,  d,  X ,  Y (with X Y  > n )  

and rn, such that: 
1,n -+ m,d = q 
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where the q are the successive remainders; output the smallest (in absolute 

value) m, such that n/Y c Im,+,l (the case "such an m, does not exist" is 
very rare). 
the fractions ll,/m,l= - l,/m, are in fact the convergents of the development 

of d / n  in continued fractions; hence: 
0 Proof: 

k l n + v +  1/Im,m,+,l * km, +4l 2 +4+ll 
3 km,(modn)l < Y 

Moreover, ( Im, I I n/Y and XY > n ) implies Im, I < X 

3.2 Case of z, # 0 

Okamoto and Shiraishi provide in [OS] an extension of extended Euclidean algorithm 
which very often solves this problem. We use a version of this algorithm to generate 
solutions. 

Algorithm 0 s  
0 Znpur: 

Uufpur: nothing or some x such that 1x1 c X and Idx- & (mod n)l< Y 
Method apply extended Euclidean algorithm to d and n; introduce a sequence y ,  

n, d, X, Y (with XY > n ), z, 

whose first term yo is q, and following ones are defined by: 

where 4,' is the quotient in the division of y,-, by r, ; introduce also the 
sequence k,  whose first term k, is zero and the following ones are defined 
by : 

Output k, such that n/Y .c lk,l< X and Ik,ly, 5 n 
let the sequence h, whose first term h, is zero and following ones defined 
by : 

(4) 
Then, 

Y ,  = Y,-, -4:r (2) 

k, = 4 - 1  +ah, (3) 

Proof: 

h, = 4 - 1  + q,?, 

h,n+k,d = ( h , - , + q , ' ~ , ) n + ( k , _ , + q , ~ ~ ) d  
= h,..,n + k,-,d + q'(l,n + mid) 

~ , n + k , d = h , _ , n + k , _ , d + ( ~ , _ ,  - Y , )  
(1) and (2) imply: 

Then, 
h,n + k,d = 0 + (yo  - Y ,  1 + 0 1 ,  - Y~ )+. ..+(Y,-, - Y ,  1 

By taking output's conditions on k, into account, we have: 
Yo - Y,  * k,d(mod n) = z, - y ,  - - 

lkil c X and y, I n/lkl I < Y 
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Remark: to increase the number of solutions when z, # 0, you can combine one 
solution (x, y) found by algorithm 0 s  with a solution (2, y') given by algorithm EE for 
the same system with z, = 0. 

4 
Recall that redundancy function takes the form of an affine function of message. The 
signature Z(m) of m is computed as Z(m)  = S(om + a) for any constant a, any constant 
61 and message rn. De Jonge and Chaum already studied multiplicative attacks on 
schemes using fixed redundancy. But their results were restricted to a = 0 (and any 
value of W) or w = 1 (and any value of a) .  Moreover, their attack is valid if the 
redundancy takes up less than half of the bits in the modulus n when a = 0, and 
otherwise if the redundancy takes up less than one third of the bits in the modulus n. 
Our method extend this results: the signature scheme is subject to a chosen-message 
attack for any value of a and W, provided that the redundancy takes up less than half of 
the bits in a valid message. 
In this section, we describe our attack on right-padded redundancy scheme, left- 
padded redundancy scheme, then on a more general scheme. Proof and efficiency are 
only given in the general case. 

4.1 Right-Padded Redundancy Scheme 

Let a be a fixed pattern of bits, and w = 2bi. 
We denote by 8 the set of messages: 

and by % ' the set of valid messages: 

Example: an element of 8 ' has this form: 

Valid Messages with Fixed Redundancy 

8 = (integers rn such that 0 < rn c n/w} 

%'=  {wrn+asuchthatrnE %} 

I Message rn ~...10100101oooo1110101 I 
Attack: 

Choose a message rn E 8 of which you want to forge a signature. 
Set 

z, = "[ 1 - (am+ a)](mod n )  ( 5 )  

(6) 

w 
Solve 

(m + a ) x  = y + zo (mod n) 
with x and y elements of 8 by using algorithm 0s. You obtain, very often, a 
solution if the range of rn is larger than & (i.e. the number of bits of redundancy a 
is less than half of the bits of modulus n). See 4.3 for more details. 
By replacing q by its expression ( 5 )  in the latter equation (6), you can easily prove 
that (om + a)(= + a) = (my + a )  (mod n). If you get signatures of y and x (i.e. if you 
get S(wy+a)  and S(ox+a)) ,  then you deduce the signature of rn by dividing 
S(oy + a)  by S(wx + a) modulo n. 
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4.2 Left-Padded Redundancy Scheme 

Let a' be a fixed pattern of bits, and p =  2mb. We denote by 8 the set of messages: 

and by 8 ' the set of valid messages: 

Example: an element of 8 ' has this form : 

8 = (integers m such that 0 I m < /3} 

8 '=  { m + a ' p s u c h t h a t m ~  55) 

01001001010101 11 I... I Message m I 
Attack 

Choose a message rn E 8 of which you want to forge a signature. 
Set 

Solve 
z, = a'P[l-(m+afp)](modn) (7) 

( m  + a'P)x = y + %(mod n) (8) 
with x and y elements of 8 by using algorithm 0s.  You obtain, very often, a 
solution if the range of m is larger than & (i.e. the number of bits of redundancy a 
is less than half of the bits of modulus n). See 4.3 for more details. 
By replacing %by its expression (7) in the latter equation (8), you can easily prove 
that (m + a'P,(x + a'P, = (y + a'P, (mod n). If you get signatures of y and x (i.e. if 
you get S(y + u' f l  and S(x + a'P)), then you deduce the signature of m by dividing 
S(y + a'P> by S(x + u'P, modulo n. 

4.3 Generalization 

Let a be the lower bound to a valid message, b be the upper bound to a valid message 
(a < m c b < n), o a multiplicative constant. Consequently, we can define 'E as the set 
of messages: 

and 8 ' as the set of valid messages: 
8 = (integers m such that 0 I m c (b - a) /a} 

8 '=  (om+asuchtha tmE 8} 

Attack: 
Choose a message m E 8 of which you want to forge a signature. 
Set 

(9) 

(10) 
with x and y elements of 8 by using algorithm 0s. You obtain, very often, a 
solution if the range of m is larger than & (i.e. the number of bits of redundancy, 
multiplicative and additive, is less than half of the bits of modulus n). 

U 

w z, = -[ 1 - (om + a)](mod n) 

Solve 
(m + a)x = y + z,,, (mod n )  
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By replacing z, by its expression (9) in the latter equation (lo), you can easily prove 
that ( o m  + a)(w + a) = (wy + a )  (mod n). If you get signatures of y and x (Le. if you 
get S(wy + a )  and S(wr+a)) ,  then you deduce the signature of m by dividing 
S ( o y  + a)  by S(0x + a) modulo n. 

Proof: let x and y be a couple of solutions: 
( m + a ) x  = Y + zc (mod n) 

( m + a ) m  = y t o [ J [ l - ( w n + o ) ]  (modn) 

(mod n )  
( m + u ) m  = my+a-a(om+a)  (modn) 

0 1 
(m+a) (wu+a)  = (wy+a) 

EfJiciency: algorithm 0 s  gives a solution if X Y  > n (see 3.2.), i.e. if: 
( b - a )  ( b - a )  > n  -- 
w w  

Thus, a solution is obtained when the range of m, i.e. -,is larger 

than & or when: 
W 

i.e. the number of bits of redundancy, multiplicative and additive 
redundancy, is less than half of the bits of modulus n. 

Remarks : 
If o is a power of two upper than 2bi then it is the right-padded redundancy scheme 
(see 3.1). 
If = 1 and a is a multiple of 2mb then it is the left-padded redundancy scheme (see 
3.2). 
Note that with an appropriate choice of o and a, it is a scheme with the message in 
the middle : 

1101010101 ... I Message m I ... o0O10101101 

5 

The expression "modular redundancy" is used to indicate a redundancy obtained with 
a modular operation. We denote this modular redundancy by the function H(x).  In this 
section, we consider a modular redundancy of u bits in length. 
We consider three cases: first of all, the particular case H(m) = m (mod 2" + l), a 
modular redundancy of u bits (except if H(m) = 2", an event of probability nearly 
equal to 0). Next H(m)  = m (mod 2" + v )  where v is a negative integer greater than or 

Valid Messages With Fixed And Modular Redundancy 
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equal to -2"-', and last H(m) = (m (mod 2" + v ) )  €B Mask where v is a negative integer 
greater than or equal to -2"-' and Musk is a u-bit fixed string. We denote the message 
m concatenated with H(m) by: 

(1 1) 
Let a and w be integers less than n, a the length of message, and 8 the set of 
messages: 

Then, the set of valid messages is: 

@(m) = m I I  H(m) 

8 = (msuch tha tO_<m<2a}  

8 '=  ( w @ ( m ) + a , w i t h m E % j  

Example: if w is a power of two, then an element of '5% ' has this form : 

01011 .... I Message m ( a bits ) 1 H(m)(ub i t s )  I ... 0110 

5.1 H(m) = m (mod 2" + 1) 

We can also write 
m = q(2" + 1) + r 

with q the quotient and r the remainder of Euclidean division of m by (2" + 1). 
Hence Q(m) = [4(2" + 1) + r] 2" + r and finally we obtain: 

with 

Consequently, a new definition of the set of valid message is possible : 

with w' = w(2" + 1). 
Our attack uses this new definition. 

Attack: 
0 Choose a message m of which you want to forge a signature. 
0 Set 

@(m) = w(m)(zU + 1) 

W(m) = q2"+ r 

8 '=  (w'W(m) + a with m E 8}  

U 
z, = --[ 1 - ( o ' v ( m )  + u)]  (mod n)  w! 

Solve 
(w'v/(m) + a)x = y + q, (mod n)  

with x and y positive integers less than 2a+u/(2u + 1) by using algorithm 0s. YOU 
obtain, very often, a solution if the number of bits of  the message, a, is upper than 
half of the length of modulus n. 
By replacing by its expression (15) in the 1at:er equation (16), you can easily 
prove that: 

(o'W(m) + a) (w'x + a)  = (w'y + a) (mod n) 
But the definition of function W, (13), and the fact that @(m) c 2u+u, imply the 
existence of a message m s.t. M m )  = t when t is less than 2a+u/(2u + 1). Consequently, 
there are two messages m, and m, such that y(m,) = x and y(mJ = y. Finally, if you 
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get signatures of m, and m2 (i.e. if you get S(w'yl(m,) + a )  and S(w'ly(m,) + a)), then 
you deduce the signature of m by dividing S(w'w(m,) + a) by S(o'Nm,) + a )  modulo 
n. 

5.2 H ( m )  = m (mod 2" + v) 
Let 

where q and r are respectively the quotient and the remainder of the Euclidean 
division of m by (2" + v). Thus: 

Given that v # 1, it follows that we cannot apply the latter method (5.1) to reduce the 
number of variables. Consequently, we will rather fix the value of either the quotient 
or the remainder. We choose to fix r because its range is shorter than the range of q. 
Hence, the modular redundancy is fixed as well. 

m = q(2" + v j  + r (17) 

@(m) = q(2" + v)2" + r(2" + 1) (18) 

Attack: 
Choose a message m of which you want to forge a signature. 
Choose r, and r2 two positive integers less than 2" + v. 
Set 

a, = r , (2"+l)w+a 
u, = r2(2" + 1)w + a  

1 
02'(2" + v) 2, = [WW + a)a, -a,] 

Solve 
( d ( m >  + a h ,  = q2 - z,, (mod n) (20) 

with q, and q2 positive integers less than, respectively, (2a - r,) /(2" + v) and 
(2" - r2) /(2" + v), by using algorithm 0s. You obtain, very often, a solution if the 
number of bits of the message, a, minus the number of bits of redundancy, u, is 
upper than half of the length of modulus n. 
Set 

m, = q,(2" + v) + r, (21) 
and 

(22) 
The set of possible values of q,, r, ,  q2, r2, implies that rn, E M and m2 E M. By 
replacing g, a,, u2, by their expressions (19) in the solved equation (20), you obtain, 
after a brief calculation : 

( W m )  + a)  (u@(m,) + a) = (u@(m,) + a )  (mod n) 
Finally, you deduce the signature of m by dividing S(&(m,) + a )  by S(&(m,) + a) 
modulo n. 

m, = q2(2" + v) + r2 

5.3 H ( m )  = (m (mod 2" + v)) 0 Musk 

We denote by Musk a u-bit fixed string and by @ the function exclusive OR. 
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We apply the same method as previously. but we introduce a new function: 

Thus we obtain: 

Since during the development of the attack the two remainders r, and r2 are fixed, 
C(r,) and C(rJ are also fixed and the mask does not generate any extra difficulty. 

C(r) = r2" t ( r  G3 Mask) (23) 

@(m) = q(2" + v)2" + C(i )  (24) 

Attack: 
0 Choose a message m of which you want to forge a signature. 

Choose r, and r2 two positive integers such that they are less than 211 + v. 
0 Set 

a, = C(r , )w+a  
a, = C(r,)u,+a (25)  

1 
2, = [(wcp(m) + a)a, -a , ]  w2'(2" i- w) 

Solve 
(w@.(m) + a h ,  = q, - i@od n) (26) 

with q, and q2 positive integers less than, respectively, (2" - r,)/(2" + v) and 
(2" - r,) /(2" + v), by using algorithm 0 s .  You obtain, very often, a solution if the 
number of bits of the message, a, minus the number of bits of redundancy, u, is 
upper than half of the length of modulus n. 
Set 

and 

The set of possible values of ql, r , ,  q2, r2, implies that m, E M and m2 E M. By 
replacing q,, a,, a*, by their expressions (25) in the solved equation (26),  you obtain, 
after a brief calculation : 

( d ( m )  + a) (wD(ml) + a )  = ( M ( m 2 )  + a)  (mod n) 
Finally, you deduce the signature of m by dividing S(co@(m,) + a)  by S(co@(m,) + a) 
modulo n. 

m, = 4 p  + v) + r, (27) 

m2 = 42(2" + v) + r2 (28) 

Remark: since this attack does not depend on the exact expression of C(r), it can be 
performed against any modular redundancy in the form: 

H(m) = H'[m (mod 2" + v)], for any function H'. 

6 Applications 
We applied our results to a part of the project on digital signature schemes giving 
message recovery ISOAEC JTC l/SC 27 [ISO]. It was a Working Draft (WD), i.e. one 
of the first stages of the development of International Standards. After, when the 
working group is satisfied with the specified solution, the next step is the Committee 
Draft (CD), which is submitted to a ballot. Successive Committee Drafts may be 



505

considered until consensus is reached on the technical content. Once consensus has
been attained, the text is finalized for submission as a Draft International Standard
(DIS). Once a DIS has been approved, the final text is published as an International
Standard (IS).
Part 2 of this project aims at defining a signature scheme allowing short cenificates,
which is convenient for smart cards. Like ISO/IEC 9796 [ISO], it is supposed to avoid
the known attacks against RSA [GQLS]. In a particular case, this project uses a
simplified hash-function H(m) = 2(m (mod 279+l)) to define the modular redundancy.
Structure of a valid message :

Adaptation
bits

Fixed: 2 bits

01

More-data bit

Fixed: 1 bit

0

Padding Field

Variable: 1 or
more bits

0, 1 or more bits
set to 0 followed
by 1 bit set to 1

Data
Field

Variable

Message

Check Field

Fixed: 80 bits

Modular
redundancy

Adaptation
nibble

Fixed: 4 bits

0110

We implemented algorithms OS and EE in C-language on a PC computer to obtain
our results. With a message m of 384 bits, H(m) - 2(m (mod 279+l)), and a 512-bit
RSA-modulus to define this scheme, we found nearly 40 solutions with algorithm OS
and nearly 4000 solutions by the means of a simple combination with results of
algorithm EE. This result can certainly be improved if all possible combinations are
considered. When the length of message is 425-bit long, we found 60 or so with OS
and about 8800 with OS combined with EE.
We have modified the function H{m) to study the efficiency of our algorithm. With
//(/n) = Masfee2(m(mod279+l)) and Mask = BBBBBBBBBBBBBBBBBBBB, we
found, when the length of message is 384 bits nearly 16 solutions with OS and nearly
670 with OS and EE. When the length of message is 425 bits, we found 23 or so with
OS and about 1720 with OS combined with EE. As previously, the number of
solutions can certainly be expanded.
Remark: in the first case, we obtain more solutions than in the second one because the
redundancy is not fixed. In fact, using H(m) = 2(m (mod 279+l)) is like using the
particular modular redundancy defined in 5.1. Here w = 80 and

<t>(m) = [q(2™ +l) + r)2m + 2r
with q the quotient and r the remainder of Euclidean division of m by (279 + 1 ) .
Finally we obtain:

*(m) = y(m)(280 + 2) with i//(m) = <?279 + r
and the attack described in 5.1 can be applied.

7 How To Defeat This Forgery
At Eurocrypt'96 Rump Session, we proposed three solutions to repair the previous
schemes:
- Introduce the quotient q of Euclidean division of m by (2U + v)

H(m) = rxq (mod 2" + v)
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This definition of H implies that we cannot isolate q and r in the expression of m 
concatenated with H(m). The principle of our attack cannot be used here. 
- Append to m its remainders modulo two different values, 2d2 + v and 2"n + w with 
v f w. Two different moduli increase the link between message and redundancy, there 
is an interdependence between the different quotients and remainders. One of them 
cannot be fixed to use our attack. Simple values can be chosen, e.g. v = -1 and w = 0. 
- Split the message into different parts and keep a simple redundancy. This method 
increases the number of variables and 0 s  cannot be used to solve mu = y (mod n). 
The latter solution is used in ISOAEC 9796-3 [ISO3], Working Draft, December 
1996, which replaces ISO/IEC JTC 1/SC 27 [ISO]. 
Remark: one of the authors has recently discovered a multiplicative attack using lattice 
basis reduction and only the first solution is valid. 

8 Conclusion 
We have shown the weakness of many attractive redundancy functions for the purpose 
of RSA digital signatures. We successfully applied our attack to an IS0 Working 
Draft [ISO] and a modified version using a redundancy function with mask. Thus, we 
showed that some redundancy function may be inappropriate, even when it is 
message-dependent and even when it involves non-arithmetic operations. Afterwards, 
we have proposed new redundancy functions, which apparently cannot be attacked by 
our techniques. Nevertheless a further research showed that two of them can be 
attacked by a LLL-based method. 
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