Skip to main content

Formal Models for Cognition — Taxonomy of Spatial Location Description and Frames of Reference

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

Language uses location description with respect to spatial frames of reference. For the transformation from a visual perception to the relative expression the reference frames must fix three parameters:

  • origin (e.g., the speaker, an object, another person),

  • orientation (e.g., the axial frame of the speakers, of the addressee, of another object),

  • handedness of the coordinate system (same as a person’s or inverse).

These parameters characterize a reference frame. The paper describes the methods used in the English language and proposes exact definitions of egocentric, intrinsic or retinal relative reference frames, and egocentric or allocentric cardinal relative reference frames. Invariants of descriptions with respect to classes of reference frames are discussed and some hints for the pragmatic preference of one or the other reference frame suggested.

The paper demonstrates two alternative computational methods for Levelt’s perspective taking, which deduces another person’s egocentric perspective from the speaker’s egocentric (perceptive) perspective. One method is assuming imagistic (analog) representations and the other method works with a propositional (qualitative) representation. Precise hypotheses can be formulated in the formalized framework to construct human subject tests to differentiate between these alternatives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, J.F. (1983). Maintaining Knowledge about Temporal Intervals.” ACM Comm. 832–843.

    Google Scholar 

  • Bierwisch, M. (1996). How much space gets into language? In: Language and Space. P. Bloom, et al. (eds.). Cambridge MA, MIT Press: 31–76.

    Google Scholar 

  • Bird, R. and O. de Moor (1997). Algebra of Programming. London, Prentice Hall.

    MATH  Google Scholar 

  • Bird, R. and P. Wadler (1988). Introduction to Functional Programming. Hemel Hempstead, UK, Prentice Hall International.

    Google Scholar 

  • Bloom, P., et al, (eds.). (1994). Language and Space. Cambridge, MA, MIT Press.

    Google Scholar 

  • Egenhofer, M.J., et al. (1994). Evaluating inconsistencies among multiple representations. Proceedings of SDH’94, Edinburgh, UK.

    Google Scholar 

  • Frank, A.U. (1991). Qualitative Spatial Reasoning about Cardinal Directions. Proceedings of Auto-Carto 10, ACSM-ASPRS, Baltimore, MD.

    Google Scholar 

  • Frank, A.U. (1991). Qualitative Spatial Reasoning with Cardinal Directions. Proceedings of 7th Austrian Conference on Artificial Intelligence, Vienna. Berlin Heidelberg, Springer.

    Google Scholar 

  • Frank, A.U. (1992). Qualitative Spatial Reasoning about Distances and Directions in Geographic Space. Journal of Visual Languages and Computing 1992(3): 343–371.

    Article  Google Scholar 

  • Frank, A.U. (1996). Qualitative spatial reasoning: cardinal directions as an example. IJGIS 10(3): 269–290.

    Google Scholar 

  • Frank, A.U. (1998). Metamodels for Data Quality Description. In: Data Quality in Geographic Information: from Error to Uncertainty. R. Jeansoulin and M. Goodchild (eds.). Paris, Editions Hermès.

    Google Scholar 

  • Freksa, C. (1991). Qualitative Spatial Reasoning. In: Cognitive and Linguistic Aspects of Geographic Space. D.M. Mark and A.U. Frank (eds.). Dordrecht, Kluwer: 361–372.

    Google Scholar 

  • Gopal, S. and C. Woodstock (1994). Theory and Methods for Accuracy Assessment of Thematic Maps Using Fuzzy Sets. Photogrammetric Engineering & Remote Sensing 60(2): 181–188.

    Google Scholar 

  • Hernandez, D. (1993). Maintaining Qualitative Spatial Knowledge. In: Spatial Information Theory: A Theoretical Basis for GIS. A.U. Frank and I. Campari (eds.). Lecture Notes in Computer Science, Vol. 716. Berlin Heidelberg, Springer: 36–53.

    Google Scholar 

  • Hong, J.H., et al. (1995). On the Robustness of Qualitative Distance-and Direction-Reasoning. Proceedings of Auto-Carto 12, Charlotte, NC.

    Google Scholar 

  • Hudak, P., et al. (1992). “Report on the functional programming language Haskell, Version 1.2.” SIGPLAN Notices 27.

    Google Scholar 

  • Jackendoff, R. (1996). The architecture of the linguistic-spatial interface. In: Language and Space. P. Bloom, et al. (eds.). Cambridge, MA, MIT Press: 1–30.

    Google Scholar 

  • Jones, M.P. (1991). An Introduction to Gofer, Ph.D. thesis, Yale University.

    Google Scholar 

  • Landau, B. (1996). Multiple Geometric Representations of Objects. In: Language and Space. P. Bloom, et al. (eds.). Cambridge, MA, MIT Press: 317–363.

    Google Scholar 

  • Levelt, W.J.M. (1996). Perspective Taking and Ellipsis in Spatial Descriptions. In: Language and Space. P. Bloom, et al. (eds.). Cambridge MA, MIT Press: 77–108.

    Google Scholar 

  • Levinson, S.C. (1996). Frames of Reference and Molyneux’s Question: Crosslinguistic Evidence. In: Language and Space. P. Bloom, et al. Cambridge, MA, MIT Press: 109–170.

    Google Scholar 

  • Milner, R. (1978). “A Theory of Type Polymorphism in Programming.” Journal of Computer and System Sciences 17: 348–375.

    Article  MATH  MathSciNet  Google Scholar 

  • Montello, D.R. and A.U. Frank (1996). Modeling directional knowledge and reasoning in environmental space: testing qualitative metrics. In: The Construction of Cognitive Maps. J. Portugali. Dordrecht, Kluwer Academic Publishers: 321–344.

    Chapter  Google Scholar 

  • O’Keefe, J. (1996). The spatial prepositions in English, vector grammar, and the cognitive map. In: Language and Space. P. Bloom, et al. (eds.). Cambridge, MA, MIT Press: 277–316.

    Google Scholar 

  • Pederson, E. (1993). Geographic and Manipulable Space in Two Tamil Linguistic Systems. In: Spatial Information Theory: Theoretical Basis for GIS. A.U. Frank and I. Campari. Lecture Notes in Computer Science Vol. 716. Berlin Heidelberg, Springer: 294–311.

    Google Scholar 

  • Talmy, L. (1988). How Language Structures Space. In: Cognitive and Linguistic Aspects of Geographic Space, Report on a Workshop, NCGIA, Santa Barbara, CA.

    Google Scholar 

  • Talmy, L. (1996). Fictive Motion in language and “ception”. In: Language and Space. P. Bloom, et al. (eds.). Cambridge, MA, MIT Press: 211–276.

    Google Scholar 

  • Tarski, A. (1946). Introduction to logic and to the methodology of deductive sciences. New York: Oxford University Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Frank, A.U. (1998). Formal Models for Cognition — Taxonomy of Spatial Location Description and Frames of Reference. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics