Skip to main content

Spatial Representation with Aspect Maps

  • Chapter
  • First Online:
Book cover Spatial Cognition

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 1404))

Abstract

This paper describes the aspect map approach to model the processing of geographic maps. Geographic maps are described as spatial representation media which play an important role in many processes of human spatial cognition. We focus on the aspectuality of representation and therefore deal with aspect maps: spatial organization structures in which one or more aspects of geographic entities are represented. The aspect map architecture is presented, an AI model of processing geographic maps. Two processes contained in this model are investigated in more detail. The first is the transformation of one aspect map into another aspect map which only retains selected entities and aspects (extraction). The second process is the combination of two aspect maps, in order to obtain a third aspect map. The results of an empirical study show that the formal approach can describe and distinguish the ways in which people solve this task.

This work is supported by the Deutsche Forschungsgemeinschaft (DFG) in the framework of the priority program on spatial cognition (grant Fr 806/8).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barkowsky, T., & Freksa, C. (1997). Cognitive requirements on making and interpreting maps. In S. Hirtle & A. Frank (Eds.), Spatial information theory: A theoretical basis for GIS (pp. 347–361). Berlin: Springer.

    Chapter  Google Scholar 

  • Berendt, B. (1996a). Explaining preferred mental models in Allen inferences with a metrical model of imagery. In Cognitive Science Society (Ed.), Proceedings of the 18th annual conference of the Cognitive Science Society (pp. 489–494). Mahwah, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Berendt, B. (1996b). The utility of mental images: How to create stable mental models in an unstable image medium. In Proceedings of the First European Workshop on Cognitive Modeling (pp. 97–103). Berlin, Technische Universität Berlin, Fachbereich Informatik, Report No. 96-39.

    Google Scholar 

  • Berendt, B., Rauh, R., & Barkowsky, T. (in press). Spatial thinking with geographic maps: an empirical study. In H. Czap, P. Ohly, & S. Pribbenow (Eds.), Wissensorganisation mit multimedialen Techniken. Fortschritte in der Wissensorganisation, Band 5. Würzburg: ERGON-Verlag.

    Google Scholar 

  • Bertin, J. (1981). Graphics and graphic information-processing. Berlin: de Gruyter.

    Google Scholar 

  • Eco, U. (1976). A theory of semiotics. Bloomington, Ind.: Indiana University Press.

    Google Scholar 

  • Egenhofer, M. J., & Mark, D. M. (1995). Naive geography. In A. U. Frank & W. Kuhn (Eds.), Spatial information theory. A theoretical basis for GIS. LNCS 988 (pp. 1–15). Berlin: Springer.

    Google Scholar 

  • Frank, A. U. (1992). Qualitative spatial reasoning about distances and directions in geographic space. Journal of Visual Languages and Computing, 3, 343–371.

    Article  Google Scholar 

  • Gehrke, J., & Hommel, B. (this volume). The impact of exogenous factors on spatial coding in perception and memory.

    Google Scholar 

  • Glasgow, J., Narayanan, H., & Chandrasekaran, B. (Eds.) (1995). Diagrammatic reasoning: Computational and cognitive perspectives. Cambridge, MA: MIT-Press.

    Google Scholar 

  • Glasgow, J., & Papadias, D. (1992). Computational imagery. Cognitive Science, 16, 355–394.

    Article  Google Scholar 

  • Habel, C. (in press). Piktorielle Repräsentationen als unterbestimmte räumliche Modelle. To appear in Kognitionswissenschaft, 7.

    Google Scholar 

  • Haugeland, J. (1985). Artificial Intelligence-The very idea. Cambridge, MA: MIT-Press.

    Google Scholar 

  • Head, C. G. (1991). Mapping as language or semiotic system: Review and comment. In D. M. Mark & A. U. Frank (Eds.), Cognitive and linguistic aspects of geographic space (pp. 237–262). Dordrecht, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Hirtle, S. C., & Heidorn, P. B. (1993). The structure of cognitive maps: Representations and processes. In T. Gärling & R. G. Golledge (Eds.), Behavior and environment: Psychological and geographical approaches (pp. 170–192). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Hirtle, S. C., & Jonides J. (1985). Evidence of hierarchies in cognitive maps. Memory & Cognition, 13(3), 208–217.

    Google Scholar 

  • Koedinger, K. R. (1994). Emergent properties and structural constraints: advantages of diagrammatic representations for reasoning and learning. In B. Chandrasekaran & H. Simon (Eds.), Reasoning with diagrammatic representations (pp. 151–156). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Kosslyn, S. M. (1987). Seeing and imagining in the cerebral hemispheres: a computational approach. Psychological Review, 94, 148–175.

    Article  Google Scholar 

  • Kosslyn, S. M. (1994). Elements of graph design. New York: Freeman.

    Google Scholar 

  • Kosslyn, S. M., Flynn, R. A., Amsterdam, J. B., & Wang, G. (1990). Components of high-level vision: A cognitive neuroscience analysis and accounts of neurological syndromes. Cognition, 34, 203–277.

    Article  Google Scholar 

  • Krieg-Brückner, B., Röfer, T., Carmesin, H.-O., & Müller, R. (this volume). A taxonomy of spatial knowledge for navigation and its application to the Bremen autonomous wheelchair.

    Google Scholar 

  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11, 65–99.

    Article  Google Scholar 

  • MacEachren, A. M. (1995). How maps work: representation, visualization, and design. New York, London: The Guilford Press.

    Google Scholar 

  • Montello, D. R. (1993). Scale and multiple psychologies of space. In A. U. Frank & I. Campari (Eds.), Spatial Information Theory: A theoretical basis for GIS (Proc. COSIT’93) (pp. 312–321). Berlin etc.: Springer.

    Google Scholar 

  • Myers, K., & Konolige, K. (1995). Reasoning with analogical representations. In J. Glasgow, N. H. Narayanan, & B. Chandrasekaran (Eds.), Diagrammatic reasoning (pp. 273–301). Menlo Park, CA: AAAI Press.

    Google Scholar 

  • Palmer, S. E. (1978). Fundamental aspects of cognitive representation. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 259–303). Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Peterson, D. (1996). Introduction. In D. Peterson (Ed.), Forms of representation (pp. 1–27). Wiltshire, GB: Cromwell Press.

    Google Scholar 

  • Pratt, I. (1993). Map semantics. In A. U. Frank & I. Campari (Eds.), Spatial Information Theory: A theoretical basis for GIS (Proc. COSIT’93) (pp. 77–91). Berlin etc.: Springer.

    Google Scholar 

  • Rothkegel, R., Wender, K. F., & Schumacher, S. (this volume). Judging spatial relations from memory.

    Google Scholar 

  • Schlieder, C. (1996). Räumliches Schließen. In G. Strube, B. Becker, C. Freksa, U. Hahn, K. Opwis, & G. Palm (Eds.) Wörterbuch der Kognitionswissenschaft. (pp. 608–609). Stuttgart: Klett-Cotta.

    Google Scholar 

  • Schweizer, K., Herrmann, T., Janzen, G., & Katz, S. (this volume). The route direction effect and its constraints.

    Google Scholar 

  • Sloman, A. (1971). Interactions between philosophy and artificial intelligence: The role of intuition and non-logical reasoning in intelligence. Artificial Intelligence, 2, 209–225.

    Article  Google Scholar 

  • Sloman, A. (1975). Afterthoughts on analogical representations. 1st Workshop on Theoretical Issues in Natural Language Processing (TINLAP-1) (pp. 164–168). Cambridge, MA.

    Google Scholar 

  • Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive Psychology, 10, 422–437.

    Article  Google Scholar 

  • Tversky, B. (1993). Cognitive maps, cognitive collages, and spatial mental models. In A. Frank & I. Campari (Eds.), Spatial information theory (pp. 14–24). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berendt, B., Barkowsky, T., Freksa, C., Kelter, S. (1998). Spatial Representation with Aspect Maps. In: Freksa, C., Habel, C., Wender, K.F. (eds) Spatial Cognition. Lecture Notes in Computer Science(), vol 1404. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-69342-4_15

Download citation

  • DOI: https://doi.org/10.1007/3-540-69342-4_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-64603-7

  • Online ISBN: 978-3-540-69342-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics