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Abstract. Given a complete undirected graph with non-negative costs 
on the edges, the 2-Edge Connected Subgraph Problem consists in finding 
the minimum cost spanning 2-edge connected subgraph (where multi- 
edges are allowed in the solution). A lower bound for the minimum cost 
2-edge connected subgraph is obtained by solving the linear programming 
retazotion for this problem, which coincides with the subtour relaation 
of the traveling salesman problem when the costs satisfy the triangle 
inequality. 
The simplest fractional solutions to the subtour relaxation are the $-  
integral solutions in which every edge variable has a value which is a 
multiple of $. We show that the minimum cost of a 2-edge connected 
subgraph is at most four-thirds the cost of the minimum cost $-integral 
solution of the subtour relaxation. This supports the long-standing + 
Conjecture for the TSP, which states that there is a Hamilton cycle which 
is within 4 times the cost of the optimal subtour relaxation solution when 
the costs satisfy the triangle inequality. 

1 Introduction 

The 2-Edge Connected Subgraph Problem is a fundamental problem in Sur- 
vivable Network Design. This problem arises in the design of communication 
networks that are resilient to single-link failures and is an important special case 
in the design of survivable networks [ll, 12,141. 

1.1 Formulation 
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An integer programming formulation for the 2-Edge Connected Subgraph Prob- 
lem is as follows. Let K,, = (V,E)  be the complete graph of feasible links on 
which the 2-Edge Connected Subgraph Problem is formulated. We denote an 
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edge of this graph whose endpoints are i E V and j E V by ij. For each vertex 
v E V ,  let b(v) C E denote the set of edges incident to v. For each subset of 
vertices S c V ,  let b(S)  c E denote the set of edges in the cut which has S as 
one of the shores, i.e. the set of edges having exactly one endpoint in S; Denote 
the edge variable for e E E by Xe, which is 0,1, or 2 depending on whether e is 
absent, occurs singly or doubly in the 2-edge connected subgraph. For A c E ,  
let z ( A )  denote the sum CeEA 26. Let ce denote the cost of edge e. We have the 
following integer programming formulation. 

minimize c . 2  
subject to 

r 

The LP relaxation is obtained by dropping the integrality constraint in this 
formulation. This LP relaxation is almost the same as the subtour relaxation 
for the Traveling Salesman Problem (TSP). The Traveling Salesman Problem 
consists in finding the minimum cost Hamilton cycle in a graph (a Hamilton 
cycle is a cycle which goes through all the vertices). The subtour relaxation for 
the TSP is as follows. 

minimize c.x 
subject to 

x(d(v)) = 2 for all v E V, (2) 
x(b(S)) 1 2 for all S c V, 
Xe 20 for all e E E. 

The constraints of the subtour relaxation are called the degree constraints, the 
subtour elimination constraints, and the non-negativity constraints respectively. 

If one has the relationship ~j 5 c+k + c j k  for all distinct i, j, IC E V ,  then 
c is said to satisfy the triangle inequality. An interesting known result is that 
if the costs satisfy the triangle inequality, then there is an optimal solution to 
(1) which is also feasible and hence optimal for (2). This follows from a result 
of Cunningham [ 111 (A more general result called the Parsimonious Property is 
shown by Goemans and Bertsimas in [7]). We can show that this equivalence 
holds even when the costs do not satisfy the triangle inequality. In the latter 
case, we replace the given graph by its metric completion, namely, for every 
edge ij such that ~j is greater than the cost of the shortest path between i 
and j in the given graph, we reset the cost to that of this shortest path. The 
intent is that if this edge is chosen in the solution of 1, we may replace it by the 
shortest cost path connecting i and j. Since multiedges are allowed in the 2-edge 
connected graph this transformation is valid. Hence without loss of generality, 
we can assume that the costs satisfy the triangle inequality. 

1.2 

Our main result is the following. 

Our result and its significance 



A New Bound for the 2-Edge Connected Subgraph Problem 3 

Theorem 1. The minimum cost of a 2-edge connected subgraph is within Q 
times the cost of the optimal half-integral subtour solution for the TSP. 

This result is a first step towards proving the following conjecture we offer. 

Conjecture 1. The minimum cost of a 2-edge connected subgraph is within 5 
times the cost of the optimal subtour solution for the TSP. 

By our remarks in the end of Section 1.1, it would follQw from Conjecture 1 
that the minimum cost of a 2-edge connected subgraph is also within 4 times 
the cost of an optimal solution to  the linear programming relaxation 1. 

We formulated Conjecture 1 as an intermediate step in proving the following 
stronger “four-thirds conjecture” on the subtour relaxation for the TSP, which 
would directly imply Conjecture 1. 

Conjecture 2. If the costs satisfy the triangle inequality, then the minimum cost 
of a Hamilton cycle is within $ times the cost of the optimal subtour solution 
for the TSP. 

Note that Theorem 1 and Conjecture 1 imply similar relations between the 
fractional optimum of the subtour relaxation and a minimum-cost 2-vertex con- 
nected subgraph when the costs obey the triangle inequality. In particular, The- 
orem 1 implies that when the costs satisfy the triangle inequality, the minimum 
cost 2-vertex connected spanning subgraph is within times the cost of the 
optimal half-integral subtour solution for the TSP. This follows from the simple 
observation that from the minimum-cost 2-edge connected graph, we can short- 
cut “over” any cut vertices without increasing the cost by using the triangle 
inequality [5,11]. 

1.3 Related work 

A heuristic for finding a low cost Hamilton cycle was developed by Christofides 
in 1976 [4]. An analysis of this heuristic shows that the ratio is no worse than 
$ in both Conjecture 1 and Conjecture 2. This analysis was done by Wolsey in 
[16] and by Shmoys and Williamson in [15]. A modification of the Christofides 
heuristic to find a low cost 2-vertex connected subgraph when the costs obey 
the triangle inequality was done by Fredrickson and Ja Ja in [5]. The perfor- 
mance guarantee for this heuristic t o  find a 2-vertex connected subgraph is $. 
There has also been a spate of work on approximation algorithms for survivable 
network design problems generalizing the 2-edge connected subgraph problem 
[i-10,13,17]; however, the performance guarantee for the 2-edge connected sub- 
graph problem from these methods is at best $ when the costs obey the triangle 
inequality (shown in [5,7]) and at best 2 when they do not (shown in [9]). 

Both Conjecture 2 and Conjecture 1 have remained open since Christofides 
developed his heuristic. In this paper, we suggest a line of attack for proving 
Conjecture 1. 
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2 Motivation 

In this section we discuss two distinct motivations that led us to focus on half- 
integral extreme points and prove a version of Conjecture 1 for this special case. 
One follows from a particular strategy to prove Conjecture 1 and the other 
from examining subclasses of subtour extreme points that are sufficient t o  prove 
Conjectures 1 and 2. 

2.1 A Strategy for Proving Conjecture 1 
c 

Let an arbitrary point x* of the subtour polytope for K,  be given. Multiply this 
by to obtain the vector $x*. Denote the edge incidence vector for a given 2-edge 
connected subgraph H in K ,  by x H .  Note that edge variables could be 0,1, or 2 
in this incidence vector. Suppose we could express $xg as a convex combination 
of incidence vectors of 2-edge connected subgraphs H i  for i = 1,2, .  . . ,k. That 
is, suppose that 

k 4 
3 
-x- = 1 X i X H ' ,  

i= 1 

where X i  2 0 fo r i  = 1,2, ..., k and 

(3) 

k cxi = 1. 
i= 1 

Then, taking dot products on both sides of (3) with the cost vector c yields 

U 
i= 1 

Since the right hand side of (4) is a weighted average of the numbers c x H i ,  it 
follows that there exists a j E { 1,2, .  . . , k} such that 

3 

If we could establish (5) for any subtour point x*, then it would in particular 
be valid for the optimal subtour point, which would prove Conjecture 1. 

In an attempt at proving Conjecture 1, we aim at contradicting the idea of a 
minimal counterexample, that is, a subtour point x* having the fewest number of 
vertices n' such that (3) can not hold for any set of 2-edge connected subgraphs. 
First we have the following observation. 

Theorem 2. At least one of the minimal counterexamples x* to (3) holding 
(for some set of 2-edge connected subgraphs) is an  extreme point of the subtour 
polytope. 
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Proof. Suppose x* = El plxl, where each 2 is an extreme point which is not 
a minimal counterexample, and the P I ’ S  satisfy the usual constraints for a set 
of convex multipliers. Thus, for each I ,  we can find a set of 2-edge connected 
subgraphs Ht such that 

where the X:’s satisfy the usual constraints for a set of corpex multipliers. Then 

Since we have that 

1 i 1 

Equation (6) shows that fx- can be expressed as a convex combination of 2-edge 
connected subgraphs as well, from which this theorem follows. 

Thus we need to focus only on minimal counterexamples x* in Knt which are 
extreme points. To carry out the proof, we wish to find a substantial tight cut 
6 ( H )  for x., i.e. an H C V such that 3 5 \HI 5 n’ - 3 and 

X ’ ( d ( H ) )  = 2. 

We can then split X I  into 2 smaller subtour solutions x1 and x2 in the following 
way. Take the vertices of V \ H in x- and contract them to a single vertex to 
obtain xl. Likewise, take the vertices of H in x- and contract them to a single 
vertex to  obtain x2. An example of this is shown in Figure 1. 

Since x 1  and x2 are not counterexamples to our conjecture, we would be able 
to decompose $ X I  and $x2 into combinations of 2-edge connected subgraphs, 
which we may then attempt to glue together to form a similar combination for 
$2. , thereby showing that XI is not a counterexample (We show how this can be 
accomplished for the case of half-integral extreme points in Case 1 in the Proof 
of Theorem 6). 

What if there are no tight substantial cuts however? The following proposi- 
tion which is shown in [l] shows us what we need to do. 

Proposition 1. If x* is an extreme point of the subtour polytope and has no 
substantial tight cuts, then x* is a 1/.2-integer solution. 

This led us to  focus on 1/2-integral solutions x-, and we were able to complete 
the proof for this special case. In the next section, we show our main result that 
if x* is a 1/2-integer subtour solution, then (3) can always be satisfied. 
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Fig. 1. An idea for splitting a minimal counterexample into two smaller instances. 
Note that H defines a substaqtial tight cut, i.e., both H and \;\ H have at least three 
vertices and s(d(H)) = 2. 

2.2 The Important Extreme Points 

Consider any extreme point x*. We wish to express $x* as a convex combination 
of 2-edge connected graphs for Conjecture 1 or a convex combination of Eulerian 
graphs for Conjecture 2. An important question is what features of make it 
difficult to do this? In an effort to answer this question, we try to transform 
x* into another extreme point Z' on a larger graph so that T belongs to a 
subclass of the extreme points, but $?iY is at least as hard to express as a convex 
combination of 2-edge connected graphs (or Eulerian graphs) as $x* is. The idea 
then is that we only have to be able to  express $Z as a convex combination of 
2-edge connected graphs (or Eulerian graphs) for all extreme points I belonging 
to this particular subclass in order to prove Conjecture 1 (or Conjecture 2). If 
we have a subclass S of extreme points ?F such that being able to express $2 
as a convex combination of 2-edge connected graphs for all extreme points Z 
belonging to this particular subclass is sufficient to prove Conjecture 1, then we 
say that S is suficient to prove Conjecture 1. Likewise, a subclass S can be 
sufficient to  prove Conjecture 2. 

We have found two different subclasses of extreme points which are sufficient 
to prove both Conjecture 1 and Conjecture 2. In some sense, the extreme points 
in such a subclass are the hardest extreme points to deal with when proving 
Conjecture 1 or Conjecture 2. One class, termed fundamental extreme points, 
can be found in [2]. 

Definition 1. A fundamental extreme point is an extreme point for the subtour 
relaxation satisfying the following conditions. 

(i) The support graph is 3-regular, 



A New Bound for the 2-Edge Connected Subgraph Problem 7 

(ii) There is a 1-edge incident to each vertex, 
(iii) The fractional edges fo rm disjoint cycles of length 4.  

A second class of such sufficient extreme points is described below. We will 
restrict our attention to  showing that the subclass described below is sufficient to  
prove Conjecture 1, although showing that it is also sufficient to  prove Conjecture 
2 requires only minor modifications in our arguments. 

Consider any extreme point x*. Pick the smallest integer k such that x,' is a 
multiple of h for every edge e E E. Then form a 2k-reguJar 2k-edge connected 
multigraph Gk = (V,Ek) as follows. For every edge e = uv E E: put I edges 
between u and v, where 1 := kx;. Then showing that i E k  can be expressed 
as a convex combination of 2-edge connected graphs is equivalent to  showing 
that $E* can be so expressed. But suppose every vertex in Gk is replaced by 
a circle of 2k nodes, each node with one edge from Ek, and 2k - 1 new edges 
linking this node to  its two neighboring nodes in the circle, all in such a way 
that the resulting graph Ek = ( V ,  Ek )  is still 2k-regular and 2k-edge connected. 
Note that loosely speaking, we have Ek c Ek. We seek to then show that if 
we can express $Ek as a convex combination of 2-edge connected graphs, then 
we can do so for $ Ek as well. The graph Ek will turn out to corresponds to a 
subtour extreme point F (in the same way that Gk corresponds to E ' ) .  It is 
more convenient to define this subtour extreme point 5' than to define ck. 

-- 

Let us now define F .  

Definition 2. Expand each vertex in V into a circle of 2k nodes, with an edge 
of EI; leaving each such node, as described in the previous paragraph. Take the 
equivalent of an Eulerian tour through all the edges of EI, by  alternately travers- 
ing these edges and jumping from one node to another node in the same circle 
until you have traversed all of the edges in Ek and have come back to the edge in 
E k  you started with. When you jump from node u to node v in the same circle 
in this Eulerian tour, define <,, := v. For every edge e E Ek, we naturally 
define 2; := i .  For each circle C,, of nodes corresponding to the vertex v E V ,  
we pick an arbitrary perfect matching Mu on the nodes in C,, including i n  Mu 
only edges e which have not yet been used in the definition of 5'. We  then define 
x, := 1 for all e E 11.1,. 

We have the following: 

Theorem 3. 5' in Definition 2 is a subtour extreme point. 

Proof. The support graph of Z' is 3-regular, with the fractional edges in 37 
- forming a Hamilton cycle on the vertices v. Call the edges in 7 ' s  support graph 

We first show that Z* is a feasible subtour point. If it  were not, there would 
have to be a cut in the graph Ek = (V, Ek)  of value less than 2. Clearly, such 
a cut C would have to go through some circle C,, of nodes since Gk is 2k-edge 
connected. But the contribution of the edges from the circle C,, to any cut 
crossing it is at least 1 since the edges in the circle C,, each have a d u e  greater 
than or equal to 1/2. Hence, the contribution from the non-circle edges in the 

_I 

Ek* 

-- 
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cut C is less than 1. But this is not possible because when v is ripped out of x=,  
the minimum cut in the remaining solution is greater than or equal to 1. Hence: 
z' is a feasible subtour point. 

We show that Z' is an extreme point by showing that it can not be expressed 
as f x '  -k f x 2 ,  where x1 and x2 are distinct subtour points. Suppose Z' could 
be so expressed. Then the support graphs of x1 and x2 would coincide with or 
be subgraphs of the support graph Ek of T .  Because of the structure of the 
support graph, setting the value of just one fractional edge determines the entire 
solution due to the degree constraints. Hence, all the edg& e E zk such that 
xe = in x2. But: 
then a cut separating any circle of nodes C,, from the rest of the vertices in x' 
would have a value less than 2, which contradicts x1 being a subtour point. 

would have to say be smaller than in x' and larger than 

We now have the following: 

Theorem 4. If $Z' can be expressed as a convex combination of 2-edge con- 
nected graphs spanning v, then $x* can be expressed as a convex combination 
of 2-edge connected graphs spanning V .  

Proof. Suppose $i7 can be expressed as a convex combination 

where the pi's are 2-edge connected graphs spanning 7. For each i, contract 
each circle of nodes C,, back to the vertex v E V in xi. Call the resulting graph 
H i .  Since contraction preserves edge connectivity, H i  is a 2-edge connected graph 
spanning V. When one performs this contraction on 5 7 ,  one gets 2'. As a result, 
we obtain that 

4 
-x- 3 = i X i X H ' ,  

which proves our theorem. 

We can now define the subclass of important extreme points. 

Definition 3. An important extreme point is an extreme point for the subtour 
relaxation satisfying the following conditions. 

(i) The support graph is 3-regular, 
(ii) There is a 1-edge incident to each vertex, 
(iii) The fractional edges form a Hamilton cycle. 

We are now ready for the culminating theorem of this section. 

Theorem 5. The subclass of important extreme points is suficient to prove 
Conjecture 1. 
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Proof. If there is an extreme point 5" such that fx" cannot be expressed as a 
convex combination of 2-edge connected graphs, then by Theorem 4, the impor- 
tant extreme point :Z* cannot be expressed as a convex combination of 2-edge 
connected graphs either. Hence, our theorem follows. 

The analogous theorem for the class of fundamental extreme points can be found 
in [2]. 

3 The Proof of Theorem 1 

Let 2. be a 1/2-integer subtour solution on K,, = (V,E) .  Denote the edges of 
the support graph of z* (the set of edges e E E such that z; > 0) by h(z*). 
Construct the multigraph G(z') = (V, E( z" ) ) ,  where E ( z * )  3 h(z') and differs 
from k(z*) only in that there are two copies in E(z*)  of every edge e E k ( f )  
for which z; = 1. Note that the parsimonious property [7] implies that there are 
no edges e with z, > 1 in the optimal fractional solution. 

Because of the constraints of the subtour relaxation, it follows that G(s') 
is a 4-regular 4edge connected multigraph. Similarly, corresponding to every 4- 
regular 4-edge connected multigraph is a 1/2-integer subtour solution, although 
this solution may not be an extreme point. 

Showing (3) for some choice of 2-edge connected subgraphs Hi for every 
1/2-integer subtour solution z* would prove Conjecture 1 whenever the optimal 
subtour solution was 1/2-integer, as was discussed in the last section. So, equiva- 
lently to showing (3) for some choice of 2-edge connected subgraphs Hi for every 
l/Zinteger subtour solution z-, we could show 

where this expression is a convex combination of some chosen set of 2-edge 
connected subgraphs H i ,  for every 4-regular 4-edge connected multigraph G = 
(V, E(G)) .  These are equivalent because of the remarks in the previous paragraph 
and the observation that G(s*) behaves like 2s'. 

It turns out that (9) is very difficult to show directly, but the following 
slight strengthening of it makes the task easier. Consider any 4-regular 4-edge 
connected multigraph G = (V,E(G))  and any edge e E E(G). Then, we prove 
instead that 

(10) 

where this expression is a convex combination of some chosen set of 2-edge 
connected subgraphs H i .  

For technical reasons, we will prove (10) with the additional restriction that 
none of the Hi's may use more than one copy of any edge in E(G). Note however 
that G may itself have multiedges so H may also have multiedges. In the latter 
case, we think of two parallel multiedges in H as being copies of two distinct 
multiedges in G. 
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For any 4-regular Cedge connected graph G and any edge e E E(G),  we 
define P(G, e )  to be the following statement. 

Statement 1 P(G, e )  e For some finite set of 2-edge connected subgraphs Hi ,  
we have (lo),  where X i  3 0 for all i and Ci X i  = 1, and none of the Hi’s may 
use more than one copy of any edge in E(G) .  

As noted above, Statement 1 does not rule out the possibility of doubled 
edges in the Hi’s because there may be doubled edges in G. 

We define a tight cut for a 4edge connected graph G fo be a cut which has 
exactly 4edges in it. We define a non-trivial cut for such a graph to be a cut 
where both shores have at least 2 vertices each. We have the following lemma. 

Lemma 1. Let G = (V, E )  be a 4-regular 4-edge connected graph which has no 
tight non-trivial cut which includes an edge e = uu E E.  Let the other 3 (not 
necessarily distinct) neighbors of v be x, y ,  and z. Then either ux or y z  is a loop 
or G’ = G - v + ux + y z  is 4-regular and 4-edge connected, and likewise for the 
other combinations. 

Proof. Let G = (V, E )  and e = uv E E be given, where the neighbors of u are 
as stated. First, note that any cut in G containing all four edges incident on v 
has size at least 8, since the cut formed by moving v to the opposite side of the 
cut must have size a t  least 4 since G is 4-edge connected. 

Suppose neither ux or y t  is a loop. Then clearly, G’ is a 4regular connected 
graph. Since it is 4regular, every cut has an even number of edges in it. By our 
earlier observation, there can be no cuts 6( H) in G’ of cardinality zero. Suppose 
G’ has a non-trivial cut 6 ( H )  with only 2 edges in it. Consider G = G + ux +ut 
with vertex v back in. The two non-trivial cuts 6 ( H  U {v}) and 6((V \ H )  U { v } )  
can each have at  most 3 more edges each (for a total of 5 edges each) since as 
observed earlier, these cuts could not have all 4 edges incident to u in them. But, 
G = G - ux - y z  has only cuts with an even number of edges in them since it 
is 4regular. Hence the cuts 6 ( H  U {v}) and b((V \ H )  U {v}) in G have at  most 
4 edges in them. One of these two cuts is a tight non-trivial cut which contains 
e,  which yields the lemma. 

We are now ready for our main theorem. 

Theorem 6. Let x1 be a minimum cost l/%integer subtour solution. Then there 
exists a 2-edge connected subgraph H such that c .  zH 5 $ c . x * .  

Proof. As remarked in the discussion before this theorem, it is sufficient to prove 
P(G, e )  for all 4-regular 4-edge connected multigraphs G and for all e E E(G).  To 
prove this, we show that a minimal counterexample to P(G, e )  can not happen. 

Let G = (V, E(G))  be a 4-regular 4edge connected multigraph and e E E(G) 
which has the minimum number of vertices such that P(G, e) does not hold. 
Since by inspection, we can verify that P(G,e) holds when G has 3 vertices, 
we can assume that \VI > 3. We now consider the cases where G has a tight 
non-trivial cut which includes edge e and where G has no tight non-trivial cut 
which includes e. 
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Case 1: G has a tight non-trivial cut which includes edge e. 
Choose such a tight non-trivial cut and denote the edges other than e in this 

cut by a, b, and c. As before, consider contracting one of the shores of this cut to  
a single vertex u1. Denote the edges incident to V I ,  which corresponded to e, a ,  b, 
and c, by el,  a1 , bl , and c1 respectively. This resulting graph G I  = (VI , El )  can 
be seen t o  be 4-regular and Pedge connected. (To see this, suppose there was a 
cut of cardinality less than four in G1 and let H I  be the shore of this cut not 
containing q.  Then the cut b(H1) in G shows that G is not Pedge-connected, 
a contradiction.) Since (G, e) was a minimal counterex8hple to P(G, e ) ,  we 
have P(G1,el). By contracting the other shore, we can get a Pregular 4-edge 
connected graph G?, and we know that P(G2, e?) also holds. 

By P(G1 , e l )  we have 

and by P(G?,e?) we have 

In ( l l ) ,  consider the edges incident to V I  in each of the Hf's. There are clearly 
a t  least 2 such edges for every H f .  The values of edges ul ,bl ,c l ,  and el in 
sx " E(Gl)\{el)  are f , f , f , and 0 respectively. This adds up to 2. Hence, since we 
are dealing with convex combinations, which are weighted averages, when the 
weights are taken into account, the Hf's have on average 2 edges incident to u1 
each. But since every Hf has at least 2 such edges, it follows that every Hf has 
exactly 2 edges incident to 2rl in it. 

For each 2-edge connected subgraph Hf which has edges a1 and b l ,  denote 
the corresponding convex multiplier by A:*. Define ,A:" and A!" similarly. One 
can see that the only way for the variable values of edges a l ,  b l ,  and CI  to  end 
up all being f in f ~ ~ ( " l ) \ { ~ l )  is for the following to hold: 

Similarly, we must have 

Call the three types of 2-edge connected graphs H i  as ab-graphs, ac-graphs, 
and bc-graphs. Our strategy is to combine say each ub-graph Hf of G1 with an 
ab-graph Hj of G'L to  form an ab-graph HGb of G which is also 2-edge connected. 
So, we define 

Hflb 11 := (Hi - V I )  + (Hj - v?) + u + b, (15) 
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where H,! and H j  are ab-graphs. Since H,! - u1 and Hj' - v2 are both connected, 
it follows that is 2-edge connected. Similarly define H F  and H!'. 

Now consider the following expression: 

(16) ~X;'PIL~"~H$.~ + 3X;'p;'Hi"jC + 1 3 4  bc pj bcHbc i j .  

i , j  i ,j i , j  

One can verify that this is in fact a convex combination. Any edge f in say 
G1 - ul occurs in (16) with a weight of t 

We have a similar identity when f is in G. - v:! and we also have that edges u, b, 
and c each occur in (16) with a weight of 3 as well. Therefore we have 

which contradicts (G, e) being a minimal counterexample. 
Case 2: G has no tight non-trivial cut which includes edge e. 
Denote the endpoints of e by u E I; and v E V, and denote the other 3 not 

necessarily distinct neighbors of u in G by x, y, z E V .  Because e is in no tight 
non-trivial cut, we have that x # y # z. (If any 'two of the neighbors s,y and z 
are the same, say x = y, then the cut b({v , z } )  will be a tight non-trivial cut). 
Thus, without loss of generality, if any two neighbors are the same vertex, we 
can assume that they are u and 2. Hence, u # x and u # y. 

Define the graph GI = (VI, El) by 

(20) GI = G - 'U + ux + YZ, 
and define el = ux. We know by Lemma 1 that GI is 4-regular and 4-edge 
connected. Since (G,e) is a minimal counterexample, we therefore know that 
P(G1, el) holds. Similarly, define the graph G? = (Vz, E.) by 

(21) G. = G - u + UY + 22, 
and define e2 = uy. As before, we know that P(G2, e.) holds as well. 

graphs: 
So, we can form the following convex combinations of 2-edge connected 
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and 

Define Hf by 
H f - y z + y v + z v  f o r y z E H f ,  
Hf + y v + x v  for yz $ Hf. 

F 

H i  = 

Likewise, define H: by 

Consider the convex combination of 2-edge connected subgraphs 

Every edge in f E E\6(v) occurs with a total weight of 3 in (26) since f occured 
with that weight in both (22) and (23). Since yz occurs with a total weight of 8 
in (22) and xz occurs with a total weight of 3 in (23), one can verify that xu, yv, 
and zv each occur with a total weight of $ in (26) as well. Therefore, we have 

which contradicts G, e being a minimal counterexample. 

4 Concluding Remarks 

An obvious open problem arising from our work is to extend our strategy and 
settle Conjecture 1. In another direction, it would be interesting to apply our 
ideas to design a +-approximation algorithm for the minimum cost 2-edge- and 
2-vertex-connected subgraph problems. 

Another interesting question is the tightness of the bound proven in Theo- 
rem 1. The examples we have been able to construct seem to demonstrate an 
asymptotic ratio of between the cost of a minimum cost 2-edge connected sub- 
graph and that of an optimal half-integral subtour solution. Finding instances 
with a worse ratio or improving our bound in Theorem 1 are open problems. 
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