
MetaJava - A Platform for Adaptable
Operating-System Mechanisms

Michael Golm, Jürgen Kleinöder

April 1997 TR-I4-97-10

Computer Science
Department

Operating Systems — IMMD IV

Friedrich-Alexander-University
Erlangen-Nürnberg, Germany

Technical Report

Presented at the ECOOP 97 Workshop on Object-Orientation and
Operating Systems, June 10, 1997, Jyväskylä, Finland

1

MetaJava - A Platform for Adaptable Operating-System Mechanisms

Michael Golm, Jürgen Kleinöder1

University of Erlangen-Nürnberg, Dept. of Computer Science IV
Martensstr. 1, D-91058 Erlangen, Germany

{golm, kleinoeder}@informatik.uni-erlangen.de

Abstract
1

Fine-grained adaptable operating-system services can
not be implemented with todays layered operating-system
architectures. Structuring a system in base level and meta
level opens the implementation of operating-system ser-
vices. Operating-system services are implemented as meta
objects and can be replaced by other meta objects if the
application object requires this.

1 Introduction

This paper describes the MetaJava system, an extended
Java interpreter that allows structural and behavioral reflec-
tion.

MetaJava was built to achieve the following goals:
• It must be possible to separate the functional, applica-

tion-specific concerns from non-functional concerns,
such as persistence and replication.

• The architecture must be general, that means several
problems, such as persistence, distribution, replication,
synchronization must be solvable in it.

The paper is structured as follows. We first introduce the
concepts of reflection and metaprogramming in Section 2
and the computational model of MetaJava in Section 3. Sec-
tion 4 explains how object-oriented meta-level architectures
can be applied to the structuring of operating systems. Sec-
tion 5 shows the problems that had to be solved during the
implementation of MetaJava. Section 6 discusses related
work and Section 7 concludes the paper and suggests future
work.

2 Reflection and Metaprogramming

In the past, programs had to fulfill a task in a limited com-
putational domain. As applications have become increas-
ingly complex today, they need more capable programming
models that support run-time mechanisms, such as multi-
threading (synchronization, dead lock detection, etc.), dis-
tribution, fault tolerance, mobile objects, extended transac-
tion models, persistence, and so on. Many ad hoc extensions

1.This work is supported by theDeutsche Forschungsgemeinschaft
DFG GrantSonderforschungsbereich SFB 182, ProjectB2.

to languages and run-time systems have been implemented
to support some of these mechanisms. But this solution does
not meet the very diverse demands, different applications
make on such mechanisms. Instead it is desirable to provide
an application with means to control the implementation of
its run-time mechanismans and to add own modifications or
extensions if necessary. Reflection is a fundamental concept
to get influence on properties and implementation of the
execution environment of a computing system.

Smith’s work on 3-LISP [Smi82] was the first that con-
sidered reflection as essential part of the programming
model. Maes [Mae87] studied reflection in object oriented
systems. According to Maesreflection is the capability of a
computational system to “reason about and act upon itself”
and adjust itself to changing conditions.Metaprogramming
separates functional from non-functional code.Functional
code is concerned with computations about the applica-
tion’s domain (base level), non-functional code resides at
the meta level, supervising the execution of the functional
code. To enable this supervision, some aspects of the base-
level computation must be reified.Reification is the process
of making something explicit that is normally not part of the
language or programming model. The advantages of the
separation in base level and meta level are outlined in
[KlG96].

As pointed out in [Fer89] there are two types of reflec-
tion: structural and behavioral reflection (in [Fer89] termed
computational reflection). Structural reflection reifies struc-
tural aspects of a program, such as inheritance and data
types. The Java Reflection API [Sun97]is an example of
structural reflection. Behavioral reflection is concerned with
the reification of computations and their behavior. The main
focus of MetaJava is to provide behavioral reflection capa-
bilities. This is described in the next section.

3 Computational model of MetaJava

Traditional systems consist of an operating system and, on
top of it, a program which exploits the OS services using an
application programmer interface (API).

Our reflective approach is different. The system consists
of the OS, the application program (thebase system), and
themeta system. The program may not be aware of the meta

2

system. The computation in the base system raises events
(see Figure 1). These events are delivered to the meta sys-
tem. The meta system evaluates the events and reacts in a
specific manner. All events are handled synchronously.
Base-level computation is suspended while the meta object
processes the event. This gives the meta level complete con-
trol over the activity in the base system. For instance, if the
meta object receives aenter-method event, the default
behavior would be to execute the method. But the meta
object could also synchronize the method execution with
another method of the base object. Other alternatives would
be to queue the method for delayed execution and return to
the caller immediately, or to execute the method on a differ-
ent host. What actually happens depends entirely on the
meta object used. The currently defined events are listed in
Figure 2.

A base object also can invoke a method of the meta
object directly. This is called explicit meta interaction and is
used to control the meta level from the base level.

Not every object must have a meta object attached to it.
Meta objects may be attached dynamically to base objects
at run time. This is especially important if a distributed com-
putation is controlled at the meta level and arbitrary method
arguments need to be made reflective. As long as no meta
objects are attached to an application, our meta architecture
does not cause any overhead. So applications only have to
pay for the meta-system functionality where they really
need it.

Currently meta objects can be attached to references,
objects, and classes. If a meta object is attached to an object,
the semantics of the object is changed. Sometimes it is
desirable only to change the semantics of one reference to
the object — for example, when tracing accesses to the ref-

meta system

base system

B

A

C

M4

Figure 1: Computational model of behavioral reflection

The computations of objects A,B,C raise an event that transfers
control to the meta level.

event
(reification)reflection

M3M1

M2

Figure 2: Events generated by base computation

enter-method(object, method, arguments)
method is being called atobject with arguments

load-class(classname)
classclassname is being used for the first time and
must be loaded

create-object(class)
an instance ofclass is being created

acquire-object-lock (object)
the lock ofobject is being acquired

release-object-lock(object)
the lock ofobject is being released

read-field (object, field)
thefield of object is being read

write-field (object,field, value)
value is being written into thefield of object

Figure 3: Selected methods of the meta-level
interface of the MetaJava virtual machine

void attachObject (MetaObject meta, Object base)
Bind a meta object to a base object.

Object continueExecution (EventMethodCall event)
Continue the execution of a base-level method. This calls the
non-reflective method. No event is generated, otherwise the
reflection would not terminate.

Object doExecute (EventMethodCall event)
Execute a method. Contrary to the previous method, this one
calls the method as if it were called by an ordinary base
object.

Object createNewInstance (EventObjectCreation event)
Create a new instance of a class. The class name is passed as
String (as part of theevent parameter).

void installBytecode (Object ref, String method, byte code[])
Installs code as new method bytecode. Together with
addConstantPoolItem this method is used to generate a
stub method in the place of the original method.

String retrieveObjectLayout (Object ref)
Returns the types of all fields of objectref. This method is
used together with getFieldObject, getFieldInt,
getFieldFloat, setFieldObject, etc., to access fields of arbi-
trary objects.

Object getField (Object ref, String fieldName)
Returns the contents of fieldfieldName of objectref. Name
and type of all fields (object layout) can be retrieved with
retrieveObjectLayout.

void setField (Object ref, String fieldName, Object obj)
Sets the contents of fieldfieldName of objectref to object
obj.

int addConstantPoolItem (Class c, CPItem i)
Adds an item to the constant pool of classc.

3

erence, or when attaching a certain security policy to the ref-
erence [Rie96]. Attaching a meta object to a class makes all
instances of the class reflective.

To fulfill its tasks the meta object has access to a set of
methods which can manipulate the internal state of the vir-
tual machine. These methods are called themeta-level inter-
face (MLI) of the virtual machine2. A list of the most impor-
tant methods of the MLI is given in Figure 3.

4 Metaobjects for open operating-system
implementations

In a Java environment, most mechanisms and policies that
are traditionally regarded as operating-system or run-time–
system services, are provided either by the virtual machine
itself or by native libraries. As these services are imple-
mented in C and the flexibility and comfort of a Java envi-
ronment is not available for them, it is not easy to adapt
them to special application needs or to transparently add
new services. MetaJava provides an architecture for an open
implementation of most mechanisms and policies that are
currently a fixed part of the virtual machine, such as mem-
ory management, garbage collection, thread management
and scheduling, or class management. The virtual machine
has to provide merely a very primitive implementation of a
few basic mechanisms, such as thread switching, and simple
policies to get the first metaobjects up and running (e.g. a
simple class loader to install classes from a local disk).
More complex mechanisms and policies can be imple-
mented as Java metaobjects, which can use the basic mech-
anisms via the meta-level interface.

If several applications are exectuing within one Java
machine, application-specific metaobjects lead to a hierar-
chy of metaobjects (Figure 4). Global metaobjects give the
resources to applications, application-specific metaobjects
control the resource usage within the application. Of course,
even application parts may employ their own metaobjects,
if necessary.

In addition to the mechanisms listed above, a broad range
of extended run-time services can be implemented by
metaobjects: persistence, object migration, object replica-
tion [KlG96b], just-in-time compilation, active objects
[GoK97], asyncronous method invocations, transactions,
synchronization, various security policies, and so on.

5 Implementation

Integration into Java. The initial version of MetaJava used
a shared library to extend Sun’s Java Virtual Machine
(JVM). The further development required extensive

2.Architecture and terminology of the Java VM are described in detail
in [LiY96]

changes to the JVM, so we decided to build our own virtual
machine, the MetaJava Virtual Machine (MJVM). The
MJVM is a superset of the JVM. It uses the same class file
format and executes the same bytecode set as the JVM, but
provides a meta-level interface to the virtual machine (Fig-
ure 3).

We did not change the Java language or the class file for-
mat, so off-the-shelf development tools can be used.

This section discusses the changes to the JVM that were
necessary to enable our reflective model.

5.1 Shadow classes

The purpose of a metaobject is to change the semantics
of one object. This change should not affect other objects of
the same class. [Fer89] suggests to use classes for structural
reflection and metaobjects for behavioral reflection. We do
not adopt this model because we think that classes (concep-
tually) should contain complete information about the
object. The separation as proposed in [Fer89] seems only be
justified by the fact that classes are not related to individual
objects but to all instance of the class. Hence, the behavior
of individual objects can not be changed by customizing

base system

B

A

C

Figure 4: Hierarchy of meta levels

Memory Mgr. Scheduler

Garbage Collector

X

Y
Z

RMI-handler1

Scheduler1 Scheduler2

RMI-handler2

method-
invocation execute thread in

give CPU time to

App. 1 App. 2

give CPU time to

event

give memory to

MetaJava VM

4

classes. We introduce shadow classes to solve this problem
which is inherent in class-based languages. A class-based
language assumes that there usually exist many objects with
the same type (class). Prototype based languages like Self
[Cha92] or Moostrap support one-of-a-kind objects
[Mul95]. It is easy to derive an object from another object
and change the fields or methods of the new object without
affecting the original3. MetaJava’s shadow classes are an
approximation of this behavior.

A shadow class C’ is an exact copy of class C with the
following properties:

• C and C’ are undistinguishable at the base level
• C’ is identical to C except for modifications done by a

meta-level program
• Static fields and methods are shared between C and C’.

The base-level system can not differentiate between a
class and its shadow classes. This makes the shadowing
transparent to the base system. Several problems had to be

tackled to ensure this transparency.

Class data consistency.The consistency between C and C’
must be maintained. All class-related non-constant data
must be shared between C and C’, because shadow classes
are targeted at changing object-related, not class-related
properties. The MJVM solves this problem by sharing class
data (static fields and methods) between shadow classes and
the original class.

3. In fact, this is the basic mechanism of reuse in prototype-based lan-
guages.

Class identity.Whenever the MJVM compares classes, it
uses the original class pointed to by thetype link (Figure 5).
This class is used for all type checks, for example

• checking assignment compatibility
• checking if a reference can be cast to another class or

interface (checkcast opcode)
• protection checks

Class objects.In Java classes are first class objects. Testing
the class objects of C and C’ for equality must yield true. In
the MJVM every class structure contains a pointer to the
Java object that represents this class. These objects are dif-
ferent for C and C’, because the class objects must contain
a link back to the class structure4. Thus, when comparing
objects of type class, the MJVM really compares thetype
links.

Because classes are first class objects it is possible to use
them as mutual exclusion lock. This happens when the
monitorenter/monitorexit bytecodes are executed or asyn-
chronized static method of the class is called. We stated
above that shadowing must be transparent to the base level.
Therefore the locks of C and C’ must be identical. So the
MJVM uses the class object of the class structure pointed to
by thetype link for locking.

Garbage Collection.Shadow classes must be garbage col-
lected if they are no longer used, i.e. when the metaobject is
detached.The garbage collector follows the baselevel link to
mark classes in the tower of shadow classes (tower of
metaobjects). Shadowed superclasses are marked as usual
following the superclass link in the shadow class.

Code consistency.Some thread may execute in a base-level
object of class C when shadowing and modification of the
shadow takes place. The system then guarantees that the old
code is kept and used as long as the method is executing. If
the method returns and is called the next time, the new code
is used. This guarantee can be given, because during execu-
tion of a method all necessary information, like the current
constantpool or a pointer to the method structure, are kept
on the Java stack as part of the execution environment.
Experience will show if the code modification support, as
currently provided by MetaJava, affects the robustness of
the system.

Memory consumption.A shadow class C’ is a shallow
copy of C. Only method blocks are deep copied. A shallow
class has a size of 80 bytes. A method has a size of 52 bytes.
An entry in the methodtable is a pointer to a method and has
a size of 4 bytes. Hence, the cost of shadowing is a memory
consumption of about (80+number_of_methods*(52+4))
bytes per shadow class in MetaJava.

4. In a different implementation the class object could also contain the
complete class structure as object data.

Figure 5: The creation of a shadow class

Objects A and B are instances of class C. A shadow class
C’ of C is created and installed as class of object B. Base-
level applications can not differentiate between the type of
A and B, because thetype link points to the same class.
However, A and B may behave differently.

Class C

type

Object A

Class C’

Class C

baselevel

class

type

before shadowing

class

type
class

after shadowing

Object B

Object B

type
class

Object A

5

Inheritance. During shadow class creation a shadow of the
superclass is created recursively. When the object reverses
to its superclass with a call tosuper the shadowed super-
class is used. All shadowed classes in the inheritance path
use the same metaobject.

Original behavior. Additional to the metaobject link a
shadow class in MetaJava also needs a linkbaselevel to the
original class. It is used when resorting to the original
behavior of the class. In all non-shadow classes thebase-
level link is null. Thebaselevel link realizes thetower of
metaobjects (Figure 6). However, there is an important dif-
ference between the tower of metaobjects in MetaJava and
the traditional notion of a tower of metaobjects. Tradition-
ally, a tower of metaobjects is constructed so that each
metaobject reifies structure and behavior of the metaobject
one level below. In the MetaJava tower, a metaobject can
continue (delegate) work to the base level if it has finished
its own computations.

5.2 Implementation of the event mechanism

We are now able to transparently modify the class structure
of individual objects. This section explains, how this mech-
anism can be used for a reification of object behavior.

Reification of incoming messages (method invocations).
We talk about reification of incoming messages of object O
(O is of class C), if the invocation of O.m() by object X is
handled by the metaobject of O. To implement reification of
method invocations we investigated the following alterna-
tives:
0(1) All interesting bytecodes (invokevirtual andinvokespe-

cial) are replaced by reifying pedants (e.g.
invokevirtual_reflective). This is a clean way to create
reflective objects but requires an extension of the byte-
code set.

(2) The interpretation process of interesting bytecodes is
extended.

(3) Method bytecodes ofC.m() are replaced by a stub code
which jumps to the meta space.

The third approach has the advantage of taking only local
effects (unlike 1.) and avoiding a change of the interpreter
fetch/decode loop (unlike 2.), thus possibly also working
with Java processors. Therefore we decided to reify method
invocations with stub generation at run time.

The metaobject that implements a specific method invo-
cation needs of course access to the method arguments. An
initial version of MetaJava used an object array to store
method arguments. This was fast, but excluded primitive
types as method arguments. In the current MJVM argu-
ments are passed in a special argument container which is
able to change the type of one slot dynamically.

Reification of outgoing messages.An outgoing messages
is caused by theinvokevirtual opcode5. The invokevirtual
opcode has three arguments: a class name, a method name
and a method signature. When registering for the event, the
class name, method name, and signature can be specified.
The code generator then looks for allinvokevirtual opcodes
that match, and creates the following code in place of the
opcode:
0(1) create event object with class name, method name, and

signature

(2) create and initialize the argument object
(TypeAdaptiveContainer)

(3) invoke the event dispatch function

While for reifying incoming messages the complete method
at the target is replaced by a stub code, we now do code
injection at the origin of the method call.

Reification of instance variable accesses.Reification of
global accessible instance variables would either restrict the
MJVM implementation to use an access function for every
variable access or lead to modification of every piece of
code that possibly accesses the variable. For this reason
only accesses to variables with protectionprivate protected
can be reified in MetaJava. Variables with this protection
can only be accessed in the declaring class or in its sub-
classes. But this also means that the variable can be
accessed outside the current object in a different object of
the same class, because protection in Java is not object
based but class based. If this other object already uses a
shadow class, chances a very bad to detect allputfield/get-
field opcodes that are allowed to access this particular vari-
able. To solve the problem we suggest a new object-based

5.The other opcodes that invoke methods areinvokespecial to call con-
structors andinvokestatic to call class methods. They are not interest-
ing for our current considerations.

Figure 6: Metaobjects and inheritance

Class C 1”

The shaded area marks the original configuration. Object
A and B are of class C1 which is a subclass of C0. When
the metaobject M’ is attached to object B, a shadow class
C1’ of C1 is created. Later, the metaobject M” is attached
to B. This causes the creation of shadow class C1“.

Object A

Class C 1’

Class C 1

MetaObject M’

MetaObject M”

metaobject

baselevel

baselevel

class

superclassclass

type

Object B Class C 0”

Class C 0’

Class C 0

baselevel

baselevel

metaobject

superclass

superclass

type

metaobject metaobject

6

variable protection and two new opcodesputfield_this/
getfield_this. For now, we ignore the problem (i.e., we rely
on programmer convention).

The stub generator for variable accesses of a variable
with name N and type T in an object O of class C works as
follows: Find allputfield andgetfield opcodes that access a
variable of the class C, name N, and type T. If the opcode is
a putfield, remove theputfield and insert a stub code with
the following functionality:
0Compare the top word on the stack with the pointer for equality. This ensures that only accesses to object O are reified. If the comparison fails, theputfield is executed and method execution is continued normally.(1) Create and initialize anEventDescFieldAccess

object. The object contains information if the access
was reading or writing. If it was writing, the event-
description object also contains the intended new value
of the variable.

(2) Invoke the staticeventDispatchVoid function of the
classMetaObject with the event object as parameter.

Relevantgetfield opcodes are replaced by a similar stub.

Reification of object locking.For some base-level mecha-
nisms it is either not possible or prohibitive expensive to
reify them with code injection. Object locking is one such
mechanism. The stub generator would have to generate
stubs for allmonitorenter andmonitorexit opcodes. Further-
more, all executions of synchronized methods of this object
would have to be reified. But this does not guarantee that all
accesses to the lock are reified at the meta level, because the
JVM or native code libraries can directly access the lock.

Every JVM needs a function which maps the Java object
lock to a system dependent lock. The MJVM uses a function
pointer in the class of the object to acquire or release the
lock. This function pointer normally refers to a function
which implements locking and unlocking. When registering
for the acquire-object-lock or release-object-lock events,
the MJVM modifies this pointer to point to the metaobject’s
event handler. The responsible metaobject can now use arbi-
trary complex algorithms to manage the lock. If the metaob-
ject decides to continue with the standard locking protocol
it calls the lock function at the class one level below (follow-
ing thebaselevel link).

When handling object locking we must be careful not to
make the pitfall of reflective overlap. Reflective overlap
[Mae87] occurs, if the reflective compution influences the
base-level explicitely and implicitely. To not implicitely
influence the base-level computation, the meta-level event
handler for lock L should not use any method that acquires
the lock L.

Reification of class loading and object creation.Class
loading and object creation is reified similar to object lock-
ing. The MJVM class structure contains a pointer to the
class loader / object creation function. If a metaobject is
interested in the mechanism it is delegated to this metaob-
ject.

5.3 Metaobject attachment

The previous section explained, how it is possible to change
the behavior of individual objects without affecting other
objects of the same class. This section explains, how
metaobjects can be attached to objects and references.

Attaching to objects.The MJVM uses an object store with
object handles. A handle contains a pointer to the object’s
data and a pointer to the object’s class. When a metaobject
is attached to an object, a shadow class is created and the
class link of the object is redirected to this shadow class.

A metaobject can be used to control a number of base
objects of the same class in a similar manner. It is not nec-
essary to create a shadow class for every object. Shadow
classes are thus installed in two steps. In the first step, a
shadow class is created. In the second step, the shadow class
is installed at the object. Once a shadow class is created, it
can be installed at multiple objects.

Attaching to references.The current implementation of
MetaJava uses an indirect object store. If a metaobject is
attached to a reference, the semantics, i.e. class, of opera-
tions involving this reference must change.Therefor the
handle is copied and the class pointer in the handle changed
to point to a shadow class.After copying the handle it is no
longer sufficient to compare handles when checking the
identity of objects. Instead, the data pointers of the handles
are compared. This requires that data pointers are unique,
i.e. that every object has at least a size of one byte. The
MetaJava object store guarantees this.

Multiple Binding. We mentioned that it is possible to
attach more than one metaobject to a base-level object. The
most recently bound metaobject is activated first. If this
metaobject decides to continue with the default base-level
action, the next lower-level metaobject in the tower of
metaobjects is activated. If one metaobject does not con-
tinue with the default action, lower metaobjects take no
effect.

Figure 7: Attaching to a reference

This figure shows how a shadow class is connected to a ref-
erence. A reference is represented by a handle, which con-
tains a link to the object’s data and a link to the object’s type
(class or methodtable). If a shadow class must be attached to
the handle (original handle), the handle is cloned (reflective
handle) and the class link is set to the shadow class/

Class C’

Class C

baselevel

class
data

reflective handle

Data

class
data

original handle

7

It is obvious from this description, that the order of
metaobjects in the tower is important. An example may
illustrate this. First the user decides to trace method invoca-
tions and attaches a tracing metaobject T to the base object
B. At a later point in execution it becomes necessary to rep-
licate the base object and thus an actively replicating
metaobject R is attached to B. If now a method of B is
called, control is first transferred to R, which replicates the
method call and initiates control transfer to the base level at
every replica. Now the event handler of metaobject T is
invoked and outputs a trace message at every node. If the
metaobjects are attached in the opposite order, the trace is
performed before the method call is replicated.

The situation is a bit more involved if the metaobjects are
attached to an object and a reference to the object. The
MJVM allows to attach a metaobject first to a reference and
then to the object (using this reference), but the semantics of
object attachment would be different from the behavior a
programmer might expect.

The metaobject attached to the object receives only those
events, that are related to the reference.

6 Related work

There have been described several reflective systems with
related goals and properties as MetaJava. However, non of
the systems provided the performance and flexibility, the
MetaJava has achieved with the techniques described in this
paper. A system with strong emphasis on performance is
OpenC++ [ChM93]. OpenC++ supports class based reflec-
tion. A method declaration can be annotated in the base-
level class and invocations of this methods are later reified.
More flexible customization mechanisms are provided by
CodA [McA95] and AL-1/D [OIT93]. CodA tries to iden-
tify the basic building blocks of an object-oriented run-time
system. Because CodA is based on Smalltalk, it focuses on
message exchanges and separates the subsequent actions in
a message exchange from each other. Al-1/D separates dif-
ferent views of a base-level system. One view is concerned
with the language semantics, another with resource man-
agement, and so on.

7 Project status and future work

We are working on several other applications of the
MetaJava architecture. We implemented metaobjects for
remote method invocation, replication, and active objects.
Further projects for meta objects include support for secu-
rity policies [Rie96], concurrency control [Rei97], distribu-
tion configuration[Bec97].

The ultimate goal of our work is making reflection an
integral part of the programming model and support compo-
sition of meta-level systems. One major issue is to develop
concepts to make the attachment of the meta objects to soft-
ware modules configurable and to keep such configuration
statements out of the functional code of the application pro-
gram. This can only be achieved by providing language sup-
port for specifying information about base-level objects.

To keep the security and robustness of the Java system,
one must be able to specify the rights of metaobjects.

Currently the MetaJava system allows to modify the
object model and implement extended object models. Fur-
ther development will aim at providing the meta system
access to core operating system facilities - for example, by
extending the JavaOS operating system.

Information about the current project status is available
at http://www4.informatik.uni-erlangen.de/metajava/.

8 References

Bec97 U. Becker. Beschreibung von Verteilung im objektorien-
tierten Design einer Anwendung. Diplomarbeit Infor-
matik. Universität Erlangen, 1997.

Cha92 C. Chambers.The Design and Implementation of the
Self Compiler, an Optimizing Compiler for Object-Ori-
ented Programming Languages. PhD. Thesis. Stanford
University. March 1992.

ChM93 S. Chiba and T. Masuda. Designing an Extensible Dis-
tributed Language with a Meta-Level Architecture.Pro-
ceedings of ECOOP ‘93, the 7th European Conference
on Object-Oriented Programming,Kaiserslautern, Ger-
many, LNCS 707, Springer-Verlag, pp. 482–501.

Fer89 J. Ferber. Computational Reflection in class based
Object-Oriented Languages.Proceedings of the Confer-
ence on Object-Oriented Programming, Systems, Lan-
guages, and Applications, OOPSLA ‘89,New Orleans,
La., Oct. 1989, pp. 317–326.

FNP+95 J. Fabre, V. Nicomette, T. Perennou, R. J. Stroud, Z. Wu.
Implementing fault tolerant applications using reflective
object-oriented programming.Proceedings of the 25th
IEEE Symposium on Fault Tolerant Computing Systems,
1995.

GoK97 Michael Golm, Jürgen Kleinöder.Implementing Real-
Time Actors with MetaJava, Tech. Report TR-I4-97-09,
Universität Erlangen-Nürnberg: IMMD IV, Apr. 1997

Figure 8: Attaching to a reference

This figure shows the situation after a metaobject is
attached to a reference and then to the object this refer-
ence refers to.

Class C’

Class C

baselevel

class
data

reflective handle

Data

class
data

original handle
baselevel

Class C

8

HüL95 W. L. Hürsch, C. V. Lopes.Separation of Concerns.
Technical Report NU-CCS-95-03, Northeastern Univer-
sity, Boston, February 1995.

Kic96a G. Kiczales. Beyond the Black Box: Open Implementa-
tion. IEEE Software, Vol. 13, No. 1, Jan. 1996, pp. 8-11.

Kic96b G. Kiczales et al.Aspect-Oriented Programming. Posi-
tion Paper for the ACM Workshop on Strategic Direc-
tions in Computing Research, MIT, June 14-15, 1996
(http://www.parc.xerox.com/spl/projects/aop/).

KlG96 J. Kleinöder, M. Golm. MetaJava: An Efficient Run-
Time Meta Architecture for Java.Proc. of the Interna-
tional Workshop on Object Orientation in Operating
Systems - IWOOOS ‘96, October 27-18, 1996, Seattle,
Washington, IEEE, 1996.

KlG96b Jürgen Kleinöder, Michael Golm.Transparent and
Adaptable Object Replication Using a Reflective Java,
Tech. Report TR-I4-96-07, Universität Erlangen-Nürn-
berg: IMMD IV, Sept. 1996

LiY96 T. Lindholm, F. Yellin.The Java Virtual Machine Spec-
ification. Addison-Wesley, Sept. 1996.

Mae87 P. Maes.Computational Reflection. Technical Report
87_2, Artificial Intelligence Laboratory, Vrieje Univer-
siteit Brussel, 1987.

McA95 J. McAffer. Meta-Level Architecture Support for Dis-
tributed Objects.Proceedings of the 4th International
Workshop on Object Orientation in Operating Systems,
Lund, Sweden, IEEE, 1995, pp. 232–241.

Mul95 P. Mulet, J. Malenfant, P. Cointe. Towards a Methodol-
ogy for Explicit Composition of MetaObjects.Proc. of
OOPSLA ‘95. pp. 316-330

OIT93 H. Okamura, M. Ishikawa, and M. Tokoro. Metalevel
Decomposition in AL-1/D.International Symposium on
Object Technologies for Advanced Software,Kanazawa,
Japan, LNCS 742, Springer-Verlag, Nov. 1993.

Rei97 S. Reitzner.Splitting Synchronization from Algorithmic
Behaviour. Technical Report TR-I4-08-97, University
of Erlangen-Nürnberg, IMMD IV, April 1997.

Rie96 T. Riechmann.Security in Large Distributed, Object-
Oriented Systems.Technical Report TR-I4-02-96, Uni-
versity of Erlangen-Nürnberg, IMMD IV, Mai 1996.

Sch90 F. B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial.ACM
Computing Surveys, Vol. 22, No. 4, Dec. 1990, pp. 299-
319.

Smi82 B. C. Smith.Reflection and Semantics in a Procedural
Language. Ph.D. Thesis, MIT LCS TR-272, Jan. 1982.

Sun97 Sun Microsystems.Java Core Reflection, API and Spec-
ification. February 4, 1997.

