
Model Checking: Historical Perspective
and Example (Extended Abstract) ?

Edmund M. Clarke and Sergey Berezin

Carnegie Mellon University — USA

Abstract. Model checking is an automatic verification technique for
finite state concurrent systems such as sequential circuit designs and
communication protocols. Specifications are expressed in propositional
temporal logic. An exhaustive search of the global state transition graph
or system model is used to determine if the specification is true or not.
If the specification is not satisfied, a counterexample execution trace
is generated if possible. By encoding the model using Binary Decision
Diagrams (BDDs) it is possible to search extremely large state spaces
with as many as 10120 reachable states. In this paper we describe the
theory underlying this technique and outline its historical development.
We demonstrate the power of model checking to find subtle errors by
verifying the Space Shuttle Three-Engines-Out Contingency Guidance
Protocol.

1 Introduction

Logical errors found late in the design phase are an extremely important problem
for both circuit designers and programmers. During the past few years, resear-
chers at Carnegie Mellon University have developed an alternative approach to
verification called temporal logic model checking [10,11]. In this approach spe-
cifications are expressed in a propositional temporal logic, and circuit designs
and protocols are modeled as state-transition systems. An efficient search proce-
dure is used to determine automatically if the specifications are satisfied by the
transition systems.

Model checking has several important advantages over mechanical theorem
provers or proof checkers for verification of circuits and protocols. The most
important is that the procedure is completely automatic. Typically, the user
provides a high level representation of the model and the specification to be
checked. The model checking algorithm will either terminate with the answer
true, indicating that the model satisfies the specification, or give a counterexam-
ple execution that shows why the formula is not satisfied. The counterexamples
? This research is sponsored by the the Semiconductor Research Corporation (SRC)

under Contract No. 97-DJ-294, the National Science Foundation (NSF) under Grant
No. CCR-9505472, and the Defense Advanced Research Projects Agency (DARPA)
under Contract No. DABT63-96-C-0071. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of SRC, NSF, DARPA, or the United States Government.

H. de Swart (Ed.): TABLEAUX’98, LNAI 1397, pp. 18–24, 1998.
c© Springer-Verlag Berlin Heidelberg 1998



Model Checking: Historical Perspective and Example (Extended Abstract) 19

are particularly important in finding subtle errors in complex transition systems.
The procedure is also quite fast, and usually produces an answer in a matter of
minutes or even seconds. Partial specifications can be checked, so it is unneces-
sary to specify the circuit completely before useful information can be obtained
regarding its correctness. Finally, the logic used for specifications can directly
express many of the properties that are needed for reasoning about concurrent
systems.

The main disadvantage of this technique is the state explosion which can
occur if the system being verified has many components that can make tran-
sitions in parallel. Recently, however, the size of the transition systems that
can be verified by model checking techniques has increased dramatically. The
initial breakthrough was made in the fall of 1987 by McMillan, who was then
a graduate student at Carnegie Mellon. He realized that using an explicit re-
presentation for transition relations severely limited the size of the circuits and
protocols that could be verified. He argued that larger systems could be handled
if transition relations were represented implicitly with ordered binary decision
diagrams (OBDDs) [6]. By using the original model checking algorithm with the
new representation for transition relations, he was able to verify some examples
that had more than 1020 states [9,21]. He made this observation independently
of the work by Coudert, et. al. [12] and Pixley [23,24,25] on using OBDDs to
check equivalence of deterministic finite-state machines. Since then, various refi-
nements of the OBDD-based techniques by other researchers at Carnegie Mellon
have pushed the state count up to more than 10120 [7].

2 Temporal Logic Model Checking

Pnueli [26] was the first to use temporal logic for reasoning about the concur-
rent programs. His approach involved proving properties of the program under
consideration from a set of axioms that described the behavior of the individual
statements in the program. The introduction of temporal logic model checking
algorithms in the early 1980’s allowed this type of reasoning to be automated.
Since checking that a single model satisfies a formula is much easier than proving
the validity of a formula for all models, it was possible to implement this tech-
nique very efficiently. The first algorithm was developed by Clarke and Emerson
in [10]. Their algorithm was polynomial in both the size of the model determi-
ned by the program under consideration and in the length of its specification in
Computational Tree Logic (CTL). They also showed how fairness could be hand-
led without changing the complexity of the algorithm. This was an important
step since the correctness of many concurrent programs depends on some type
of fairness assumption; for example, absence of starvation in a mutual exclu-
sion algorithm may depend on the assumption that each process makes progress
infinitely often.

At roughly the same time Quielle and Sifakis [27] gave a model checking
algorithm for a similar branching-time logic, but they did not analyze its com-
plexity or show how to handle an interesting notion of fairness. Later Clarke,



20 E.M. Clarke and S. Berezin

Emerson, and Sistla [11] devised an improved algorithm that was linear in the
product of the length of the formula and in the size of the global state graph.
Sistla and Clarke [28] also analyzed the model checking problem for a variety of
other temporal logics and showed, in particular, that for linear temporal logic
the problem was PSPACE complete.

A number of papers demonstrated how the temporal logic model checking
procedure could be used for verifying network protocols and sequential circuits
([2], [3], [4], [5], [11], [15], [22]). Early model checking systems were able to check
state-transition graphs with between 104 and 105 states at a rate of about 100
states per second. In spite of these limitations, model checking systems were
used successfully to find previously unknown errors in several published circuit
designs.

Alternative techniques for verifying concurrent systems were proposed by a
number of other researchers. The approach developed by Kurshan [17,18] was
based on checking inclusion between two automata. The first machine represen-
ted the system that was being verified; the second represented its specification.
Automata on infinite tapes (ω-automata) were used in order to handle fairness.
Pnueli and Lichtenstein [20] reanalyzed the complexity of checking linear-time
formulas and discovered that although the complexity appears exponential in
the length of the formula, it is linear in the size of the global state graph. Based
on this observation, they argued that the high complexity of linear-time model
checking might still be acceptable for short formulas. Emerson and Lei [16] ex-
tended their result to show that formulas of the logic CTL*, which combines
both branching-time and linear-time operators, could be checked with essenti-
ally the same complexity as formulas of linear temporal logic. Vardi and Wolper
[29] showed how the model checking problem could be formulated in terms of
automata, thus relating the model checking approach to the work of Kurshan.

3 New Implementations

In the original implementation of the model checking algorithm, transition rela-
tions were represented explicitly by adjacency lists. For concurrent systems with
small numbers of processes, the number of states was usually fairly small, and
the approach was often quite practical. Recent implementations [9,21] use the
same basic algorithm; however, transition relations are represented implicitly by
ordered binary decision diagrams (OBDDs) [6]. OBDDs provide a canonical form
for boolean formulas that is often substantially more compact than conjunctive
or disjunctive normal form, and very efficient algorithms have been developed for
manipulating them. Because this representation captures some of the regularity
in the state space determined by circuits and protocols, it is possible to verify
systems with an extremely large number of states—many orders of magnitude
larger than could be handled by the original algorithm.

The implicit representation is quite natural for modeling sequential circuits
and protocols. Each state is encoded by an assignment of boolean values to the
set of state variables associated with the circuit or protocol. The transition re-



Model Checking: Historical Perspective and Example (Extended Abstract) 21

lation can, therefore, be expressed as a boolean formula in terms of two sets of
variables, one set encoding the old state and the other encoding the new. This
formula is then represented by a binary decision diagram. The model checking
algorithm is based on computing fixed points of predicate transformers that
are obtained from the transition relation. The fixed points are sets of states
that represent various temporal properties of the concurrent system. In the new
implementations, both the predicate transformers and the fixed points are re-
presented with OBDDs. Thus, it is possible to avoid explicitly constructing the
state graph of the concurrent system.

The model checking system that McMillan developed as part of his Ph.D.
thesis is called SMV [21]. It is based on a language for describing hierarchical
finite-state concurrent systems. Programs in the language can be annotated by
specifications expressed in temporal logic. The model checker extracts a tran-
sition system from a program in the SMV language and uses an OBDD-based
search algorithm to determine whether the system satisfies its specifications. If
the transition system does not satisfy some specification, the verifier will produce
an execution trace that shows why the specification is false. The SMV system
has been distributed widely, and a large number of examples have now been
verified with it. These examples provide convincing evidence that SMV can be
used to debug real industrial designs.

4 Related Verification Techniques

A number of other researchers have independently discovered that OBDDs can
be used to represent large state-transition systems. Coudert, Berthet, and
Madre [12] have developed an algorithm for showing equivalence between two
deterministic finite-state automata by performing a breadth first search of the
state space of the product automata. They use OBDDs to represent the transi-
tion functions of the two automata in their algorithm. Similar algorithms have
been developed by Pixley [23,24,25]. In addition, several groups including Bose
and Fisher [1], Pixley [23], and Coudert, et. al. [13] have experimented with
model checking algorithms that use OBDDs. Although the results of McMil-
lan’s experiments [8,9] were not published until the summer of 1990, his work is
referenced by Bose and Fisher in their 1989 paper [1].

5 Example: Space Shuttle Digital Autopilot

We illustrate the power of model checking to find subtle errors by considering
a protocol used by the Space Shuttle. We discuss the verification of the Three-
Engines-Out Contingency Guidance Requirements using the SMV model checker.
The example describes what should be done in a situation where all of the three
main engines of the Space Shuttle fail during the ascent. The main task of the
Space Shuttle Digital Autopilot is to separate the shuttle from the external tank.
This task has many different input parameters, and it is important to make sure
that all possible cases and input values are taken into account.



22 E.M. Clarke and S. Berezin

The Digital Autopilot chooses one of the six contingency regions depending
on the current flight conditions. Each region uses different maneuvers for sepa-
rating from the external tank. This involves computing a guidance quaternion.
Usually, the region is chosen once at the beginning of the contingency and is
maintained until separation occurs. However, under certain conditions a change
of region is allowed. In this case, it is necessary to recompute the quaternion and
certain other output values. Using SMV we were able to find a counterexam-
ple in the program for this task. We discovered that when a transition between
regions occurs, the autopilot system may fail to recompute the quaternion and
cause the wrong maneuver to be made. The guidance program consists of about
1200 lines of SMV code. The number of reachable states is 2 · 1014, and it takes
60 seconds to verify 40 CTL formulas.

Specifically, the error occurs when a change is made from region 2 to region
1. Region 2 is selected initially if the Shuttle is descending and the dynamic
pressure is not safe for attitude independent separation. In this region it is ne-
cessary to consider the position of the craft relative to its velocity vector, and the
quaternion computed in this region is supposed to minimize the angle of attack
and the side slip. However, if the side slip is too big and the dynamic pressure
builds up too quickly, meaning that we do not have enough time to perform the
maneuver, then the program performs the transition to region 1 — an attitude
independent emergency separation.

In this mode, in contrast to region 2, the current values of the angle of attack
and the side slip must be frozen, and the tank will separate as soon as the angle
rates become relatively small. A special flag called Freeze_flag is set to indicate
this maneuver. However, the quaternion from region 2 is not recomputed and
causes the space shuttle to rotate. This violates the condition that the angle
of attack and sideslip should be frozen. Since the part of the specifications we
possessed does not indicate whether the Freeze_flag has a precedence over the
quaternion or not, this situation may lead to an incorrect behavior of the Space
Shuttle in a critical situation.

The same example was also verified by Judith Crow at SRI [14] using an
explicit state model checker called Murφ. She had to abstract away many varia-
bles to avoid the state explosion problem, and her model was not as complete as
ours. She found a similar error in the transition from region 2 to region 1, but
for a different variable, which turned out to be correct in our model. Instead,
the error shows up in the quaternion, which she didn’t consider.

References
1. S. Bose and A. L. Fisher. Automatic verification of synchronous circuits using

symbolic logic simulation and temporal logic. In L. Claesen, editor, Proceedings of
the IMEC-IFIP International Workshop on Applied Formal Methods for Correct
VLSI Design, November 1989.

2. M. C. Browne and E. M. Clarke. Sml: A high level language for the design and
verification of finite state machines. In IFIP WG 10.2 International Working Con-
ference from HDL Descriptions to Guaranteed Correct Circuit Designs, Grenoble,
France. IFIP, September 1986.



Model Checking: Historical Perspective and Example (Extended Abstract) 23

3. M. C. Browne, E. M. Clarke, and D. Dill. Checking the correctness of sequential
circuits. In Proceedings of the 1985 International Conference on Computer Design,
Port Chester, New York, October 1985. IEEE.

4. M. C. Browne, E. M. Clarke, and D. Dill. Automatic circuit verification using
temporal logic: Two new examples. In Formal Aspects of VLSI Design. Elsevier
Science Publishers (North Holland), 1986.

5. M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic verification
of sequential circuits using temporal logic. IEEE Transactions on Computers, C-
35(12):1035–1044, December 1986.

6. R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, C-35(8):677–691, August 1986.

7. J. R. Burch, E. M. Clarke, and D. E. Long. Symbolic model checking with parti-
tioned transition relations. In A. Halaas and P. B. Denyer, editors, Proceedings of
the 1991 International Conference on Very Large Scale Integration, August 1991.
Winner of the Sidney Michaelson Best Paper Award.

8. J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill. Sequential circuit
verification using symbolic model checking. In Proceedings of the 27th ACM/IEEE
Design Automation Conference, pages 46–51. IEEE Computer Society Press, June
1990.

9. J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: 1020 states and beyond. Information and Computation, 98(2):142–
170, June 1992.

10. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for bran-
ching time temporal logic. In D. Kozen, editor, Logic of Programs: Workshop, York-
town Heights, NY, May 1981, volume 131 of Lecture Notes in Computer Science.
Springer-Verlag, 1981.

11. E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, April 1986.

12. O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Proceedings of the
1989 International Workshop on Automatic Verification Methods for Finite State
Systems, Grenoble, France, volume 407 of Lecture Notes in Computer Science.
Springer-Verlag, June 1989.

13. O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties of se-
quential machines without building their state diagrams. In Kurshan and Clarke
[19].

14. Judith Crow. Finite-state analysis of space shuttle contingency guidance require-
ments. Technical Report NASA Contractor Report 4741, SRI International, Menlo
Park, CA, May 1996.

15. D. L. Dill and E. M. Clarke. Automatic verification of asynchronous circuits using
temporal logic. IEE Proceedings, Part E 133(5), 1986.

16. E.A. Emerson and Chin Laung Lei. Modalities for model checking: Branching time
strikes back. Twelfth Symposium on Principles of Programming Languages, New
Orleans, La., January 1985.

17. Z. Har’El and R. P. Kurshan. Software for analytical development of communica-
tions protocols. AT&T Technical Journal, 69(1):45–59, Jan.–Feb. 1990.

18. R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker,
W.-P. de Roever, and G. Rozenberg, editors, Proceedings of the REX Workshop
on Stepwise Refinement of Distributed Systems, Models, Formalisms, Correctness,



24 E.M. Clarke and S. Berezin

volume 430 of Lecture Notes in Computer Science, pages 414–453. Springer-Verlag,
May 1989.

19. R. P. Kurshan and E. M. Clarke, editors. Proceedings of the 1990 Workshop on
Computer-Aided Verification. Springer-Verlag, June 1990.

20. O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs
satisfy their linear specification. In Proceedings of the Twelfth Annual ACM Sym-
posium on Principles of Programming Languages, pages 97–107. Association for
Computing Machinery, January 1985.

21. K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. PhD thesis, Carnegie Mellon University, 1992.

22. B. Mishra and E.M. Clarke. Hierarchical verification of asynchronous circuits using
temporal logic. Theoretical Computer Science, 38:269–291, 1985.

23. C. Pixley. A computational theory and implementation of sequential hardware
equivalence. In R. Kurshan and E. Clarke, editors, Proc. CAV Workshop (also
DIMACS Tech. Report 90-31), Rutgers University, NJ, June 1990.

24. C. Pixley, G. Beihl, and E. Pacas-Skewes. Automatic derivation of FSM specifica-
tion to implementation encoding. In Proceedings of the International Conference
on Computer Desgin, pages 245–249, Cambridge, MA, October 1991.

25. C. Pixley, S.-W. Jeong, and G. D. Hachtel. Exact calculation of synchronization
sequences based on binary decision diagrams. In Proceedings of the 29th Design
Automation Conference, pages 620–623, June 1992.

26. A. Pnueli. A temporal logic of concurrent programs. Theoretical Computer Science,
13:45–60, 1981.

27. J.P. Quielle and J. Sifakis. Specification and verification of concurrent systems in
CESAR. In Proceedings of the Fifth International Symposium in Programming,
1982.

28. A. P. Sistla and E.M. Clarke. Complexity of propositional temporal logics. Journal
of the ACM, 32(3):733–749, July 1986.

29. M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In Proceedings of the First Annual Symposium on Logic in Computer
Science. IEEE Computer Society Press, June 1986.


	Introduction
	Temporal Logic Model Checking
	New Implementations
	Related Verification Techniques
	Example: Space Shuttle Digital Autopilot

