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Abstract. A graph g is called a maximum common subgraph of two
graphs, g1 and g2, if there exists no other common subgraph of g1 and g2
that has more nodes than g. For the maximum common subgraph
problem, exact and inexact algorithms are known from the literature.
Nevertheless, until now no effort has been done for characterizing their
performance. In this paper, two exact algorithms for maximum common
subgraph detection are described. Moreover a database containing
randomly connected pairs of graphs, having a maximum common graph
of at least two nodes, is presented, and the performance of the two
algorithms is evaluated on this database.

1 Introduction

Graphs are a powerful and versatile tool useful in various subfields of science and
engineering. There are applications, for example, in pattern recognition, machine
learning and information retrieval, where one needs to measure the similarity of ob-
jects. If graphs are used for the representation of structured objects, then measuring
the similarity of objects becomes equivalent to determining the similarity of graphs.

There are some well-known concepts that are suitable graph similarity measures.
Graph isomorphism is useful to find out if two graphs have identical structure[1].
More generally, subgraph isomorphism can be used to check if one graph is part of
another [1,2]. In two recent papers [3,4], graph similarity measures based on maxi-
mum common subgraph and minimum common supergraph have been proposed.

Detection of the maximum common subgraph (MCS) of two given graphs is a
well-known problem. In [5], such an algorithm is described and in [6] the use of this
algorithm in comparing molecules has been discussed. In [7] a MCS algorithm that
uses a backtrack search is introduced. A different strategy for deriving the MCS first
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obtains the association graph of the two given graphs and then detects the maximum
clique (MC) of the latter graph [8,9].
Both, MCS and MC detection, are NP-complete problems [10]. Therefore many ap-
proximate algorithms have been developed. A survey of such algorithms, including an
analysis of their complexity, and potential applications is provided in [11].

Although a significant number of MCS detection algorithms have been proposed in
the literature, until now no effort has been spent for characterizing their performance.
Consequently, it is not clear how the behaviour of these algorithms varies as the type
and the size of the graphs to be matched changes from an application to another. The
lack of a sufficiently large common database of graphs makes the task of comparing
the performance of different MCS algorithms difficult, and often an algorithm is cho-
sen just on the basis of a few data elements.

In this paper we present two exact algorithms that follows different principles. The
first algorithm searches for the MCS by finding all common subgraphs of the two
given graphs and choosing the largest [7]; the second algorithm builds the association
graph between the two given graphs and then searches for the MC of the latter graph
[12]. Moreover we present a synthetically generated database containing pairs of
randomly connected pairs of graphs, in which each pair has a known MCS.
The remainder of the paper is organized as follows. In Section 2 basic terminology is
introduced and the first algorithm to be compared is described. The second algorithm
to be compared is described in Section 3. In Section 4 the database used is presented,
while experimental results are reported in Section 5. Finally future work is discussed
and conclusions are drawn in Section 6.

2 A Space State Search Algorithm for Detecting the MCS

The two following definitions will be used in the rest of the paper:

Definition 2.1: A graph is a 4-tuple g = ( V, E, α, β ), where
- V is the finite set of vertices (also called nodes)
- E ⊆ V × V is the set of edges
- α : V → L is a function assigning labels to the vertices
- β : E → L is a function assigning labels to the edges
- Edge (u,v) originates at node u and terminates at node v.

Definition 2.2: Let g1 = ( V1, E1, α1, β1 ) and g2  =  ( V2, E2, α2, β2 ) be graphs. A com-
mon subgraph of g1 and g2, cs(g1 ,g2), is a graph g = ( V, E, α, β ) such that there exist
subgraph isomorphisms from g to g1 and from g to g2. We call g a maximum common
subgraph of g1 and g2, mcs(g1,g2), if there exists no other common subgraph of g1 and
g2 that has more nodes than g.

Notice that, according to Definition 2, mcs(g1,g2), is not necessarily unique for two
given graphs. We will call the set of all MCS of a pair of graphs their MCS set.

According to the above definition of MCS, it is also possible to have graphs with
isolated nodes in the MCS set. This is in contrast with the definition given in [7],
where a MCS of two given graphs is defined as the common subgraph which contains
the maximum number of edges (we could call it edge induced MCS, in contrast with
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the method described in this paper, which is node induced). Then the case of a MCS
containing unconnected nodes is not considered in [7]. Consequently, the algorithm
proposed in this section, although derived from the one described in [7] by McGregor,
is more general. It can be suitably described through a State Space Representation
[13]. Each state s represent a common subgraph of the two graphs under construction.

Procedure MCS(s,n1,n2)
Begin

if (NextPair(n1,n2)) then
begin

if (IsFeasiblePair(n1,n2)) then
AddPair(n1,n2);

CloneState(s,s');
while(s' is not a leaf of the search tree)
begin

MCS(s',n1,n2);
BackTrack(s');

End
Delete(s');

End
End procedure

Fig. 1. Sketch of the space state search for maximum common subgraph detection

This common subgraph is part of the MCS to be eventually formed. In each state a
pair of nodes not yet analyzed, the first belonging to the first graph and the second
belonging to the second graph, is selected (whenever it exists) through the function
NextPair(n1,n2). The selected pair of nodes is analyzed through the function
IsFeasiblePair(n1,n2) that checks whether it is possible to extend the common
subgraph represented by the actual state by means of the this pair. If the extension is
possible, then the function AddPair(n1,n2)actually extends the current partial
solution by the pair (n1,n2). After that, if the current state s is not a leaf of the
search tree, it copies itself through the function CloneState(s,s’), and the analysis
of this new state is immediately started. After the new state has been analyzed, a
backtrack function is invoked, to restore the common subgraph of the previous state
and to choose a different new state. Using this search strategy, whenever a branch is
chosen, it will be followed as deeply as possible in the search tree until a leaf is
reached. It is noteworthy that every branch of the search tree has to be followed, be-
cause - except for trivial examples - is not possible to foresee if a better solution exists
in a branch that has not yet been explored. It is also noteworthy that, whenever a state
is not useful anymore, it is removed from the memory through the function
Delete(s). The first state is the empty-state, in which two null-nodes are analyzed.
A pseudo-code description of the MCS detection algorithm is shown in Fig 1.

Let N1  and N2  be the number of nodes of the first and the second graph,
respectively, and let  N1  ≤ N2. In the worst case, i.e. when the two graphs are
completely connected with the same label on each node and the same label on each
edge, the number of states s examined by the algorithm is:
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For the case N1 = N2 = N and N >>1, eq.(1) can be approximated as follows:

)2(!NeS ⋅≅

Notice that only O(N1) space is needed by the algorithm.

3 An MCS Algorithm Based on Clique Detection

The Durand-Pasari algorithm is based on the well known reduction of the search of
the MCS between two graph to the problem of finding a MC in a graph [12]. The first
step of the algorithm is the construction of the association graph, whose vertices
corresponds to pair of vertices of the two starting graphs having the same label. The
edges of the association graph represent the compatibility of the pair of vertices to be
included; hence, MCS can be obtained by finding the MC in the association graph.
The algorithm for MC detection generates a list of vertices that represents a clique of
the association graph using a depth-first search strategy on a search tree, by system-
atically selecting one vertex at a time from successive levels, until it is not possible to
add further vertices to the list. A sketch of the algorithm is in Fig. 2.

Procedure MCS_DP(vert_list)
Begin

Level = length(vert_list);
null_count = count_null_vertices(vert_list);
clique_length = level – null_count;
if (null_count >= best_null_count_so_far) then

return;
else if (level == max_level) then

save(vert_list);
best_null_count_so_far = null_count;

else
P = set of vertices (n1,n2) having n1==level;
Foreach(v in P ∪ { NULL_VERTEX })
Begin

if (is_legal(v, vert_list)) then
MCS_DP(vert_list + v);

end if
end

end if
end procedure

Fig. 2. Sketch of the maximum clique detection algorithm

When a vertex is being considered, the forward search part of the algorithm first
checks to see if this vertex is a legal vertex, and if it is the algorithm next checks to
see if the size of the new clique formed is as large or larger than the current largest
clique, in which case it is saved. A vertex is legal if it is connected to every other
vertex already in the clique. At each level l, the choice of the vertices to consider is
limited to the ones which correspond to pairs (n1, n2) having n1=l. In this way the
algorithm ensures that the search space is actually a tree, i.e. it will never consider
twice the same list of vertices. After considering all the vertices for level l, a special
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vertex, called the null vertex, is added to the list. This vertex is always considered
legal, and can be added more than once to the list. This special vertex is used to carry
the information that no mapping is associated to a particular vertex of the first graph
being matched. When all possible vertices (including the null vertex) have been con-
sidered, the algorithm backtracks and tries to expand along a different branch of the
search tree. The length of the longest list (excluding any null vertex entries) as well as
its composition is maintained. This information is updated, as needed. If N1 and N2 are
the number of vertices of the starting graphs, with N1≤N2 , the algorithm execution
will require a maximum of N1 levels. Since at each level the space requirement is
constant, the total space requirement of the algorithm is O(N1). To this, however, the
space needed to represent the association graph must be added. In the worst case the
association graph can be a complete graph of N1⋅N2 nodes. In the worst case the algo-
rithm will have to explore (N2+1) vertices at level 1, N2 at level 2, up to (N2− N1+2) at
level N1. Multiplying these numbers we obtain a worst case number of states
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which, for N1=N2 reduces to O(N⋅N!).

4 The Database

During the last years the pattern recognition community recognized the importance of
benchmarking activities for validating and comparing the results of proposed meth-
ods. Within the Technical Committee 15 of the International Association for Pattern
Recognition (IAPR-TC15) the characterization of the performance achieved by graph
matching algorithms revealed to be particularly important due to the growing need of
using matching algorithms dealing with large graphs. To this concern, two artificially
generated databases have been presented at the last IAPR-TC15 workshop [14, 15].
The first one [14] describes the format and the four different categories contained in a
database of  72,800 pairs of graphs, developed for graph and subgraph isomorphism
benchmarking purposes. The graphs composing the whole database have been
distributed on a CD during the 3rd IAPR-TC15 and are also publicly available on the
web at the URL: http://amalfi.dis.unina.it/graph. A different way for building a graph
database has been proposed in [15]. Here the graphs are obtained starting from images
synthetically generated by means of a set of attributed plex grammars. Different
classes of graphs are therefore obtained by considering different plex grammars.

The databases cited above are not immediately usable for the purpose of
benchmarking algorithms for MCS. In fact, the first database can be used with graph
(or subgraph) isomorphism algorithms and provides graphs with no labels. Also the
second database has not been developed for generating graphs to be used in the
context of MCS algorithms. To overcome these problems we decided to generate
another database of synthetic graphs with random values for the attributes, since any
other choice requires making assumptions about the application dependent model of
the graphs to be generated. In particular, we assumed, without any loss of generality,
that attributes are represented by integer numbers with a uniform distribution over a
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certain interval. In fact, the purpose of the attributes in our benchmarking activity is
simply to restrict the possible node or edge pairings; hence there is no need to have
structured attributes. The most important parameter characterizing the difficulty of the
matching problem is the number M of different attribute values: obviously the higher
this number, the easier is the matching problem. Therefore, it should be important to
have different values of M in a database. In order to avoid the need to have several
copies of the database with different values of M, we chose to generate each attribute
as a 16-bit value, using a random number generation. In this way, a benchmarking
activity can be made with any M of the form 2k, for k not greater than 16, just by
using, in the attribute comparison function, only the first k bits of the attribute. As
regards the kind of graphs, we chose to include in the database randomly connected
graphs, i.e. graphs in which it is assumed that the probability of an edge connecting
two nodes is independent on the nodes themselves. The same model as proposed in
[1] has been adopted for generating these graphs: it fixes the value η of the
probability that an edge is present between two distinct nodes n and n′. The
probability distribution is assumed to be uniform. According to the meaning of η, if N
is the total number of nodes of the graph, the number of its edges will be equal to
ηN·(N-1). However, if this number is not sufficient to obtain a connected graph,
further edges are suitably added until the graph being generated becomes connected.

Table 1. The database of randomly connected graphs for benchmarking algorithms for MCS

η # of nodes (N) # of nodes of
the MCS # of pairs

20 2, 6, 10, 14, 18 500
25 2, 7, 12, 17, 22 5000.05
30 3, 9, 15, 21, 27 500
10 3, 5, 7, 9 400
15 4, 7, 10, 13 400
20 2, 6, 10, 14, 18 500
25 2, 7, 12, 17, 22 500

0.1

30 3, 9, 15, 21, 27 500
10 3, 5, 7, 9 400
15 5, 7, 10, 13 400
20 2, 6, 10, 14, 18 500
25 2, 7, 12, 17, 22 500

0.2

30 3, 9, 15, 21, 27 500

The generated database is structured in pairs of graphs having a MCS of at least
two nodes. In particular, three different values of the edge density η have been
considered: 0.05, 0.1 and 0.2. For each value of η, graphs of different size N, ranging
from 10 to 30 have been taken into account. Values of N equal to 10 and 15 have not
been considered for η=0.05, since in these cases it was not possible to have connected
graphs without adding a significant number of extra edges.

Five different percentages of the values of N have been considered for determining
the size of the MCS, namely 10%, 30%, 50%, 70% and 90%. This choice allows us to
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verify the behavior of the algorithms as the ratio between the size of the MCS and the
value of N varies.  Then, for each value of N and for each chosen percentage, 100
pairs of graph have been generated, giving rise to a total of 6100 pairs. Note that for
values of N equal to 10 and 15, the 10% value was not considered as it would deter-
mine a MCS size less than two nodes. Table 1 summarizes the characteristic of the
graphs composing the database. The MCS size refers to the case in which M=216.

5 Experimental Results

In order to make an unbiased comparison of the two algorithms presented in Sections
2 and 3, we have developed an implementation of both in C++, using the VFLib class
library available at http://amalfi.dis.unina.it/graph. The code has been compiled using
the gcc 2.96 compiler, with all optimizations enabled. The machines used for the
experiments are based on the Intel Celeron processor (750MHz), with 128 MB of
memory; the operating system is a recent Linux distribution with the 2.4.2 kernel
version. A set of Python scripts have been used to run the two algorithms on the entire
database and to collect the resulting matching times.

As we have explained in the previous section, the database contains 16 bits
attributes, that can be easily employed to test the algorithms with different values of
the parameter M. Since both algorithms have a time complexity that grows exponen-
tially with the number of nodes, it would be impractical to attempt the matching with
a too low value of M. We have chosen to employ values of M proportional to the
number of nodes in the graphs being matched, in order to keep the running times
within a reasonable limit. In particular, we have tested each graph pair in the database
with three M values equal to 33%, 50% and 75% of the number of nodes.

The resulting matching times are shown in Fig 3. Notice that one of the database
parameters, the number of nodes of the generated MCS, does not appear in the figure.
In fact, in order to reduce the number of curves to be displayed, we have averaged the
times over the different MCS sizes. It should be also considered that, for different
values of M, the actual size of the MCS may vary. In fact if M is large, some node
pairs are excluded from the MCS because of their attribute values; if M is small, the
same pairs may become feasible for inclusion. Hence, by not reporting separately the
times for different MCS sizes it becomes easier to compare the results corresponding
to different values of M. Examining the times reported in the figure, it can be noted
that while both algorithms exhibit a very rapidly increasing time with respect to the
number of nodes, they show a behavior quite different from each other with respect to
the other two considered parameters that is, M and the graph density η. As regards M,
it can be seen that the matching time decreases when M gets larger. But while for low
values of M the Durand-Pasari algorithm performs usually better than the McGregor
one, for high values of M the situation is inverted. This can be explained by the fact
that the Durand-Pasari algorithm is based on the construction of an association graph,
which helps reducing the computation needed by the search algorithm when the
search space is large (small M) because the compatibility tests are, in a sense,
�cached� in the structure of the association graph; on the other hand, the association
graph construction imposes a time (and space) overhead, that is not repaid when the
search space is small (large M). For the graph density,  we notice that the dependency
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of the matching time on η is opposite for the two algorithms. In fact, while the time
for Durand-Pasari decreases for larger values of η, the time for McGregor increases.
An explanation of this difference is that, for Durand-Pasari, an increase in the graph
density enables the algorithm to prune more node pairs on the basis of the node con-
nections. In the McGregor algorithm, instead, this effect is compensated by the in-
crease of the number of edge compatibility tests that must be performed at each state,
to which the Durand-Pasari is immune because of the use of the association graph.
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Fig. 3. Results obtained for M=33% a),50% b),75% c) of N, as a function of N and η

6 Conclusions and Perspectives

In this paper, two exact algorithms for MCS detection have been described. Moreover
a database containing randomly connected pairs of graphs having a MCS of at least
two nodes has been presented, and the performance of the two algorithms has been

b)

c)

a)
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evaluated on this database. Preliminary comparative tests show that for graphs with a
low density it is more convenient to search for the MCS by finding all the common
subgraphs of the two given graphs and choosing the largest, while for high edge den-
sity, it is efficient to build the association graph of the two given graphs and then to
search for the MC of the latter graph. At present the database presented in the paper
contains 6100 pairs of randomly connected graphs. A further step will be the expan-
sion of the database through the inclusion of pairs of graphs with more of nodes.
Besides, the inclusion of other categories graphs, such as regular meshes (2-dimen-
sional, 3-dimensional, 4-dimensional), irregular meshes, bounded valence graphs, and
irregular bounded graphs will be considered. Moreover further algorithms for MCS
will be implemented and their performances characterized on this database. A more
precise measure of the performance could be obtained with a further parameter in the
database, namely the size s of the MCS in each pair of graphs.
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