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Abstract. The computation of generalized median patterns is typically
an NP-complete task. Therefore, research efforts are focused on approx-
imate approaches. One essential aspect in this context is the assessment
of the quality of the computed approximate solutions. In this paper we
present a lower bound in terms of a linear program for this purpose. It
is applicable to any pattern space. The only assumption we make is that
the distance function used for the definition of generalized median is a
metric. We will prove the optimality of the lower bound, i.e. it will be
shown that no better one exists when considering all possible instances
of generalized median problems. An experimental verification in the do-
main of strings and graphs shows the tightness, and thus the usefulness,
of the proposed lower bound.

1 Introduction

The concept of average, or mean, is useful in various contexts. In sensor fusion,
multisensory measurements of some quantity are averaged to produce the best
estimate. Averaging the results of several classifiers is used in multiple classifier
systems in order to achieve more reliable classifications. In clustering and ma-
chine learning, a typical task is to represent a set of (similar) objects by means
of a single prototype. Interesting applications of the average concept have been
demonstrated in dealing with shapes [6], binary feature maps [10], 3D rota-
tion [3], geometric features (points, lines, or 3D frames) [15], brain models [4],
anatomical structures [17], and facial images [13].

In structural pattern recognition symbolic structures, such as strings, trees,
or graphs, are used for pattern representation. One powerful tool in dealing with
these data structures is provided by the generalized median. Given a set S of
input patterns, the generalized median is a pattern that has the smallest sum of
distances to all patterns in S (see Section 2 for a formal definition).
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The computation of generalized median of symbolic structures is typically
an NP-complete task. Therefore, research efforts are focused on approximate
algorithms. One essential aspect in this context is the assessment of the quality
of the computed approximate solutions. Since the true optimum is unknown, the
quality assessment is not trivial in general. In this paper we present an optimal
lower bound in terms of a linear program for this purpose. It is applicable to
any pattern space. The only assumption we make is that the distance function
used for the definition of generalized median is a metric.

The outline of the paper is as follows. In Section 2 we first introduce the
generalized median of patterns. Then, we present the LP-based lower bound
and discuss its optimality in Sections 3 and 4. The results of an experimental
verification in the domains of strings and graphs are reported in Section 5 to
show the usefulness of the lower bound. And finally, some discussion conclude
the paper.

2 Generalized Median of Patterns

Assume that we are given a set S of patterns in an arbitrary representation
space U and a distance function d(p,q) to measure the dissimilarity between
any two patterns p,q € U. An important technique for capturing the essential
information of the given set of patterns is to find a pattern p € U that minimizes
the sum of distances to all patterns from S, i.e.

_ N
p = argmin > dp,q)
qeS

Pattern p is called a generalized median of S. If the search is constrained to the
given set S, the resultant pattern

p = arggleuslzd(p,q)
qes
is called a set median of S. Note that neither the generalized median nor the set
median is necessarily unique.

Independent of the underlying representation space we can always find the
set median of N patterns by means of N(N — 1)/2 distance computations. The
computational burden can be reduced if the distance function is a metric [9]. For
non-metric distance functions an approximate set median search algorithm has
been reported recently [12]. Note that the generalized median is the more general
concept and therefore usually a better representation of the given patterns than
the set median.

If U is the universe of real numbers and the distance function d(p, ¢) is the
absolute (squared) difference of p and ¢, then the generalized median simply
corresponds to the scalar median (mean) known from statistics. Scalar median
represents a powerful technique for image smoothing. Its extension to vector
spaces [1,2] provides a valuable image processing tool for multispectral/color
images and optical flow.
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In dealing with strings, the popular Levenshtein edit distance is usually used.
Under this distance function the set median string problem is solvable in poly-
nomial time. However, the computation of generalized median strings turns out
to be NP-complete [5,16]. Several approximate approaches have been reported
in the literature; see [8] for a discussion. In [7] the concept of generalized median
graphs is defined based on graph edit distance. Also here we are faced with an
NP-complete computation problem.

An approximate computation method gives us a solution p such that

SOD(p) = Y d(pq) > Y dF,q) = SOD(®)

qeSs qeSs

where SOD stands for sum of distances and P represents the (unknown) true
generalized median. The quality of p can be measured by the difference SOD(p) —
SOD(p). Since p and SOD(p) are unknown in general, we resort to a lower
bound I' < SOD(p) and measure the quality of p by SOD(p) — I'. Note that the
relationship

0 < I < SOD({) < SOD(p)

holds. Obviously, I' = 0 is a trivial, and also useless, lower bound. We thus
require I" to be as close to SOD(pP) as possible. In the next two sections we
present such a lower bound and prove its optimality (in a sense to be defined
later). The tightness of the proposed lower bound will be experimentally verified
in Section 5 in the domain of strings and graphs.

It is worth pointing out that a lower bound is not necessarily needed to
compare the relative performance of different approximate methods. But it is
very useful to indicate the closeness of approximate solutions to the true opti-
mum. Such an absolute performance comparison is actually the ultimate goal of
performance evaluation.

3 LP-Based Lower Bound

We assume that the distance function d(p, ¢) be a metric. Let the set S of input
patterns be {¢1,q2, ..., ¢n}. The generalized median P is characterized by:

minimize SOD(p) = d(p,q1) +d(D,q2) + - - - + d(P, g») subject to
AP, q:) +d(P,q;) = d(gi,q;)
Vi e {1725' ..,TL}, d(ﬁaql) 2 0

Note that the constraints except the last set of inequalities are derived from
the triangular inequality of the metric d(p,q). By defining n variables x;, i =
1,2,...,n, we replace d(p, ¢;) by x; and obtain the linear program LP:

minimize 1 + 22 + - - - + x,, subject to
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zi+x; > dg,q))
Vi, j€{1,2,...,n},i # 4, { xi+d(gi,q;) > v

x4+ d(gi,q;) > 2
Vie{l,2,...,n}, 2; >0

If we denote the solution of LP by I', then we have:

Theorem 1. The true generalized median p satisfies I' < SOD(p). That is, T’
s a lower bound for SOD(p).

Proof: In the initial characterization the quantities d(p,¢;) are dependent of
each other. The linear program LP results from replacing d(p, ¢;) by z; and is
defined in contrast by n totally independent variables z;. Consequently, LP poses
less conditions than the initial characterization and its solution I" thus must be
smaller than or equal to SOD(p). QED

The linear program LP has 8n’—n inequality constraints and we may apply

the popular simplex algorithm [14] to find out the solution. Note that, despite its
exponential worst-case computational complexity, the simplex algorithm turns
out to be very efficient in practice and is used to routinely solve large-scale linear
programming problems.

4 Optimality Issue

For a fixed n value, any set S of n patterns specifies N = 2D distances
d(p,q), p,q € S, and can be considered as a point in the N-dimensional real
space RY. Due to the triangular inequality required by a metric, all possible sets
of n patterns only occupy a subspace R of RY. Abstractly, any lower bound is
therefore a function f: RY — R. The lower bound I" derived in the last section
is such a function.

Does a lower bound exist that is tighter than I'? This optimality question is
interesting from both a theoretical and a practical point of view. The answer and
the implied optimality of the LP-based lower bound I" is given by the following
result.

Theorem 2. There exists no lower bound that is tighter than I'.
Proof: Given a point b € RY, we denote the solution of the corresponding
linear program LP by (21,22, ..., 2,). We construct a problem instance of n+ 1
abstract patterns q1,¢2, - - ., Gn, ¢nr1- The @ distances d(g;, q;), 1 <i,j <mn,
are taken from the coordinates of b. The remaining distances are defined by
d(Gn+1,9;) = x;i, 1 <i < n. The distance function d is clearly a metric. Now we
compute the generalized median p of {q1,q2,...,qn}. Since I' = 21 +x9+- - -+,
is a lower bound, we have SOD(p) > I'. On the other hand, the pattern g1
satisfies:

SOD(gn+1) = d(qn+1,q1) + d(qn+1,q2) + -+ + d(qn+1,Gn)
=T+ T2+ + Ty
=1
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Fig. 1. The lower bound I" cannot be reached by the generalized median p

Consequently, ¢,11 is a generalized median of {¢1, g2, . .., ¢s}. This means that,
for each point in R, we can always construct a problem instance where the

lower bound I is actually reached by the generalized median. Accordingly, no
lower bound can exist that is more tight than the LP-based lower bound I". QED

At this point two remarks are in order. For most problems in practice it is
likely that the lower bound I' cannot be reached by the generalized median.
The first reason is a fundamental one and is illustrated in Figure 1, where we
consider points in the plane. The distance function is defined to be the Euclidean
distance of two points. Let P be the true generalized median of ¢1, g2, and ¢s.
Then, z; = |¢;p|, i = 1,2, 3, satisfy the constraints of the linear program LP.
Now we select a point ¢ on the line segment ¢;p such that |¢;D| = € (an infinitely
small number). Due to the small amount of €, x} = |¢;¢}| satisfy the constraints
of LP as well. But in this case we have ] + 3 + 23 < x1 + 22 + 23 = SOD(p).
As a consequence, the solution of LP, i.e. the lower bound I, is constrained by:

I < ai+a5+23 < SOD(p)

and therefore not reached by the generalized median p. Fundamentally, this
example illustrates the decoupled nature of the quantities x; in LP in contrast
to d(P, ¢;) in the original problem of generalized median computation. By doing
this, however, the solution x; of LP may not be physically realizable through a
single pattern p.

The special property of a concrete problem may also imply that the lower
bound I is not reached by the generalized median. We consider again points
in the plane, but now with integer coordinates only. The distance function
remains the Euclidean distance. An example is shown in Figure 2 with four
points ¢1, g2, qa, and g4. The lower bound I" turns out to be 2v/34 correspond-
ingtory =x9 =x3 =24 = @. This lower bound is satisfied by p(%, %), which
is unfortunately not in the particular space under consideration. Any point with
integer coordinates will result in a SOD value larger than I.

It is important to point out that Theorem 2 only implies that we cannot
specify a better lower bound than the solution of LP, when considering all pos-
sible instances of generalized median problems. An improved lower bound may
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Fig. 2. The point p(%, %) reaching the lower bound is not in the problem space

still be computed for a particular problem instance. For the problem in Fig-
ure 2, for example, the constraint z; + x3 > d(q1,q3) = V34 can be replaced
by z1 + 23 > /34 + A for some A > 0. The reason is that no point with integer
coordinates lies on the line segment ¢1¢s and the corresponding constraint can
thus be made tighter. The constraint xo + x4 > d(q2,q4) = V34 can be modified
in a similar manner. As a final result, the modified constraints may lead to a
tighter lower bound.

5 Experimental Verification

A lower bound is only useful if it is close to SOD(p) where P represents the
(unknown) true generalized median pattern. In this section we report the results
of an experimental verification in the domain of strings and graphs to show the
tightness, and thus the usefulness, of the proposed lower bound. We used the
MATLAB package to solve the linear program LP.

5.1 Median Strings

The median concept can be used in OCR to combine multiple classification
results for achieving a more reliable final classification [11]. In doing so we may
obtain multiple classification results either by applying different classifiers to a
single scan of a source text or by applying a single classifier to multiple scans of
the text.

To verify the usefulness of the LP-based lower bound in this context we
conducted a simulation by artificially distorting the following text which consists
of 448 symbols (including spaces):

There are reports that many executives make their decisions by flipping
a coin or by throwing darts, etc. It is also rumored that some college
professors prepare their grades on such a basis. Sometimes it is impor-
tant to make a completely 'unbiased’” decision; this ability is occasionally
useful in computer algorithms, for example in situations where a fixed
decision made each time would cause the algorithm to run more slowly.
Donald E. Knuth
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Fig. 3. Verification of lower bound for strings

Totally, ten distortion levels are used, producing k% (k = 1,2---,10) letters
in the text to be changed. For each k, five distorted samples of the text are
generated. We use the Levensthein edit distance and set the insertion, deletion,
and substitution cost each to be one.

Figure 3 summarizes the results of this test series. As a comparison basis,
SOD of the original text is also given. The SOD of the (unknown) true generalized
median string p must be between this curve and the lower bound curve. Clearly,
the LP-based lower bound is a very good estimate of SOD(p). In addition the
results confirm that the generalized median string is a more precise abstraction
of a given set of strings than the set median. It has a significantly smaller SOD
value, which corresponds to the representation error.

5.2 Median Graphs

The concept of generalized median graphs was introduced in [7]. We study the
LP-based lower bound in this domain by means of random graphs generated
by distorting a given initial graph. The initial graph go contains k nodes and
2k edges. The node and edge labels are taken from {A, B,C, D, E} and {F},
respectively. Both the graph structure and the labeling of go are generated ran-
domly. The distortion process first randomly changes the labels of 50% of the
nodes in gg. Then, up to two nodes are inserted or deleted in gg. In case of an
insertion the new node is randomly connected to one of the nodes in go. If a
node in gg is deleted, all its incident edges are deleted as well. This way a col-
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Fig. 4. Verification of lower bound for graphs

lection of 20 distorted graphs are generated for go associated with a particular k
value. Based on this procedure, we conducted a series of experiments by using
n € {4,6,...,20} out of the 20 graphs to test the lower bound. The distance
function of two graphs is defined in terms of graph edit operations; see [7] for
details.

The results of this test series for k& = 6 are summarized in Figure 4. As an
upper bound for SOD(g) of the (unknown) true generalized median graph g, we
give the SOD of the original graph go and an approximate solution found by
the method from [7]. Clearly, SOD(g) must be between the minimum of these
two curves and the lower bound curve. Also here the LP-based lower bound
demonstrates a high predication accuracy.

6 Conclusions

The computation of generalized median patterns is typically an NP-complete
task. Therefore, research efforts are focused on approximate approaches. One
essential aspect in this context is the assessment of the quality of the computed
approximate solutions. In this paper we have presented an optimal lower bound
in terms of a linear program for this purpose. It is applicable to any metric
pattern space. An experimental verification in the domain of strings and graphs
has shown the tightness, and thus the usefulness, of the proposed lower bound.
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