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Abstract. We present a system for colour image retrieval which draws
on higher level contextual information as well as low level colour de-
scriptors. The system utilises matching through graph edit operations
and optimal search methods. Examples are presented which show how
the system can be used to label or retrieve images containing flags. The
method is shown to improve on our previous research, in which proba-
bilistic relaxation labelling was used.

1 Introduction

The increasing popularity of digital imaging technology has highlighted some
important problems for the computer vision community. As the volume of the
digitally archived multimedia increases, the problems associated with organising
and retrieving this data become ever more acute.

Content based retrieval systems such as ImageMiner [1], Blobworld [3],
VideoQ [4], QBIC [13], Photobook [14] and others [11] were conceived to attempt
to alleviate the problems associated with manual annotation of databases.

In this paper we present a system for colour image retrieval which draws
on higher level contextual information as well as low level colour descriptors. To
demonstrate the method we provide examples of labelling and retrieval of images
containing flags. Flags provide a good illustration of why contextual information
may be important for colour image retrieval. Also, flags offer a challenging test
environment, because often they contain structural errors due to non rigid defor-
mation, variations in scale and rotation. Imperfect segmentation may introduce
additional structural errors.

In previous work [9], the problem was addressed using probabilistic relax-
ation labelling techniques. The shortcomings with the previous method in the
presence of many structural errors motivated the current research which is based
on optimal search and graph edit operations [12]. The method still retains the
invariance to scale and rotation, since only colour and colour context are used
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in the matching process. In addition the examples show how this method per-
forms in the presence of structural errors and ambiguous local regions in the
images/models.

Graph representations are well suited to many computer vision problems,
however matching such graphs is often very computationally expensive and may
even be intractable. Non optimal graph matching methods may be much less ex-
pensive than optimal search methods, but often perform badly under conditions
where structural errors prevail. Such non optimal methods include probabilistic
and fuzzy relaxation labelling [5], genetic search, and eigendecomposition [10]
based approaches.

Other work has focused on making optimal graph search methods more suit-
able for database environments. Messmer and Bunke [12], presented a decom-
position approach also based on A* search, which removes the linear time de-
pendency when matching many graphs within a database. More recently the
work of Berretti et al [2] formalised metric indexing within the graph matching
framework.

2 Methodology

In this section we present the details of the adopted method. First, the nota-
tion for the graph matching problem is defined and the system implementa-
tion is then described in detail. Consider an attributed relational graph (ARG)
G ={Q,E,X}, where 2 = {wy,ws, - ,wn} denotes the set of nodes. F repre-
sents the set of edges between nodes, where E C 2x 2, and X = {x1,x2, -, x,}
defines a set of attributes associated to the nodes in (2, where x; denotes the
attributes (features) for node w;.

2.1 Matching

The matching problem is often formulated by defining a model graph, represent-
ing a query, which is matched to at least one scene graph. Let G = {2, E, X}
and G' = {2, F', X'} denote the model and scene graphs respectively.

Now consider an injective function f : £2 — (2’ which specifies mappings
from the nodes (2 in the model graph G to the nodes X C 2’ contained in some
subgraph of the scene G’. Such a function represents an error correcting subgraph
isomorphism, since any mapped subgraph of the scene, can be isomorphic with
the model graph, subject to an appropriate set of graph edit operations. The
edit operations required to achieve such an isomorphism, represent the errors of
an error correcting subgraph isomorphism. These errors are quantified, and are
used to guide the graph search process. Error correcting subgraph isomorphism,
is well suited for computer vision tasks, where noise and clutter may distort the
scene graphs.

Error correcting subgraph isomorphism matches any graph to any other given
graph, since an appropriate set of graph edit operations is able to transform
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any graph arbitrarily. It is therefore essential to define costs for the graph edit
operations. Defining such costs allows state space search methods to seek the
lowest cost (best matching) mapping between any pair of graphs, given the costs
for permissible edit operations. In this implementation, the following traditional
graph edit operations are used. Each edit operation A has an associated cost

C(N).

At w; — w5 map the model node w; to scene node W’ (1)
A:w;— 0 : map the model node w; to the null attractor () (2)
Atei €)1 map the model edge e; to the scene edge € (3)
A:e;— 0: map the model edge e; to the null attractor () (4)
A:ef—(: map the scene edge e; to the null attractor () (5)

Note that the symbol () represents a null attractor which is used to express
missing edges and vertices.

Graph matching algorithms which employ state space search strategies, recur-
sively expand partial mappings to grow error correcting subgraph isomorphisms
in the state space. Our implementation uses the A* algorithm for optimal search.
For any given partial mapping f : £ +— (2’ there exists a set of graph edit op-
erations Ay = {A1, A2, -+, An} which transform the mapped scene nodes into
a subgraph isomorphism with the partial model. Hence the search through the
state space can be guided by the costs of the graph edit operations required for
each partial mapping.

The state space search starts from the root state which is the top node in the
search tree. From this node, child nodes are generated by allowing the first model
node w; to be mapped to each available input node in turn {wf,wh, -, wh,0}.
Also a child state for a missing vertex is added by mapping the model node to
the null attractor.

Each leaf of the tree now represents an error correcting subgraph isomorphism
fr 2 2 — ' from a partial model graph to the scene graph. The cost of these
graph mappings are computed as C(Ay, ), and the leaf with the lowest cost
is expanded. This process continues until the model is fully mapped and the
isomorphism with the least cost is found. For the sake of efficiency, the graph
edit distance for a given leaf node in the search tree, is computed incrementally
from its parent node.

The complexity of the described state space search, is in the worst case ex-
ponential, although in practice the actual complexity is data dependent and the
optimal search often becomes tractable. To further prune the search space and
reduce the complexity, lookahead terms are often used when computing the costs
for a given state. The lookahead term, computes an estimate of the future cost of
any proceeding mappings based on the current partial interpretation. The exact
computation of a minimal future mapping is itself an error correcting subgraph
isomorphism problem, and therefore has a worst case exponential complexity.
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Hence an estimate is used instead. To prevent false dismissals, such an estimate
must provide a lower bound on future cost for any proceeding mappings. To pro-
vide such a lower bound for future mapping cost, we consider each unmapped
node independently, therefore breaking the exponential complexity of the looka-
head. Tests show that a lower bound which ignores edge constraints is faster than
a more refined lookahead scheme which considers the edge costs. The lookahead
function L(f : £2 — (2') is defined as

L(f: 02— Q)= Z min (C(A : w; — w})) (6)
w; €Dy

wi€Dnr

where (p; and @; denotes the set of model and input nodes which are not

mapped in the current partial interpretation. This result is in agreement with

Berretti et al[2] where a faster less accurate lookahead was shown to outperform

a more complex scheme. This does not affect the optimality, since any lower
bound estimate will not allow false dismissals.

2.2 Pre-processing

We now explain how the images are initialised for the graph matching. During
the pre-processing stage, images are segmented so that a region adjacency graph
can be built. Each pixel in the image is represented as a 5D vector, the first three
dimensions are the RGB colour values for the pixel and the last two dimensions
are the pixel co-ordinates. The feature space is then clustered using the mean
shift algorithm [6][7]. The mean shift algorithm is an iterative procedure which
seeks the modes of the feature distribution. The algorithm is non-parametric and
does not assume any prior information about the underlying distributions, or the
number of clusters. This is an important implication because it allows the algo-
rithm to operate unsupervised. In practice only a window size and co-ordinate
scale are needed by the algorithm. Every pixel is given a label corresponding
to the cluster which it has been classified to. The region labels correspond to
homogeneous colour regions within the image. A connected component analysis
stage ensures that only connected pixels may be assigned the same label.

The segmented image can now be expressed as an ARG. The attributes X
are defined as follows.

Tig =1 (7)
vi2=Ri = R, (8)
¢ peEP;
_ 1
X3 = Gl = — Gp (9)
i pPEPR;
_ 1
Tj.4 Bz = n—l Bp (10)
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where n; is the number of pixels within region (node) w; and P; denotes the
set of pixels in region w;. R,, Gy, B, denote the red, green and blue pixel val-
ues respectively for pixel p. The segmentation is further improved by merging
adjacent nodes which have a small number of pixels, or ’similar’ feature space
representation. Consider a node w; which has a set of neighbouring nodes N;.
The best possible candidate wj,__,, for merging with node w;, is given by the
following equation:-

— min{\/(Ri—Rj)Q—i—(Gi—GJ—)2+(Bi—Bj)2} (11)

JEN;

Node w; is only merged with node wj, ., if the following criterion is satisfied:-

VR~ Ry )+ (Gi— Gy )+ (Bi— By ) < (12)

where 7, is some pre-specified threshold which controls the degree of merging for
similarly coloured homogeneous regions. In a second merging stage, each node
w; is merged with node wj,__, if the following criterion is satisfied:-

(13)

In practice 75 controls how large, relative to the size of the image, the smallest
region is allowed to be. It is expressed as a fraction (typically 1%) of the total
number of image pixels. The resulting graph provides an efficient representation
for the images within the system.

2.3 Contextual Colour Retrieval

In order to match a model image with a set of given scene images, the attributed
graphs are created from the segmented images generated by the pre-processing.
Edges in the attributed graph correspond to adjacent regions within the image.
In contrast to the pre-processing stage, the double hexicone HLS colour space [3]
is used for attribute measurements. The attributes of a vertex w;, are: mean hue
Hj;, mean lightness L; and mean saturation .S;.

The conical bounds of the space limit the saturation according to lightness.
This is intuitively better than some other polar colour spaces, which allow ex-
tremes in lightness (black and white) to be as saturated as pure hues, which is
obviously not a desired trait. We define a colour distance measure d; ; between
two vertices’s w; and w; as :-

p AH; ;0 8> Teat, 5§ > Tsat
A \/%Ag + iAg + ALZZJ . otherwise

(14)
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where

15
16
1
18

Ay = S;cos (H;) — Sjcos (Hj)
Ay = S;sin (H;) — S;sin (Hj)
ALi)j = Li — Lj
AHZ')]‘ = Hi — Hj

EN

(15)
(16)
(17)
(18)

where 754t is a threshold which determines a boundary between chromatic and
achromatic colours. Colour comparisons are often hindered by varying illumi-
nation and intensity. For this reason the difference in hue AH; ; is chosen as
the measurement criterion for chromatic colours. However, difference in hue is
not an appropriate measurement for achromatic colours since hue is meaningless
for colours with low saturation. In these cases, the more conventional euclidean
distance type measurements are used.

The colour measurement defined above forms the basis of the vertex assign-
ment graph edit operation. The assignment of a model vertex to the null attractor
is defined to have a constant cost, as is the assignment of model or scene edges
to the null attractor. In this implementation, edges are not attributed and there-
fore edge substitutions have zero cost (since all edges have the same attributes).
More formally:

C\:wi = w)) =1— Ny(d;;) (19)
CA:wi = 0)=C(m (20)
CA:eire)=0 (21)
Ch:e;—0)=mnm (22)
C\:ej—0)=mn (23)

where (,,, is the cost for a missing node (0.5 typical), ,, is the cost for a missing
edge (0.5 typical) and n; is the cost for an inserted edge ( 0.1 typical). N, ()
represents a Gaussian probability distribution

N,(z) = e~ @) (24)

where sigma has a typical value of 0.5. The shape of the assumed distribution
does affect the efficiency of the search process. The distribution helps to discrim-
inate between well and poorly matched attributes better. This allows the graph
matching algorithm to expand deeper into the search tree before backtracking
is necessary.

3 Experimental Results

The experimental results contained within this section were obtained using a
C++ implementation running on an Athlon 1400XP with 512 Mb of RAM.
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Fig. 1. Examples of synthetic models

Synthetic flags shown in figure 1 were considered as models. In contrast to
the relaxation labelling approach in the previous work [9], the method is able
to correctly self-label any of the given synthetic models, although in some cases
(UK model) the symmetric regions were labelled arbitrarily. This is expected
since the optimal search should always find the zero cost solution. Examples of
such synthetic models are shown below.

Examples are presented which show how the system is able to label real
images from synthetic models. The images in figure 2 show the interpretations
for models of the Canadian and German flags, being matched to real images
containing targets for these models. The first image in each example shows the
target(scene) image. The second image shows the segmentation and hence graph
structure, and the third image shows the interpretation results when matched
to the corresponding synthetic model.

Note in each of these images the labelling is in complete agreement with
ground truth data by manual annotation. The other example in figure 2 shows
how the system is able to label quite complex model and scene images. The
example of the USA flag shows how the system again is able to label with 100%
accuracy the complex USA image in the presence of over segmentation errors.

In the previous example the model graph contains 15 nodes, and the scene
graph contains 76 nodes. Even with this complexity, the system completed the
match in 6.4 seconds of CPU time. The simple examples shown in figure 2 were
typically matched in 0.8 seconds of CPU time including feature extraction and
graph creation.

Retrieval performance can be evaluated by matching a given model to every
scene image in the database. For each match, the sum of the graph edit operation
costs is used as a similarity measure, from which the database can be ordered.
A diverse database containing approximately 4000 images from mixed sources
(including Internet, television and landscapes) was used as the experimental
testbed. Ground truth data was created by manually identifying a set of target
images T, for a given synthetic model m.

In order to calculate the system performance @Q.,, for a given model m,
effective rank is introduced. Effective rank R(I;;)) for a target image I;(;) € Ty,
is defined as the ranking of the target image I;(;) relative only to images which
are not themselves target images ( I, ¢ T,,). This scheme is intuitive since the
rank of a target should not be penalised by other targets with higher rank. The
Effective rank is only penalised by false retrievals which have a higher database
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Fig. 2. Labelling Examples Fig. 3. Retrieval Performance

rank than the target image. Based upon the effective rank R(/;(;)), a model
score 0 < @, < 1 is defined as

Q= 2 (25)
qmaz
Gm = Z (N =R(Lpy) +1) (26)
Li)€Tm
Nry,
maz = »_ (N —i+1) (27)
1=1

where N is the number of total images in the database and N7, is the total
number of target images for model m. This performance evaluation criterion
would yield a score of unity if all target images were ranked at the top of the
database.

The system has performed well for each synthetic model. On all synthetic
models, the average effective rank for the corresponding target images was always
within the top 10% (approximately) of the image database.

4 Conclusion

We have presented a system for contextual colour retrieval based on graph edit
operations and optimal graph search. Examples have demonstrated the perfor-
mance of this system when applied to image labelling and image retrieval. Since
the system uses only colour and adjacency information, it remains invariant to
scale and rotation.

The results show that the adopted methods performs well in both labelling
and retrieval domains. The method clearly outperforms our previous work [9].
The method is still exponential in the worst case, however the results show that
for small models, the problem is quite tractable.

Future work on this system may include the incorporation of other measure-
ments into the graph matching framework. This should improve the accuracy of
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labellings and the precision of retrieval. More measurement information would
also push back the computational boundary since the search process would be
better informed.
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