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Abstract. The Point Distribution Model (PDM) has been successfully
used in representing sets of static and moving images. A recent extension
to the PDM for moving objects, the temporal PDM, has been proposed.
This utilises quantities such as velocity and acceleration to more explic-
itly consider the characteristics of the movement and the sequencing of
the changes in shape that occur. This research aims to compare the two
types of model based on a series of arm movements, and to examine the
characteristics of both approaches.

1 Introduction

A number of computer vision techniques have been devised and successfully used
to model variations in shape in large sets of images. Such models are built from
the image data and are capable of characterising the significant features of a cor-
related set of images. One such model is the Point Distribution Model (PDM) [1]
which builds a deformable model of shape for a set of images based upon coor-
dinate data of features of the object in the image. This is then combined with
techniques such as the Active Shape Model [2] to fit the model to unseen images
which are similar to those of the training set.

The PDM has been used on both static and moving images. In [3], a B-
spline represents the shape of a walking person, and a Kalman filter is used in
association with the model for the tracking of the person. PDMs have also been
used in tracking people from moving camera platforms [1], again representing
the body with a B-spline and using the Condensation algorithm to achieve the
tracking. The movements of agricultural animals such as cows [5] and pigs [0]
have also been described by PDMs.

Reparameterisations of the PDM have also been achieved, such as the
Cartesian-Polar Hybrid PDM which adjusts its modelling for objects which may
pivot around an axis [7]. Active Appearance Models extend the PDM by includ-
ing the grey-level of the objects [8]. Other research has characterised the flock
movement of animals by adding parameters such as flock velocity and relative
positions of other moving objects in the scene to the PDM [9]. Finally purely
temporal PDMs have been used to classify arm motions [10].

The aim of this research is to compare and contrast the shape PDM with the
temporal PDM. The temporal PDM relies upon the sequencing of the object’s
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motion and how this movement can be modelled on frame by frame basis. The
basic shape model does not account for sequence and instead is constructed
purely from spatial coordinate data. By examining the performance of both
models with a classification problem, features unique to both models should
become apparent. This paper will describe the derivation of both the shape and
temporal models, the process used for classification and a set of experimental
results.

2 The Point Distribution Model

2.1 Standard Linear PDM

The construction of the PDM is based upon the shapes of images contained
within a training set of data [1]. Each shape is modelled as a set of n “land-
mark” points on the object represented by xy-coordinates. The points indicate
significant features of the shape and should be marked consistently across the
set of shapes to ensure proper modelling. Each shape is represented as a vector
of the form:

X = (Ilay17x25y27x37y35'"7xn7yn)T (1)

To derive proper statistics from the set of training shapes, the shapes are
aligned using a weighted least squares method in which all shapes are translated,
rotated and scaled to correspond with each other. This technique is based upon
Generalised Procrustes Analysis [11]. The mean shape X is calculated from the
set of aligned shapes, where Ny is the number of shapes in the training set:
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The difference dx; of each of the aligned shapes from the mean shape is taken
and the covariance matrix S derived:
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The modes of variation of the shape set are found from the derivation of the
unit eigenvectors, p;, of the matrix S:

Sp;, = \ip; (4)

The most significant modes of variation are represented by the eigenvectors
aligned with the largest eigenvalues. The total variation of the training set is
calculated from the sum of all eigenvalues with each eigenvalue representing a
fraction of that value. Therefore the minimal set of eigenvectors that will describe
a certain percentage (typically 95% or 99%) of the variation is chosen. Hence
any shape, x, in the training set can be estimated by the equation:
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x=X+Pb (5)

where P = (p1p2...Pm) I8 a matrix with columns containing the m most sig-
nificant eigenvectors, and b = (byby...b,,)7 is the set of linearly independent
weights associated with each eigenvector. For a shape x, b can thus be estimated:

b=PT(x-%) (6)

The set of weights may also be used as parameters to produce other shapes
which are possible within the range of variation described by the PDM. As the
variance of each b; is \;, the parameters would generally lie in the limits:

— 3V < b <3\ (7)

2.2 Modified PDM for Motion Components

While prior research has shown it is possible to use the standard PDM for con-
structing models based upon a temporal sequence of images, this paper instead
proposes a reparameterisation of the PDM. The modified version of the model
does not directly use image coordinates of the body but instead processes this
data and derives other measures for input.

To construct the PDM, a number of frames of the object in motion are taken,
and the boundary of the object extracted. A subset of n points is selected for
use in developing the model. The movement of the body from frame to frame
and the subsequent boundary extraction generates a new image for input and
processing. The temporal sequencing of the shapes and the relative movement
of the points on the shapes is what is then used to reparameterise the PDM.

To achieve this a set of three temporally adjacent frames is considered at
a time with the (z,y) movement of a point from the first to the second frame
being the vector v, and the movement from the second frame to the third be-
ing the vector v, as in Figure 1. These vectors are measured as the Euclidean
norm between the (z,y) coordinates of the points. From these vectors, the rel-
evant motion components and thus the input parameters for the PDM can be
calculated:

Vb
Va

Fig. 1. Frame triple and its vectors for modified PDM
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1. Angular velocity, A0 — the change in angle between the vectors, with
a counter-clockwise movement considered a positive angular velocity and a
clockwise movement a negative angular velocity.

2. Acceleration, a — the difference in the Euclidean norm between the vectors

[ ve I =1 va |l

Linear velocity, v — this is the norm of the second vector || v} ||.

4. Velocity ratio, » — the ratio of the second vector norm to the first vector
norm, || v || / || va ||- For a constantly accelerating body this measure will
remain constant.

®

These parameters are calculated for every one of the n points of the object
leading to a new vector representation for the PDM:

T
X = (Aelaalavla’rl; AQQ,CLQ,’UQ,TQ, RS Aan;an;vnvrn)

The user may also choose to focus on only one parameter for each point re-
ducing the vector size and complexity of the model. This process is repeated for
all triples of consecutive frames in the sequence. In this way information from
all N frames in the sequence is included, however this reduces the number of
temporal component shapes in the training set to be N — 2. After this repa-
rameterisation of the model, the PDM can be built in the standard way. This
characterisation encapsulates the temporal sequencing of the motion with the
changes in parameters modelled on a frame to frame basis. This differs from the
standard PDM which incorporates no temporal information in the model and
encodes only variations in shape.

3 Combining Models for Classification

3.1 Video Capture and Image Processing

Image preprocessing is performed in the same way for both the shape and tem-
poral models. The initial images are captured at a rate of 25 frames per second
via one video camera parallel to the movements. As the backgrounds of the ac-
tions are not complex, simple thresholding can be applied to segment the moving
object from the image yielding a binary image.

The binary images are then chaincoded to produce the boundary of the
object, which generally produces a boundary of a few hundred points. Both
models require a more minimal set of points for model building and hence a set
of n points from these boundary points is derived. In the first frame, the subset
of points is derived by choosing points from the initial boundary so the points are
spaced equally. Points are then chosen in the next frames by their correspondence
with points in previous frames as is typical when examining motion.

While more complex schemes are possible and could be utilised in the future,
correspondence is achieved in this research by examining a specific region on
the boundary of the object in the frame and choosing the point that is closest
in terms of Euclidean distance to the previously found point. A further check is
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incorporated by using Sobel edge detection on the region to check that the found
point shares the same orientation as the prior point. Experimentation demon-
strates that this scheme provides reasonable correspondences as the movement
between frames is not typically large and thus the likelihood of finding a suitable
match is increased.

3.2 Point Distribution Models

The above scheme yields a collection of N shapes in the form of (z,y) coor-
dinates. As described in prior research, these can be reparameterised into the
motion components for the modified PDM for all points on all images. In this
instance, as the motions were stable over time, the linear velocity parameter is
used to build the model. After reparameterisation, this gives vectors of this form
for each of the IV shapes:

t:(’Ul,’Ug,’Ug,...,Un)T ()

Standard shape PDMs also require (z,y)coordinate shapes for direct input
into the modelling process, in the form of the landmark points. In order to avoid
manual labelling these points or other time-consuming processes, the coordinate
shapes generated from the image processing phase were used as the landmark
points of the PDM. Again as the motions are relatively slow and constant, these
points should provide adequate input for the shape model. This yields vectors
of the form:

S = (xlaylax25y27x3ay37"'7xnayn)T (9)

After having derived the data for input, both versions of the PDM can be com-
puted in the standard way.

3.3 Movement Classification

To classify movements using both types of PDM, models are matched against
test sets of data (preprocessed into (z,y) shapes as described previously). These
data sets are not a part of the sequence from which the PDM was built, but are
taken from the same general sequences of motion and hence provide spatial and
temporal characteristics similar to those found in the models.

For the temporal PDM, the shapes are reparameterised into vectors of motion
components and then the model tracked against these vectors. This is achieved
through adjustment of the b values in order to determine the composition of
parameters that best match the temporal “shape”. The limits of these values
are set to lie within three standard deviations.

The Active Shape Model [2] is a standard iterative technique for fitting an
instance of a PDM model to an example shape. However, this research uses a
more general optimisation technique of the multidimensional version of Powell’s
method [12]. Tt will attempt to minimise the error between the required vector
and the vector predicted by the model, which will be measured for each vector
that is tracked. Any b values that do not fall within the specified limits are
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adjusted to fit and so the matching will restrict the predicted motion to fall
within the bounds of the PDM.

The shape PDM will also be tracked against a test set of vectors, in this
case the original (z,y) shapes derived from image processing. As these form a
reasonable approximation of the object’s shape, these will form a “ground truth”
and the model will attempt to adjust its parameters to match these new shapes.
As with the temporal model, errors will be measured as to the difference between
the actual and predicted shapes.

All data sets were matched against several models, one of which is part of
the overall sequence of the test data. For both model types, the model which
produced the lowest matching error at the end of the tracking phase would then
classify the test motion as being of same type of the model. Models built from
the same movement as the test set should ideally provide temporal and spatial
features similar to those of the unknown sequence and hence most accurately
match the motion. The characteristics of each model classification can then be
compared.

4 Experimental Results

4.1 Motions and Their Models

The sequences of motion consisted of six distinct arm movements repeatedly
performed by the same subject and using the same camera angle. These are
illustrated with diagrams in Figure 2. A few hundred representative frames of
each motion were captured, with the first 200 (or more) reserved for building
the PDMs. The last 200 frames of the sequences were reserved for the test data
sets. A boundary of 20 points was selected to build the temporal PDM and for
input into the shape PDM. Both models were trained to describe 95% of the
variation present in the training sets of data and b vector limits being +3c0. An
illustration of four of the modes of variation for the shape model of motion B is
shown in Figure 3 from the most significant mode to the least significant mode,
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Fig. 2. Six arm movements where each blob denotes a point of rotation. Arrows
show allowable movement
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Fig. 3. Four modes of variation for a shape model of motion B

with the middle shape being the mean figure and others representing the range
of variation present in each mode.

4.2 Model Classifications and Comparison

Both types of models can be examined separately for determining the lowest
match error and hence the classification of the motion. Ideally all test motions
should match with the prior model of their motions ie. all of the lowest errors
should take place at the end of the error graph sequence or equivalently on the
diagonal of the error matrix.

Figure 4 shows the progress of classification for both the temporal and spatial
models for a test set of motion D. For both model types, motion D has been
correctly matched to its motion model. However, it can be seen that deviations
from the correct model are more pronounced for the temporal model and hence
these models would seem to be more distinctive. It is also significant that the
temporal model provides greater consistency in its error measurements than the
shape model. As the criteria of classification is based upon choosing the model
with the lowest error at the end of the sequence, this would imply ending the

(a) Shape Model (b) Temporal Model

Fig. 4. Error plots for motion D



202 Ezra Tassone et al.

Table 1. Error matrix for temporal model

Data Models
A B C D E H

A 13.27] 4351 74.04 5459 217.89 145.99
B 96.28 62.85 40.68 320.27 279.02
¢ 424.77 93.55 67.18  235.62 130.03
D 20.97 7812 55.66 [17.31] 373.74 269.44
E 131.62 100.62 107.32 101.72 [24.88] 72.73
H 331.60 249.56 114.10 93.12 [68.40] [78.81]

sequence at a different point could result in an incorrect classification using the
shape model. In the error graphs of the shape model, model C is often very close
and intersecting with the errors of model D particularly in the latter stages of the
sequence. While model A is close to the error of D in the graphs of the temporal
model, D quickly establishes that it is the correct model with the lowest error.

The error matrix for the temporal model is shown in Table 1 and that for the
spatial model in Table 2. Only one misclassification occurs with the temporal
model, that of motion H being matched to E. No misclassifications occur with
the spatial model.

In this instance, the shape model has marginally outperformed by having
no classification errors. However, inspecting the error matrix for the temporal
model shows that model H provided the second lowest match error for the test
set of motion H and thus a completely correct classification was very close to
be attained. It may also be true that motion H (the “wave”) is a less distinctive
motion and hence difficult to classify temporally.

Examining the error matrices for both models, the matches provided by the
shape model generally have lower levels of error. This would suggest that it can
better capture the characteristics of certain types of motion. However is also
likely that the shape model is more sensitive to errors in correspondence and
segmentation ie. the placement of the landmark points.

Table 2. Error matrix for shape model

Data Models
A B C D E H

8.88| 28.00 11.77 1421 14.43 18.10

26.04 10.49 | 15.56 14.71 17.60  25.57

A
B
¢ 23.84  20.57 738 1441 11.03
D
E
H

33.54 2279 14.17 16.64  15.54
31.36  13.64 874  2.67 8.12
40.88  28.07 19.14 13.71 17.83
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The temporal model also has the advantage that restrictions on possible
model shapes are implicitly encoded into the model. The range of variation
that it provides ensures that only those transitions which were possible in the
original motions are able to be derived from the model. The shape model may
also place restrictions on the movement but these are put in place after the
model building and require further computation. Temporal PDMs may also be
more appropriate when dealing, for example, with motions with non-uniform
acceleration and velocity. A shape model will only consider the coordinate data
regardless of the movement and would produce the same model, whereas the
temporal PDM will be able to represent the velocities and accelerations in its
model.

5 Conclusion

This paper has presented a preliminary comparison of shape and temporal
PDMs. The performance of the models was similar, with only one misclassi-
fication for the temporal model and none for the shape model. The shape model
provided for lower match errors than the temporal model, although the tem-
poral models appear to be more discriminatory than the shape models. The
temporal PDM also provides temporal sequencing within the model itself rather
then having to be added as an additional constraint as in the case of the shape
model. This provides for it to better represent the changing movements of the
objects. The shape model would be unlikely to discriminate between two move-
ments done at different velocities or accelerations, but the temporal model can
cope with such data. Further work will use more of the other parameters of the
temporal model and also investigate combining the models for classification.
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