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Abstract. In this paper we describe a statistical framework for binocu-
lar disparity estimation. We use a bank of Gabor filters to compute mul-
tiscale phase signatures at detected feature points. Using a von Mises
distribution, we calculate correspondence probabilities for the feature
points in different images using the phase differences at different scales.
The disparity map is computed using the set of maximum likelihood
correspondences.

1 Introduction and Motivation

For many species with frontally located eyes including humans, binocular dis-
parity provides a powerful and highly quantitative cue to depth. For primates, it
has been shown that different neurons in a number of visual cortical areas signal
distinct ranges of binocular disparities [1,2,3,4]. This observation has lead to the
use of Gabor filters to model the phase differences for the receptive fields and
to act as disparity decoders. However, although promissing this Gabor model of
complex cell responses has a number of shortcomings. First, a phase selective
complex cell model can not uniquely signal a given retinal disparity. Second,
they can not signal disparities beyond the quarter cycle limit of the input. Qian
[12,13,14] has improved the complex cell model so that it can uniquely signal
definite disparities. Furthermore, the experimental data of Anzai et. al. suggest
that there may be a possibility of positional differences in disparity encoding
[1]. Complex Gabor filters have also been used for finding disparity from the
region-based phase differences between the left and right images [15]. Potential
problems with the use of phase as a disparity encoder have been identified by
Jenkin and Jepson [6,7,8]. If the stereo images are subjected to affine image
deformations such as scaling or shifting with respect to one-another, at certain
locations phase may not be stable through scale. Since there is extensive physio-
logical and psychophysical evidence which indicates the frequency selectivity of
cortical receptive fields, many algorithms incorporate spatial filters of multiple
scale or size to model the shift in peak spatial frequency. For instance, Pollard
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et. al. refine stereo correspondences by checking their behaviour through scale
[11]. Sanger combines disparities at different scales using a weighting method
[15]. Fleet simply sums the energy responses at different scales [5], Qian has a
simple method which averages over different scales [12]. Marr et. al argue for a
coarse to fine search procedure [10].

The observation underpinning this paper is that there is considerable scope
for combining multiscale phase information to improve the estimation of dispar-
ity. Our approach is as follows: We commence from feature points detected using
the method of Ludtke, Wilson and Hancock [9]. Next, a phase vector is calculated
for each feature point. Correspondences are estimated using the similarity of ori-
entation and phase at multiple scales. In this way we avoid the singular points
encountered in the method of Jenkin and Jepson [6]. After calculating disparity
from the positional difference between corresponding points, fine-tuning is per-
formed using the phase difference information. This is done using a probabilistic
model based on a von Mises distribution for the phase difference. The outline
of the paper is follows. Extraction of features and their usage is explained in
Section 2. In Section 3 we discuss the use of multiple scales for correspondence.
The probabilistic phase difference model is explained in Section 4. In section 5
the results are discussed.

2 Extraction of Features Used
in the Correspondence Algorithm

Gabor filters are well known models of simple cells:
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where σx, σy express width of 2D Gaussian envelope along x and y direction,
ω0 is the spatial frequency and θ gives the orientation in space. Experiments
show that adjacent simple cells have the same orientation and spatial frequency,
but are in quadrature pairs (i.e. they differ in spatial phase by 90◦) [4]. Thus a
simple cell pair can be expressed by a complex Gabor filter:
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(3)

In this paper we use a bank of 8 complex Gabor filters of different orientation.
From the output of the filter-bank, we compute a population vector [9]:

p(x, y) =
[
px(x, y)
py(x, y)

]
=

n∑
i=1

G(x, y, ω0, θi)ei (4)
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where (x,y) is the position of the pixel in the image, n is the number of different
orientation states, G(x, y, ω0, θi) is the response (energy) of a quadrature pair
of Gabor filters with orientation θi and ei = (cos θi, sin θi)T is the unit vector
in the direction θi. Here, the population vector is the vector sum of the n=8
filter response vectors and the resultant orientation is given by θpop(x, y) =
arctan[py(x, y)/px(x, y)]. When compared to the tuning width of a single Gabor
filter, the orientation estimate returned by the population vector is very accurate
even though a relatively limited number of filters is used.

In our study, the feature points used for correspondence analysis are the
locations where the length of population vector is locally maximum (see [9] for
details). These points are located on object boundaries. In Figure 1a,b we show
stereo images with numbered feature points on right image. Figure 1c,d shows
the feature points from the images with the estimated orientation encoded as a
grey-level.
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Fig. 1. (a) Right image of the stereo pair. (b)Left image of the stereo pair.
(c) Feature points for right image. (d) Feature points for left image
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3 Finding Corresponding Pairs and Disparity
Using Multi-phase

The attributes used for the correspondence matching of feature points are ori-
entation and phase. It is well known that phase based methods for disparity
estimation are successful except in the neighbourhood of singularities [6]. In
particular phase is stable with respect to geometric deformations and contrast
variations between the left and right stereo views. In this paper, disparity is esti-
mated from the region-based phase differences between the left and right images.
Our estimate is obtained by first filtering the raw image data with a complex
Gabor filter and computing the quantity

φw(x, y) = arctan
[
Gsin(x, y, w0, θ)
Gcos(x, y, w0, θ)

]
(5)

where Gcos(x, y, w0, θ) and Gsin(x, y, w0, θ) are the cosine-phase and sine-phase
filter responses of the image. We use the phase measurements for Gabor filters
of different width, i.e. different scales, to locate correspondences. We use three
filters each separated by one octave. The width of the narrowest filter is 6 pixels.
For each feature point at the right image, we search over a window for feature
points of similar orientation and phase in the left image. Let Φi = (φ1, φ2, φ3)T

be a vector of phase estimates obtained using the three filters. We measure the
similarity of the phase-vectors by weighting the different components using the
method described by Sanger [15]. Let C be the weighting matrix. The candidate j
which has the closest weighted phase to the feature point i is the one that
satisfies the condition j = arg

{
min{ΦiC

−1ΦT
j }

}
. The disparity is the distance

between corresponding feature points. In performing this, position shift between
the receptive fields of binocular disparity selective cells are mimicked [4].

The matching algorithm explained above is cross checked for left-right corre-
spondences and righ-left correspondences. In this way we may discard occluded
feature points. For the stereo shown in Figure 1a,b we find correspondences for
537 of the 980 feature points in the right-hand image (Figure 1b). The final dis-
parity values are displayed as gray scale values in Figure 2a and height plot in
Figure 2b. Also in Figure 3 three main depth layers are shown separately. Out
of the 537 matched feature points only 62 are in error, hence the succes rate is
90%. Most of the errors are for feature points having a population vector orien-
tation in the disparity direction. In order to obtain subpixel accuracy, a phase
shift model of binocular cell receptive fields can be used [4]. Here, the subpixel
disparity is calculated from the interocular phase differences for between corre-
sponding points using the quantity ∆d = φijλ

2π , where ∆d is the fine tuning in
disparity, φij = φi −φj is the measured phase difference, i and j are the left and
the right feature point indenties respectively. In this way, the rough disparity
estimate found by using only the position shift model is tuned by the phase shift
model. As an example, the rough disparities on the edge-segment numbered 12
in Figure 1a shows a stair shaped structure (see Figure 2c top plot (*)). After
fine tuning, the disparity varies more smoothly (see Figure 2c top plot (line)).
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Fig. 2. (a),(b) Disparity. (c)Fine tuning result. Top: Coarse disparity (*), and
fine disparity (line). Middle: Subpixel disparity. Bottom: Phase difference
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Fig. 4. Left: right images; Right: disparities

Disparity results for other image pairs are shown in Figure 4. Although the
shapes in the images have very different characteristics, the results are still sat-
isfactory.

4 Probabilistic Model of the Disparity Algorithm

After finding correspondences and computing the associated disparities, we refine
the correspondences using a probabilistic model for the distribution of phase
differences. This model is based on the assumption that the measured phase
follows the von Mises distribution:

p(φij |κ, µ) = 1
2πI0(κ)

exp [κ cos(φij − µ)] (6)

where the distribution width or standard deviation is κ, the mean is µ and I0
is the zero order Bessel function. For each scale, we fit a mixture of von Mises
distributions to the measured phase differences. We use the EM algorithm to
estimate the parameters of the mixture components κw and µw. At iteration
n + 1 of the algorithm the expected log likelihood functions for the estimation
process is

Q =
N∑

i=1

N∑
j=1

W∑
w=1

P (w|φi,j , κ
(n)
w , µ

(n)
w ) ln p(φij |κ(n+1)

w , µ(n+1)
w )P (w) (7)

whereN is the total number of phase difference measurements, andW is the total
number of von Mises distributions in the mixture model. In the E or expectation
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Fig. 5. Von Mises distributions fitted at three of the scales

step we compute the updated a posteriori probabilities

P (w|φi,j , κ
(n)
w , µ

(n)
w ) = P (n)

i,j (w) = 1/N
N∑
ij

p(φi,j |κ(n)
w , µ

(n)
w ) (8)

In the M-step, the distribution means are given by

µ(n+1)
w = 1/2 arctan

[∑N
i,j P

(n)
i,j (w) sin(2φij)∑N

ij P
(n)
i,j (w) cos(2φij)

]
(9)

The distribution widths are more difficult to obtain, and involve computing the
quantity

R =
I1(κ

(n+1)
w )

I0(κ
(n+1)
w )

=

∑N
ij p(κ

(n)
w , µ

(n)
w |φij) cos(2(φij − µ(n)

w ))

p(κ(n)
w , µ

(n)
w |φij)

(10)

For small values of R κ(n+1)
w � (1/6)R(12 + 6R2 + 5R4) while when R is large

κ
(n+1)
w � 1/(2(1−R)− (1−R2)− (1−R3)). The result of fitting the von Mises

mixture at different scales is shown in Figure 5.
With the parameters of the mixture model to hand, we can estimate corre-

spondence probabilities from the phase differences. The correspondence proba-
bilities are taken to be a posteriori probability of the mixture with the smallest
mean µmin at convergence of the EM algorithm. Suppose that Ss

i,j is the a pos-
teriori correspondence probability for scale s. The overall correspondence prob-
ability is the product of correspondence probabilities computed at the different
scales, i.e. qi,j =

∏3
s=1 S

s
i,j . The correspondences are taken so as to maximise qi,j .

Applying the correspondences located in this way the computed disparities
were very similar to those found using the method described in the previous sec-
tion. The main differences are at horizontal edges as can be seen in the Figure 6.

5 Conclusion

We have presented a stereo correspondence method which is motivated by phys-
iological and biological information. To do this we have modelled visual cortex
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cell receptive fields using Gabor functions. Hypercolumns are encoded using
population vectors. Thus, instead of calculating disparities using oriented Gabor
filters and pooling the results over different orientations, a single orientation for
each feature is obtained prior to disparity computation. The population vector
estimate of stimulus orientation found using this method is very accurate given
the small number of filters used. Although the feature points are sparse, since
they are the points of high contrast edges that define the bounding contours of
objects, they still prove to be informative. Correspondences between similarly
oriented feature points are located using the phase information. This idea is also
biologically grounded. The reason for this is that simple binocular cells occur
in pairs that are in quadrature phase. Also, phase is sensitive to spatial differ-
ences, and hence it provides fine image detail which is helpful in discriminating
neighbouring image regions. Phase is also robust to small scale differences. Un-
fortunately, there are image locations where phase is singular and can not be
reliably used. In this study, by performing phase comparisons at multiple scales
and by using confidence information we overcome these difficulties. We use the
confidence weighting to augment phase information with information concerning
the magnitude of the population vector to improve the correspondence method.
Our use of multiple scales is also biologically plausable. The reason for this is
that disparity encoding binocular cells are sensitive to different spatial wave-
lengths. We explore two routes to locating feature-point correspondences. Using
the position shift model, rough disparity values are obtained and a large range
of disparities can be calculated, but to a limited accuracy. Using the phase shift
model, fine tuning is performed without encountering the quarter cycle limit.
This tuning scheme also allows a continium of disparity estimates to be ob-
tained. The algorithm proves to be effective for textureless images, especially
at depth boundaries. The next step is to use the computed disparity values for
surface reconstruction.
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