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Abstract. In statistical pattern recognition, the parameters of distri-
butions are usually estimated from training sample vectors. However,
estimated parameters contain estimation errors, and the errors cause
bad influence on recognition performance when the sample size is not
sufficient. Some methods can obtain better estimates of the eigenval-
ues of the true covariance matrix and can avoid bad influences caused
by estimation errors of eigenvalues. However, estimation errors of eigen-
vectors of covariance matrix have not been considered enough. In this
paper, we consider estimation errors of eigenvectors and show the errors
can be regarded as estimation errors of eigenvalues. Then, we present
a method to estimate the true Mahalanobis distance from eigenvectors
of the sample covariance matrix. Recognition experiments show that by
applying the proposed method, the true Mahalanobis distance can be es-
timated even if the sample size is small, and better recognition accuracy
is achieved. The proposed method is useful for the practical applications
of pattern recognition since the proposed method is effective without any
hyper-parameters.

1 Introduction

In statistical pattern recognition, the Bayesian decision theory gives a decision
to minimize the misclassification probability as long as the true distributions
are given. However, the true distributions are unknown in most practical situ-
ations. The forms of the distributions are often assumed to be normal and the
parameters of the distributions are estimated from the training sample vectors.
It is well known that the estimated parameters contain estimation errors and
the errors cause bad influence on recognition performance when there are not
enough training sample vectors.

To avoid bad influence caused by estimation errors of eigenvalues, there are
some methods to obtain better estimates of the true eigenvalues. Sakai et al. [1,2]
proposed a method to rectify the sample eigenvalues (the eigenvalues of the
sample covariance matrix), which is called RQDF. James and Stein indicated
that the conventional sample covariance matrix is not admissible (which means
there are some better estimators). They proposed an improved estimator of the
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sample covariance matrix (James-Stein estimator) [3] by modifying the sample
eigenvalues.

However, estimation errors of eigenvectors of covariance matrix have not
been considered enough and still an important problem. In this paper, we aim
to achieve high-performance pattern recognition without many training samples
and any hyper-parameters. We present a method to estimate the true Maha-
lanobis distance from the sample eigenvectors. First of all, we show the error
of the Mahalanobis distance caused by estimation errors of eigenvectors can
be regarded as the errors of eigenvalues. Then, we introduce a procedure for
estimating the true Mahalanobis distance by deriving the probability density
function of estimation errors of eigenvectors. The proposed method consists of
two-stage modification of the sample eigenvalues. At the first stage, estimation
errors of eigenvalues are corrected using an existing method. At the second stage,
the corrected eigenvalues are modified to compensate estimation errors of eigen-
vectors. The effectiveness of the proposed method is confirmed by recognition
experiments. This paper is based on the intuitive sketch [4] and formulated with
statistical and computational approaches.

2 A Method to Estimate the True Mahalanobis Distance

2.1 The Eigenvalues to Compensate Estimation Errors
of Eigenvectors

If all the true parameters of the distribution are known, the true Mahalanobis
distance is obtained. Let @ be an unknown input vector, g be the true mean
vector, A = diag (A, N\a,...,\q) and & = (qbl ¢y - d)d), where \; and ¢,
are the ith eigenvalue and eigenvector of the true covariance matrix. All the
eigenvalues are assumed to be ordered in the descending order in this paper.
The true Mahalanobis distance is given as

d(@) = (@ — p)" P48 (2 — p). (1)

In general, the true eigenvectors are unknown and only the sample eigenvectors
{qu} are obtained. Let & = (q?)l Cz’z e J)d). The Mahalanobis distance using &
is

d(@) = (@ — p)"BA'S (x — p). (2)

Of course, d(z) and d(z) differ. Now, let & = &® be estimation error matriz
of eigenvectors. Since both @ and @ are orthonormal matrices, ¥ is also an
orthonormal matrix. Substituting @ = ¥ into Eq. (2), we obtain

d(z) = (x — p)"® (@A@T)_l T (z — ). (3)

N
Comparing Eq. (3) and Eq. (1), (WAWT) in Eq. (3) corresponds to A™! (the

true eigenvalues) in Eq. (1). If we can ignore the non-orthogonal elements of
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.y —1
(!PA!I/T) , the error of the Mahalanobis distance caused by the estimation

errors of eigenvectors will be regarded as the errors of eigenvalues. This means
that even if eigenvectors have estimation errors, we can estimate the true Ma-
halanobis distance using certain eigenvalues. Now, let A be a diagonal matrix

—1 _
which satisfies A™! ~ (!PA!I/ ) . Namely, A is defined as
A=D (@T/@) : (4)

where D is a function which returns diagonal elements of the matrix. A is the
eigenvalues which compensate estimation errors of eigenvectors. The justification

of ignoring the non-diagonal elements of !f/TA!fl is confirmed by the experiment
in Sect. 3.1.

A is defined by the true eigenvalues (A) and estimation errors of eigenvectors
(). ¥ is defined by using the true eigenvectors (). Since we assume that &
are unknown, we can not observe ¥. However, we can observe the probability
density function of ¥ because the probability density function of ¥ depends
only on the dimensionality of feature vectors, sample size, the true eigenvalues
and the sample eigenvalues, and does not depend on the true eigenvectors (See
Appendix). Therefore, the expectation of ¥ is observable even if the true eigen-
vectors are unknown. Let & be random estimation error matrix of eigenvectors.
Eq. (4) is rewritten as

A=D (" a), (5)

where A is a diagonal matrix of the random variables representing the eigenvalues
for the compensation.
The conditional expectation of Eq. (5) given A is calculated as

‘A}:E[D(qﬁm)
(i [#" a0

where /i: = diag (5\1, /:\2, cey /:\d). The ith diagonal element of Eq. (6) is

X:E[

A
A)). (6)

By {di} (")

Jj=

zd:E [{¢az}2

Jj=1

=

[
—~
oo
N

Letting

{@ji}Q =E {{153‘1'}2

/i} , (9)
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we obtain

W=y {3} N (10)

j=1

2.2 Calculation of Eq. (10)

We show a way to calculate Eq. (10). We will begin by generalizing the con-
ditional expectation of Eq. (9). Let f(¥) be an arbitrary function of ¥. The
integral representation of the conditional expectation of f(¥) is given as

’A / F(B)P(B|A)dd (11)

where P(!Il|/i) is the probability density function of estimation errors of eigen-
vectors. Obtaining exact value of P(¥|A) is difficult especially for large d. In
this paper, Eq. (11) is estimated by Conditional Monte Carlo Method [5]. By

, . 2 - 2
assuming f(¥) = {wji} in Eq. (11), {wji} of Eq. (9) is obtained. Therefore,

we can calculate ); in Eq. (10).
To carry out Conditional Monte Carlo Method, we deform the right side
of Eq. (11). For the preparation of the deformation, let X' be a random sym-

-, . ;s 2T
metric matrix and A be a random diagonal matrix that satisfies X = WA¥ .
Since the probability density function of estimation errors of eigenvectors (¥)
is independent of the true eigenvectors (@), & = I is assumed without loss of

generality, and b = v immediately. Therefore, > = @A@T Hence the prob-
ability density of X' is given as the Wishart distribution (See Appendix). We

have P(X) = P(!I/A!I/T) = P(¥,A)J(@, A), where Jacobian J(&, A) = d'di'g’i.

We also have P(!I//i!I/T) P&, A)J (¥, A) since A is a reahzatlon of random
variable A. Let g(A) be an arbitrary function and G = Ji9 (A)dA.
Based on the preparation above, the right side of Eq. (11) can be deformed

/f P(&|A)dd
:/W‘f(w'

as

4) { /A g(mm] i
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= /W XAf( Pg/’{;)%dw’m

:P(lji)/z‘f(sfl)wo(z,/i)P(Z)dE, (12)
where

wo(z,;/i)zp(w’/if) I, 4) g(4) (13)

J(&,A) pgAs") G
Eq. (12) means that the expectation of f( !P) with probablhty density P(¥|A)
is the same as the expectation of f(¥)wo(3; A)=1= 50A) with probability density
P(Z’). Therefore, Eq. (11) can be calculated using the random vectors following
normal distribution. By substituting Eq. (19) and Eq. (20) into Eq. (13), we
have

“ R R B s AT
(% A) |A|z(n—P=2) qu(/\i — );) exp (—"Tl tr AT U AP )g(/f)
wo 2, = - 7 2 , .

AP E=r=2 T (5 = X)) exp (-2 or A‘lzl'lA!I/T) G

(14)

Since calculating P(A) is hard, though the formula of P(A) is known, we show
an another approach to obtain P(A). When f(¥) = 1 is assumed in Eq. (12),

A) S wol( (X; A)P(X)dX = 1. Then, we obtain a calculatable solution

P(A) = /2w0(2';ﬁ)P(2‘)d2’. (15)

, ;Y2
Let us assume f(¥) = {wﬁ} . Since Eq. (12) is the right side of Eq. (9),

- N2
by substituting Eq. (15) into Eq. (12), Eq. (9) is obtained as {wﬁ} =
S {5} wo(3,A)P(£)dE
s wo(Z;A)P(X)dY
nominator with the averages of X',k =1, ... t, and erasing % of both numerator
and denominator, we obtain

. By replacing the integrals of both numerator and de-

() Sy (e} oAby A)
i = )

p ——T (16)
> ke wo(PrAYy; A)

where lI/k is the eigenvectors of Ek and 1/)ka is the ji element of lI/k
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Algorithm 1 Estimation of by

1: Create nt sample vectors X1, ..., X ¢+ that follows normal distribution N(O, /{) by
using random numbers.
for k=1tot do
Estimate the sample covariance matrix > from Xn(h—1)41s -+ s Xnk.
Obtain the eigenvalues Ak and the eigenvectors Wk of Z"k
end for

- N2
Calculate {!I/JZ} in Eq. (16).
Calculate 5\1 in Eq. (10)

From the discussion above, we have an algorithm to estimate ); in Eq. (10).
The algorithm is shown in Algorithm 1. n is the available sample size for train-
ing and A is the matrix which represents the true eigenvalues or the corrected
eigenvalues by an existing method for correcting estimation errors of eigenvalues.
g(Ay) = 1 in this paper.

2.3 Procedure for Estimating the True Mahalanobis Distance from
the Sample Eigenvectors

When n sample vectors are available for training, we can estimate the true
Mahalanobis distance by the following procedure.

1. The sample eigenvalues (/i) and the sample eigenvectors (ii) are calculated
from available n sample vectors.

2. The estimation errors of the sample eigenvalues are corrected by an existing
method, e.g. Sakai’s method [1,2] or James-Stein estimator [3].

3.\ is calculated by Algorithm 1.

4. Use \; as eigenvalue with the sample eigenvectors for recognition.

3 Performance Evaluation of the Proposed Method

3.1 Estimated Mahalanobis Distance

The first experiment was performed to confirm that the proposed method has
the ability to estimate the true Mahalanobis distance correctly from the sample
eigenvectors. To show the ability, ¢;;, e;; and p;; were calculated. ¢;; is the true
Mahalanobis distance between the jth input vector of class i and the true mean
vector of the class to which the input vector belongs. e;; was the calculated
Mahalanobis distance from the true mean vectors, the true eigenvalues and the
sample eigenvectors. p;; was the one from the true mean vectors, the eigenvalues
modified by the proposed method and the sample eigenvectors. Then, the average

ratios of the Mahalanobis distances to the true ones ro = =37, Zj‘:1 L
ij
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Fig. 1. The average ratios of the Mahalanobis distances

and rp = =300 D0, It”j were compared, where ¢ was the number of classes
and s was the number of samples for testing. Here, ¢ = 10 and s = 1000.

The experiments were performed on artificial feature vectors. The vectors
of class i followed normal distribution N(p,, X;). p; and X; were calculated
from feature vectors of actual character samples. The feature vectors of actual
character samples were created as follows: The character images of digit samples
in NIST Special Database 19 [6] were normalized nonlinearly [7] to fit in a 64 x 64
square, and 196-dimensional Directional Element Features [3] were extracted.
The digit samples were sorted by class, and shuffled within the class in advance.
p; and X; of class ¢ were calculated from 36,000 feature vectors of the actual
character samples of class 1.

The parameter ¢ of Algorithm 1 was 10,000. The average ratios of the Ma-
halanobis distances are shown in Fig. 1. . are far larger than one for small
sample sizes. However, r, are almost one for all sample sizes. This means the
true Mahalanobis distance is precisely estimated by the proposed method. More-

over, it shows the justification of the approximation of ignoring the non-diagonal
~T  ~
elements of ¥ AW described in Sect. 2.

3.2 Recognition Accuracy

The second experiment was carried out to confirm the effectiveness of the Ma-
halanobis distance estimated by the proposed method as a classifier. Charac-
ter recognition experiments were performed by using three kinds of dictionar-
ies “Control,” “True eigenvalue” and “Proposed method.” The dictionaries had
common sample mean vectors, common sample eigenvectors and different eigen-
values. “Control” had the sample eigenvalues, “True eigenvalue” had the true
eigenvalues, and “Proposed method” had the eigenvalues modified by the pro-
posed method. The recognition rates of the dictionaries were compared.

The experiments were performed on the feature vectors of actual character
samples and the artificial feature vectors described in Sect. 3.1. Since the true
eigenvalues are not available for feature vectors of actual character samples,
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Fig. 2. The recognition rates. (a)On the use of the feature vectors of actual
character samples. (b)On the use of the artificial feature vectors

the eigenvalues corrected by Sakai’s method [1,2] were used in place of the true
eigenvalues. The parameter ¢ of Algorithm 1 was 10,000. 1,000 samples were used
for testing. The recognition rates of the experiment on the use of feature vectors
of actual character samples and artificial feature vectors are shown in Fig.2(a)
and Fig.2(b) respectively. Both of the figures show that the recognition rate
of “Proposed method” is higher than that of “True eigenvalue.” Therefore, the
effectiveness of the proposed method is confirmed. Although the feature vectors
of actual character samples does not follow normal distribution, the proposed
method is effective. When the number of training samples is small, the difference
between the recognition rates of “True eigenvalue” and “Proposed method” is
large. The difference decreases as the sample size increases. This seems to depend
on the amount of estimation errors of eigenvectors. The figures also show that
the recognition rate of “Irue eigenvalue” is higher than that of “Control.”

4 Conclusion

In this paper, we aimed to achieve high-performance pattern recognition without
many training samples. We presented a method to estimate the true Mahalanobis
distance from the sample eigenvectors. Recognition experiments show that the
proposed method has the ability to estimate the true Mahalanobis distance even
if the sample size is small. The eigenvalues modified by the proposed method
achieve better recognition rate than the true eigenvalues. The proposed method
is useful for the practical applications of pattern recognition since the proposed
method is effective without any hyper-parameters, especially when the sample
size is small.
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A Probability Density Function of Estimation Errors
of Eigenvectors

Let the d-dimensional column vectors X, X, ..., X,, be random sample vec-
tors from normal distribution N(0, X'). The distribution of the random matrix
W =37 X:X] is the Wishart distribution W 4(n, X). The probability den-
sity function of W' is

v(d,n)|W| 3(n—d-1)

PWI®) = ST

exp (—%trZ'_lW) , (17)

1
1 1 .
Qéndﬂ_zd(d—l) H?:l F[%(HJ’»lii)]

Let X = L3 (X — ) (X — £)" be the sample covariance matrix

where v(d,n) =

and 1 = % -1, X be the sample mean vector. The distribution of X is given

as Wa(n — 1, =25 %) and the probability density function is as follows [J]:

s

b))

s

3(n—d-2) exp (—"T_l tr 2712")
P(XY .

) = (n—1)FDdy(d n — 1) BEG
A

(18)
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X and ¥ are decomposed into #AST and $Aid" = PG AT & Eq. (18)
is deformed as
P(@GAG T BAST) = (n — 1)5 ("~ Viy(d,n — 1)
|A|z("=d=2) exp (—"T_l tr A_l!l—;/i!l—}T)

|A]z(n=1) (19)

Since the right side of Eq. (19) is independent of @, the left side of Eq. (19) is

, . .T , LT
simplified as P(WAW¥ |A), and denoted as P($ A¥ ) by omitting the condition.
Finally, the probability density function of estimation errors of eigenvectors

., PR P , ,
are given as P(¥|A) = Pl(;f/’{)‘) = P?%f(;/)i)’ where Jacobian J(¥,A) is as
follows [9]:

d 1 .

, - I'|5(d+1- 1
T, 4) = = d[zllg(dﬂ) Zﬂ d /S (N (20)
2¢ma Hi<j ()\1 - )‘J)
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