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Abstract. Linear discriminant analysis (LDA) is a traditional solution
to the linear dimension reduction (LDR) problem, which is based on the
maximization of the between-class scatter over the within-class scatter.
This solution is incapable of dealing with heteroscedastic data in a proper
way, because of the implicit assumption that the covariance matrices for
all the classes are equal. Hence, discriminatory information in the differ-
ence between the covariance matrices is not used and, as a consequence,
we can only reduce the data to a single dimension in the two-class case.
We propose a fast non-iterative eigenvector-based LDR technique for
heteroscedastic two-class data, which generalizes, and improves upon
LDA by dealing with the aforementioned problem. For this purpose,
we use the concept of directed distance matrices, which generalizes the
between-class covariance matrix such that it captures the differences in
(co)variances.

1 Introduction

Probably the most well-known approach to supervised linear dimension reduc-
tion (LDR), or feature extraction, is linear discriminant analysis (LDA). This
traditional and simple technique was developed by Fisher [6] for the two-class
case, and extended by Rao [16] to handle the multi-class case. In LDA, a d × n
transformation matrix that maximizes the Fisher criterion is determined. This
criterion gives, for a certain linear transformation, a measure of the between-
class scatter over the within-class scatter (cf. [7,9]). An attractive feature of
LDA is the fast and easy way to determine this optimal linear transformation,
merely requiring simple matrix arithmetics like addition, multiplication, and
eigenvalue decomposition. A limitation of LDA is its incapability of dealing with
heteroscedastic data, i.e., data in which classes do not have equal covariance
matrices.

This paper focusses on the generalization of the Fisher criterion to the het-
eroscedastic case in order to come to heteroscedastic linear dimension reduction
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(HLDR). We restrict our attention to two-class data, e.g. where pattern classes
can typically be divided into good or bad, 0 or 1, benign or malignant, on or off,
foreground or background, yin or yang, etc. With this kind of data the limita-
tion of LDA is very obvious: A reduction to only a single dimension is possible
(cf. [7]).

Our generalization takes into account the discriminatory information that is
present in the difference of the covariance matrices. This is done by means of di-
rected distance matrices (DDMs) [12], which are generalizations of the between-
class covariance matrix. This between-class covariance matrix, as used in LDA,
merely takes into account the discriminatory information that is present in the
differences between class means and can be associated with the Euclidean dis-
tance.

The specific heteroscedastic generalization of the Fisher criterion, we study
more closely in Section 2, is based on the Chernoff distance [2,3]. This mea-
sure of affinity of two densities considers mean differences as well as covariance
differences—as opposed to the Euclidean distance—and can be used to extend
LDA, while retaining the attractive feature of fast and easily determining a di-
mension reducing transformation. Furthermore, we are able to reduce the data
to any dimension d smaller than n and not only to a single dimension. We call
our HLDR criterion the Chernoff criterion.

Several alternative approaches to HLDR are known, of which we mention the
following ones. See also [14].

In the two-class case, under the assumptions that both classes are normally
distributed and that one wants a reduction to one dimension, Kazakos [10] re-
duces the LDR problem to a one-dimensional search problem. Finding the opti-
mal solution for this search problem, is equivalent to finding the optimal linear
feature. The work of Kazakos is closely related to [1].

Three other HLDR approaches for two-class problems, that generalize upon
Fisher, were proposed in [13], [4], and [5], of which the latter is also applicable in
the multi-class case. [13] uses scatter measures different to the one used in LDA.
In [4] and [5] the criterions to be optimized utilize the Bhattacharyya distance
(cf. [7]) and the Kullback divergence, respectively. The drawback of these cri-
teria is that the maximization of them needs complex or iterative optimization
procedures.

Another iterative multi-class HLDR procedure, which is based on a maxi-
mum likelihood formulation of LDA, is studied in [11]. Here LDA is generalized
by dropping the assumption that all classes have equal within-class covariance
matrices, and maximizing the likelihood for this model.

A fast HLDR method based on a singular value decomposition (svd) was de-
veloped in [19] by Tubbs et al. We discuss this method in more detail in Section 3,
where we also compare our non-iterative method to theirs. The comparison is
done on three artificial and seven real-world data sets.

Section 4 presents the discussion and the conclusions.



510 M. Loog and R. P. W. Duin

2 From Fisher to Chernoff

2.1 The Fisher Criterion

LDR is concerned with the search for a linear transformation that reduces the
dimension of a given n-dimensional statistical model to d (d < n) dimensions,
while maximally preserving the discriminatory information for the several classes
within the model. Due to the complexity of utilizing the Bayes error as the cri-
terion to optimize, one resorts to suboptimal criteria. LDA is such a suboptimal
approach. It determines a linear mapping L, a d × n-matrix, that maximizes the
so-called Fisher criterion JF [7,9,12,13,16]:

JF(A) = tr((ASW At)−1(ASBAt)) . (1)

Here SB :=
∑K

i=1 pi(mi − m̄)(mi − m̄)T and SW :=
∑K

i=1 piSi are the between-
class and the average within-class scatter matrix, respectively; K is the number
of classes, mi is the mean vector of class i, pi is its a priori probability, and the
overall mean m̄ equals

∑K
i=1 pimi. Furthermore, Si is the within-class covariance

matrix of class i.
From Equation (1) we see that LDA maximizes the ratio of between-class

scatter to average within-class scatter in the lower-dimensional space.
Our focus is on the two-class case, in which case we have SB = (m1 −

m2)(m1−m2)t [7,12], SW = p1S1+p2S2, and p1 = 1−p2. Optimizing (1) comes
down to determining an eigenvalue decomposition of S−1

W SB, and taking the rows
of L to equal the d eigenvectors corresponding to the d largest eigenvalues [7].

Note that the rank of SB is 1 in the two-class case, assuming unequal class
means, and so we can only reduce the dimension to 1: According to the Fisher
criterion there is no discriminatory information in the features, apart from this
single dimension.

2.2 Directed Distance Matrices

We now turn to the concept of directed distance matrices (DDMs) [12], by which
means, we are able to generalize LDA in a proper way.

Assume that the data is linearly transformed such that the within-class co-
variance matrix SW equals the identity matrix, then JF(A) equals tr((AAt)−1

(A(m1 −m2)(m1 − m2)tAt)), which is maximized by taking the eigenvector v
associated with the largest eigenvalue λ of the matrix (m1−m2)(m1−m2)t. As
pointed out earlier, this matrix has only one nonzero eigenvalue and we can show
that v = m1−m2 and λ = tr((m1 −m2)(m1 −m2)t) = (m1 −m2)t(m1 −m2).
The latter equals the squared Euclidean distance between the two class means,
which we denote by ∂E .

The matrix (m1 − m2)(m1 − m2)t, which we call SE from now on, not
only gives us the distance between two distributions, but it also provides the
direction, by means of the eigenvectors, in which this specific distance can be
found. As a matter of a fact, if both classes are normally distributed and have
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equal covariance matrix, there is only distance between them in the direction v
and this distance equals λ. All other eigenvectors have eigenvalue 0, indicating
that there is no distance between the two classes in these directions. Indeed,
reducing the dimension using one of these latter eigenvectors results in a complete
overlap of the classes: There is no discriminatory information in these directions,
the distance equals 0.

The idea behind DDMs is to give a generalization of SE . If there is discrim-
inatory information present because of the heteroscedasticity of the data, then
this should become apparent in the DDM. This extra distance because of the
heteroscedasticity, is, in general, in different directions then the vector v, which
separates the means, and so DDMs have more than one nonzero eigenvalue.

The specific DDM we propose is based on the Chernoff distance ∂C . For two
normally distributed densities, it is defined as1 [2,3]

∂C =(m1 − m2)t(αS1 + (1 − α)S2)−1(m1 − m2)

+
1

α(1 − α)
log

|(αS1 + (1 − α)S2)|
|S1|α|S2|1−α

.
(2)

Like ∂E , we can obtain ∂C as the trace of a positive semi-definite matrix SC .
Simple matrix manipulation [18] shows that this matrix equals2 (cf. [12])

SC :=S− 1
2 (m1 − m2)(m1 − m2)tS− 1

2

+
1

α(1 − α)
(log S− α log S1 − (1 − α) log S2) ,

(3)

where S := αS1 + (1 − α)S2. Now, before we get to our HLDR criterion, we
make the following remarks. (Still assume that SW equals the identity matrix.)
We want our criterion to be a generalization of Fisher’s, so if the data is ho-
moscedastic, i.e., S1 = S2, we want SC to equal SE . This suggests to set α equal
to p1, from which it directly follows that 1 − α equals p2. In this case SC = SE ,
and we obtain the same dimension reducing linear transform via an eigenvalue
decomposition on either.

Now assume that S1 and S2 are diagonal—diag(a1, . . . , an) and diag(b1, . . . ,
bn), respectively—but not necessarily equal. Furthermore, let m1 = m2. Now
because α = p1, and hence αS1 + (1 − α)S2 = I, we have

SC =
1

p1p2
diag(log

1
ap1
1 bp2

1

, . . . , log
1

ap1
n bp2

n
) . (4)

1 Often, the Chernoff distance is defined as α(1−α)
2

∂C , this constant factor, however,
is of no essential influence on the rest of our discussion.

2 We define the function f , e.g. some power or the logarithm, of a symmetric positive
definite matrixA, by means of its eigenvalue decomposition RVR−1, with eigenvalue
matrix V = diag(v1, . . . , vn). We let f(A) equal Rdiag(f(v1), . . . , f(vn))R

−1 =
R(f(V))R−1. Although generally A is nonsingular, determining f(A) might cause
problems, because the matrix is close to singular. Most of the times, alleviation of
this problem is possible by using the svd instead of an eigenvalue decomposition, or
by properly regularizing A.
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On the diagonal of SC are the Chernoff distances of the two densities if the the
dimension is reduced to one in the associated direction, e.g., linearly transforming
the data by the n-vector (0, . . . , 0, 1, 0, . . . , 0), where only the dth entry is 1
and all the other equal 0, would give us a Chernoff distance of 1

p1p2
log 1

a
p1
d b

p2
d

in the one-dimensional space. Hence, determining a LDR transformation by an
eigenvalue decomposition of the DDM SC , means that we determine a transform
which preserves as much of the Chernoff distance in the lower dimensional space
as possible.

In the two cases above, where in fact, we considered S1 = S2 and m1 = m2

respectively, we argued that our criterion gives eligible results. We also expect
reasonable results if we do not necessarily have equality of means or covariance
matrices, because in this case we obtain a solution that is approximately optimal
with respect to the Chernoff distance. In conclusion: The DDM SC , captures
differences in covariance matrices in a certain way and indeed generalizes the
homoscedastic DDM SE .

2.3 Heteroscedasticization of Fisher: The Chernoff Criterion

If SW = I, JF(A) equals tr((AAt)−1(ASEAt)). Hence in this case, regarding
the discussion in the foregoing subsection, we simply substitute SC for SE , to
obtain a heteroscedastic generalization of LDA, because optimizing this criterion
is similar to optimizing JF: Determine an eigenvalue decomposition of SC , and
take the rows of the transform L to equal the d eigenvectors corresponding to
the d largest eigenvalues.

In case SW �= I, note that we can first transform our data by S− 1
2

W , so we do
have SW = I. In this space we then determine our criterion, which for LDA equals
tr((AAt)−1(AS− 1

2
W SBS− 1

2
W At)), and then transform it back to our original space

using S
1
2
W , giving the criterion tr((AS

1
2
W S

1
2
WAt)−1(ASBAt)). Hence for LDA,

this procedure gives us just Criterion (1), as if it was determined directly in
the original space. For our heteroscedastic Chernoff criterion JC the procedure
above gives the following:

JC(A) :=tr((ASW At)−1(A(m1 − m2)(m1 − m2)tAt

− AS
1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W At)) .

(5)

This is maximized by determining an eigenvalue decomposition of

S−1
W (SB − S

1
2
W

p1 log(S− 1
2

W S1S
− 1

2
W ) + p2 log(S− 1

2
W S2S

− 1
2

W )
p1p2

S
1
2
W ) , (6)

and taking the rows of the transform L to equal the d eigenvectors corresponding
to the d largest eigenvalues.
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3 Experimental Results: Comparing Chernoff
to Fisher and Svd

This section compares the performance of the HLDR transformations obtained
by means of the Chernoff criterion with transformations obtained by the tradi-
tional Fisher criterion, and by the svd method as discussed in, e.g., [19]. The lat-
ter method determines a dimension reducing transform—in the two-class case—
by constructing an n × (n + 1)-matrix T that equals (m2 − m1,S2 − S1), then
performing an svd on TTt = USVt, and finally choosing the row vectors from
U associated with the largest d singular values as the HLDR transformation.

Tests were performed on three artificial [7] (cf. [12])—labelled (a) to (c)—
and seven real-world data sets [8,15]—labelled (d) to (j). To be able to see what
discriminatory information is retained in using a HLDR, classification is done
with a quadratic classifier assuming the underlying distributions to be normal.
Results obtained with the svd-based approach, and the Chernoff criterion are
presented in the Figures 1(a) to 1(j), and indicated by gray and black lines,
respectively. Figures 1(a) to (j) are associated to data sets (a) to (j). The dimen-
sion of the subspace is plotted horizontally and the classification error vertically.
Results of reduction to a single dimension, mainly for comparison with LDA, are
in Table 1.

In presenting the results on the real-world data sets, we restricted ourselves
to discussing the main results, and to the most interesting observations. The p-
values stated in this part are obtained by comparing the data via a signed rank
test [17].

3.1 Fukunaga’s Heteroscedastic Two-Class Data
and Two Variations

Fukunaga [7] describes a heteroscedastic model consisting of two classes in eight
dimensions. The classes are normally distributed with m1 = (0, . . . , 0)t, S1 = I,
and

m2 = (3.86, 3.10, 0.84, 0.84, 1.64, 1.08, 0.26, 0.01)t , (7)
S2 = diag(8.41, 12.06, 0.12, 0.22, 1.49, 1.77, 0.35, 2.73) . (8)

Furthermore, p1 = p2 = 1
2 .

The first test (a) on artificial data uses these parameters. Two variants are
also considers. In the first variant (b), the two means are taken closer to each
other to elucidate the performance of the Chernoff criterion, when most of the
discriminatory information is in the difference in covariances. For this variant we
take the mean of the second class to equal 1

10m2 (cf. [12]). The second variant
(c) is a variation on the first, where we additionally set p1 = 1

4 and p2 = 3
4 .

This is to elucidate the effect of a difference in class priors, something the svd
approach does not account for.

Tests are carried out using Monte Carlo simulation in which we take a total
of 1,000,000 instances from the two classes, proportional to the values p1 and p2,
and determine the error by classifying these instances.
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The results from Figures 1(a)–(c) are clear: For a reduction to one dimension,
the LDR by means of the Chernoff criterion is as good as, or unmistakably
better than LDR by the Fisher criterion or the svd approach. Furthermore,
when reducing the data to several dimensions, our approach is also preferable
to the svd approach, which merely outperforms our approach in reducing the
dimension to 2 in experiment (b).

Table 1. Information w.r.t. the 10 data sets including (mean) classification
errors for comparison of the three considered LDR techniques for reduction to
one dimension (last three columns). Best results are in boldface

data set n size N Fisher Chernoff svd

Fukunaga’s two-class data (a) 8 - - 0.054 0.054 0.140
Variation one (b) 8 - - 0.415 0.231 0.231
Variation two (c) 8 - - 0.245 0.159 0.240
Wisconsin breast cancer (d) 9 682 350 0.028 0.027 0.031
Wisconsin diagnostic breast cancer (e) 30 569 500 0.035 0.029 0.086
Bupa liver disorders (f) 6 345 200 0.364 0.407 0.466
Cleveland heart-disease (g) 13 297 200 0.174 0.172 0.463
Pima indian diabetes (h) 8 768 576 0.230 0.229 0.342
Musk “Clean2” database (i) 166 6598 6268 0.056 0.061 0.152
Lung/non-lung classification (j) 11 72000 36000 0.223 0.225 0.217

3.2 Real-World Data

Six tests in this subsection are on data sets from the UCI Repository of machine
learning databases [15], a seventh test is on the chest radiograph database used
in [8]. For a description of the first six data sets refer to [15]. The seventh
database consists of 115 chest radiograph images and the classification of their
pixels in lung or non-lung. For our purpose, we took 20 images and sub-sampled
them from 256×256 to 64×64 pixels. To come to a lung/non-lung classification
of a pixel, we used its gray value, its eight neighboring gray values, and its x-
and y-coordinate as features, which finally gives us 72000 instances3 in an 11-
dimensional feature space.

The seven tests are carried out by randomly drawing N instances from the
data for training and using the remaining instances for testing. (If provided,
the value N is taken from the UCI Repository.) This procedure is repeated
100 times and the mean classification error is given. Most of the time, the 100
repetitions give us enough measurements to reliably decide whether one approach
consistently outperform the other. This decision is based on the signed rank
test [17] for which the p-values are provided.

3 There are only 72000 instances, because in building the feature vector, we excluded
pixels that were too close to the border of the image resulting in 60×60×20 instances.
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Fig. 1. Plots of feature dimension (vertically) versus classification error (horizon-
tally) for comparison of HLDR via the Chernoff criterion and via the svd-based
approach. The grey lines give the results obtained by svd, the black lines provide
results obtained by using the Chernoff criterion

Considering Tables 1 and 2, and Figures 1(d) to 1(j), we can generally
conclude that the Chernoff criterion improves upon the Fisher criterion. Even
though the Chernoff criterion clearly needs more than one dimension, about 25,
to outperform LDA in case of data set (i), it dramatically improves upon LDA in
case of a dimension greater than, say, 50, with its best result at d = 106. Fisher
is clearly better for data set (f), however for all other data sets Chernoff is, in
general, the one to be preferred although its improvement w.r.t. Fisher for data
sets (d) and (h) are considered insignificant.

Concerning the comparison of Chernoff with the svd approach, we can be
brief: In case of reducing data set (j) to one or two dimensions, the svd approach
is clearly preferable, however, in all other cases the use of the Chernoff criterion
is preferable to the svd approach.

See also the captions of Tables 1 and 2.

4 Discussion and Conclusions

We proposed a new heteroscedastic linear dimension reduction (HLDR) crite-
rion for two-class data, which generalizes the well-known Fisher criterion used
in LDA. After noting that the Fisher criterion can be related to the Euclidean
distance between class means, we used the concept of directed distance matrices
(DDMs) to replace the matrix that incorporates the Euclidean distance by one
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Table 2. Results w.r.t. the 7 real-world data sets—(d) to (j). Included are the
best results over all dimensions (< n) for the three approaches (for LDA this, of
course, equals d = 1). The dimension for which this result is obtained is denoted
by d. For comparison of our approach (Chernoff) to both other approaches, the p-
values are provided, which are indicated between the compared approaches. Best
overall results are in boldface

data set Fisher p-value Chernoff d p-value svd d

(d) 0.028 0.070 0.027 1 0.000 0.031 1
(e) 0.035 0.006 0.029 1 0.000 0.043 16
(f) 0.364 0.000 0.396 5 0.000 0.416 5
(g) 0.174 0.033 0.172 1 0.000 0.195 7
(h) 0.230 0.721 0.229 1 0.000 0.256 6
(i) 0.056 0.000 0.030 106 0.035 0.031 165
(j) 0.223 0.000 0.089 9 0.000 0.090 10

incorporating the Chernoff distance. This distance takes into account the differ-
ence in the covariance matrices of both groups, which, by means of a DDM, can
be used to find an LDR transformation that takes such differences into account.
In addition, it enables us to reduce the dimension of the two-class data to more
than a single one.

An other important property of our Chernoff criterion is that it is computed
in a simple and efficient way, merely using standard matrix arithmetics and not
using complex or iterative procedures. Hence its computation is almost as easy
as determining an LDR transform using LDA. Furthermore, it should be noted
that, although it was used in the derivation of our criterion, it is not necessary
that both classes are normally distributed. The Chernoff criterion only uses the
first and second order central moments of the class distribution in a way that is
plausible for dimension reduction, whether the data is normally distributed or
not.

In ten experiments, we compared the performance of the Chernoff criterion to
that of LDA and an other simple and efficient approach based on the svd. Three
of these experiments were on artificial data and seven on real-world data. The
experiments clearly showed the improvement that is possible when utilizing the
Chernoff criterion instead of the Fisher criterion or the svd-based approach and
we can generally conclude that our method is clearly preferable to the others.

Finally, it is of course interesting to look at the possibility of extending our
criterion to the multi-class case. [7] and [12] offer ideas for doing so. They suggest
a certain averaged criterion that takes into account all multi-class discriminatory
information at once. Future investigations will be on these kinds of extensions
of the Chernoff criterion.
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