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Abstract. Most of the Prototype Reduction Schemes (PRS), which
have been reported in the literature, process the data in its entirety
to yield a subset of prototpyes that are useful in nearest-neighbour-
like classification. Foremost among these are the Prototypes for Nearest
Neighbour (PNN) classifiers, the Vector Quantization (VQ) technique,
and the Support Vector Machines (SVM). These methods suffer from a
major disadvantage, namely, that of the excessive computational bur-
den encountered by processing all the data. In this paper, we suggest
a recursive and computationally superior mechanism. Rather than pro-
cess all the data using a PRS, we propose that the data be recursively
subdivided into smaller subsets. This recursive subdivision can be ar-
bitrary, and need not utilize any underlying clustering philosophy. The
advantage of this is that the PRS processes subsets of data points that
effectively sample the entire space to yield smaller subsets of prototypes.
These prototypes are then, in turn, gathered and processed by the PRS
to yield more refined prototypes. Our experimental results demonstrate
that the proposed recursive mechansim yields classification comparable
to the best reported prototype condensation schemes to-date, for both
artificial data sets and for samples involving real-life data sets. The re-
sults especially demonstrate the computational advantage of using such
a recursive strategy for large data sets, such as those involved in data
mining and text categorization applications.

1 Introduction

In non-parametric pattern classification like the nearest neighbour (NN) or the
k -nearest neighbour (k−NN) rule, each class is described using a set of sample
prototypes, and the class of an unknown vector is decided based on the iden-
tity of the closest neighbour(s) which are found among all the prototypes [1].
For applications, involving large data sets, such as those involved in data min-
ing, financial forecasting, retrieval of multimedia databases and biometrics, it
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is advantageous to reduce the number of training vectors while simultaneously
insisting that the classifiers that are built on the reduced design set perform as
well, or nearly as well, as the classifiers built on the original data set. Various
prototype reduction schemes, which are useful in nearest-neighbour-like classifi-
cation, have been reported in the literature [2].

One of the firsts of its kind is the Condensed Nearest Neighbour (CNN)
rule [3]. The reduced set produced by the CNN, however, customarily includes
“interior” samples, which can be completely eliminated, without altering the
performance of the resultant classifier. Accordingly, other methods have been
proposed successively, such as the Reduced Nearest Neighbour (RNN) rule [4],
the Prototypes for Nearest Neighbour (PNN) classifiers [5], the Selective Nearest
Neighbour (SNN) rule [6], two modifications of the CNN [7], the Edited Nearest
Neighbour (ENN) rule [8], and the non-parametric data reduction method [9].
Besides these, in [10], the Vector Quantization (VQ) and the Bootstrap [11]
techniques have also been reported as being extremely effective approaches to
data reduction. Recently, Support Vector Machines (SVM) [12] have proven to
possess the capability of extracting vectors that support the boundary between
the two classes. Thus, they have been used satisfactorily to represent the global
distribution structure. Recently, we have proposed a new hybrid scheme, the
Kim Oommen Hybridized Technique, [13], which is based on the philosophy of
invoking creating and adjusting phases to the prototype vectors. First, a reduced
set of initial prototype vectors is chosen by any of the previously mentioned
methods, and then their optimal positions are learned with an LVQ3-type algo-
rithm, thus, minimizing the average classification error. The details of this are
omitted here.

All the PRS methods reported in the literature (including the one proposed
in [13]) are practical as long as the size of the data set is not “too large”. The
applicability of these schemes for large-sized data set is limited because they all
suffer from a major disadvantage – they incur an excessive computational burden
encountered by processing all the data points. To overcome this disadvantage for
large-sized data sets, in this paper, we suggest a recursive mechanism. Rather
than process all the data using a PRS, we propose that the data be recursively
subdivided into smaller subsets. We emphasize that the smaller subsets need not
represent sub-clusters of the original data set. After this recursive subdivision,
the smaller subsets are reduced with a PRS. The resultant sets of prototypes
obtained are, in turn, gathered and processed at the higher level of the recur-
sion to yield more refined prototypes. This sequence of divide-reduce-coalesce is
invoked recursively to ultimately yield the desired reduced prototypes. We refer
to the algorithm presented here as the Kim Oommen Recursive PRS.

The main contribution of this paper is the demonstration that the speed
of data condensation schemes can be increased by recursive computations -
which is crucial in large-sized data sets. This has been done by introducing
the Kim Oommen Recursive PRS, and demonstrating its power in both speed
and accuracy. We are not aware of any similar reported recursively-motivated
PRS.
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The first outstanding advantage of this mechanism is that the PRS can se-
lect more refined prototypes in significantly less time. This is achieved without
sacrificing the classification accuracy and the prototype reduction rate. This is
primarily because the new scheme does not process all the data points at any
level of the recursion. A second advantage of this scheme is that the recursive
subdivision can be arbitrary, and need not utilize any clustering philosophy. Fur-
thermore, all subsequent recursive partitionings, also, need not involve clustering.
Finally, the higher level PRS invocations do not involve any points interior to
the Voronoi space because they are eliminated at the leaf levels.

The reader should observe that this philosophy is quite distinct from the
partitioning using clustering methods which have recently been proposed in the
literature to solve the Travelling Salesman Problem (TSP) [15]. The differences
between these two philosophies can be found in [16].

The experimental results on synthetic and real-life data prove the power of
these enhancements. The real-life experiments include three “medium-size” data
sets, and two large data sets with a fairly high dimensionality. The results are
conclusive.

2 Prototype Reduction Schemes

As mentioned previously, various Prototype Reduction Schemes (PRS) have been
proposed in the literature - a survey of which is found in [2]. The most pertinent
ones are reviewed here by two groups: the conventional methods and a newly
proposed hybrid method. Among the conventional methods, the CNN and the
SVM are chosen as representative schemes of selecting methods. The former is
one of first methods proposed, and the latter is more recent. As opposed to
these, the PNN and VQ (or SOM) are considered to fall within the family of
prototype-creating algorithms. The reviews of these methods is not attempted
here. However, it should be emphasized that our new recursive method can utilize
any one of the reported PRS as an atomic building block – thus extending them.
In that light, many of the PRS are briefly surveyed in the unabridged version of
the paper [16]. This present study (and so the review in [16]) includes the CNN
rule [3], the PNNs [5], the VQ and SOM methods [14], and the SVM [12].

The unabridged paper [16] also describes a newly-reported hybrid scheme, the
Kim Oommen Hybridized Technique, [13], which is based on the philosophy of
invoking creating and adjusting phases. First, a reduced set of initial prototypes
or code-book vectors is chosen by any of the previously mentioned methods, and
then their optimal positions are learned with an LVQ3-type algorithm, thus,
minimizing the average classification error.

3 Recursive Invocations of PRS

3.1 The Rationale of the Recursive Algorithm

Since prototypes near the boundary play more important roles than the inte-
rior ones for designing NN classifiers, the points near the boundary are more
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important in selecting the prototypes. In all the currently reported PRS, how-
ever, points in the interior of the Voronoi space are processed for, apparently, no
reason. Consequently, all reported PRS suffer from an excessive computational
burden encountered by processing all the data, which becomes very prominent
in “large” data sets.

To overcome this disadvantage, in this section, we propose a recursive mech-
anism, where the data set is sub-divided recursively into smaller subsets to filter
out the “useless” internal points. Subsequently, a conventional PRS processes
the smaller subsets of data points that effectively sample the entire space to
yield subsets of prototypes – one set of prototypes for each subset. The proto-
types, which result from each subset, are then coalesced, and processed again
by the PRS to yield more refined prototypes. In this manner, prototypes which
are in the interior of the Voronoi boundaries, and are thus ineffective in the
classification, are eliminated at the subsequent invocations of the PRS.

A direct consequence of eliminating the “redundant” samples in the PRS
computations, is that the processing time of the PRS is significantly reduced.
This will be clarified by the example below.

To illustrate the functioning of the recursive process, we present an example
for the two-dimensional data set referred to as “Random”. Two data sets, namely
the training and test sets, are generated randomly with a uniform distribution,
but with irregular decision boundaries. The training set of 200 sample vectors
is used for computing the prototypes, and the test set of 200 sample vectors is
used for evaluating the quality of the extracted prototypes.

To demonstrate the power of the mechanism, we first select prototypes from
the whole training set using the CNN method. This is also repeated after ran-
domly dividing the training set into two subsets of equal size – each with 100
vectors. Fig. 1 shows the whole set of the “Random” training data set, the di-
vided subsets and the prototypes selected with the CNN and the recursive PRS
methods, respectively. Observe that in this example, to render the presentation
brief, we have invoked the recursive procedure only twice.

In Fig. 1, the set of prototypes of (e), which is extracted from the whole set
of (a), consists of 36 points and has a classification accuracy of 96.25 % . The
prototypes of (f) and (g), selected from the subsets of (b) and (c), both consist
of the 21 vectors, and have accuracies of 96.00 % and 94.50 % respectively.

On the other hand, the set of prototypes of (h), which is extracted from a
data set obtained by combining two prototype sets of (f) and (g), consists of 27
points, and has the accuracy of 97.00 %. Moreover, it should be pointed out that
the time involved in the prototype selection of (h), is significantly less than that
of (e), because the number of sample vectors of the combined sets of (f) and (g)
together, is smaller than that of the whole set of (a).

The formal algorithm is omitted here in the interest of brevity, but can
be found in [16]. However, a brief explanation of the algorithm is not out of
place. If the size of the original data set is smaller than K, a traditional PRS
is invoked to get the reduced prototypes. Otherwise, the original data set is
recursively subdivided into J subsets, and the process continues down towards
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Fig. 1. The entire set, the divided subsets and the prototypes of the “Random”
data set, where the vectors of each class are represented by ‘∗’ and ‘·’, and the
selected prototype vectors are indicated by the circled ‘∗’ and ‘·’ respectively.
The details of the figure are found in the text

the leaf of the recursive tree. Observe that a traditional PRS is invoked only
when the corresponding input set is “small enough”. Finally, at the tail end of
the recursion, the resultant output sets are merged, and if this merged set is
greater than K the procedure is again recursively invoked.

It should be also noted that the traditional PRS, which can be otherwise
time consuming for large data sets, is never invoked for any sets of cardinality
larger than K. It is invoked only at the leaf levels when the sizes of the sets are
“small”, rendering the entire computation very efficient.

4 Experimental Results

4.1 Experimental Results: Medium-Sized Data Sets

The Kim Oommen Recursive PRS has been rigorously tested and compared with
many conventional PRS. This was first done by performing experiments on a
number of “medium-sized” data sets, both real and artificial. The data set named
“Non normal (Medium-size)”, which has been also employed in [9], [10] and [11]
as a benchmark experimental data set, was generated from a mixture of four 8-
dimensional Gaussian distributions as follows:

1. p1 (x ) = 1
2 N (µ11 , I8 ) + 1

2 N (µ12 , I8 ) and
2. p2 (x ) = 1

2 N (µ21 , I8 ) + 1
2 N (µ22 , I8 ),

where µ11 = [0, 0, · · · , 0], µ12 = [6.58, 0, · · · , 0], µ21 = [3.29, 0, · · · , 0] and
µ22 = [9.87, 0, · · · , 0]. Here, I8 is the 8 -dimensional Identity matrix.
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The “Sonar” data set contains 208 vectors. Each sample vector, of two classes,
has 60 attributes which are all continuous numerical values. The “Arrhythmia”
data set contains 452 patterns with 279 attributes, 206 of which are real-valued,
and the rest are nominal. The details of these sets are found in [16] and omitted
here in the interest of brevity. However, we mention that both the data sets
“Sonar” and “Arrhythmia” are real benchmark data sets, cited from the UCI
Machine Learning Repository [17].

In the above data sets, all of the vectors were normalized within the range
[−1, 1] using their standard deviations. Also, for every class j, the data set for
the class was randomly split into two subsets, Tj ,t and Tj ,V , of equal size. One of
them was used for choosing initial code-book vectors and training the classifiers
as explained above, and the other subset was used in the validation (or testing)
of the classifiers. The roles of these sets were later interchanged.

In this case, because the size of the sets was not excessively large, the recursive
versions of CNN, PNN, VQ and SVM, were all invoked only for a depth of two.
The experimental results of the CNN, PNN, VQ and SVM methods implemented
with the recursive mechanism, for the “Non normal (Medium-size)” data sets is
shown in Table 1. The results for the data sets “Sonar” and “Arrhythmia” are
not included here in the interest of brevity. They can be found in [16].

Table 1. The experimental results of the recursive CNN, PNN, VQ and SVM
methods for the “Non normal (Medium-size)” data set. Here, DS, CT, NP and
Acc are the data set size (the number of sample vectors), the processing CPU-
time (in seconds), the number of prototypes, and the classification accuracy rate
(%), respectively

Methods DS1 CT1 NP1 Acc1 DS2 CT2 NP2 Acc2

500 0.61 64 92.60 500 0.63 66 91.20
CNN 250 0.13 34 250 0.15 37

250 0.15 34 250 0.12 29
68 0.11 54 91.60 66 0.11 54 90.00

500 81.74 56 92.40 500 208.55 380 91.60
PNN 250 7.58 31 250 7.55 34

250 7.54 29 250 7.54 26
60 0.22 46 89.20 60 0.26 50 88.80

500 0.23 4 95.60 500 0.41 4 94.80
VQ 250 0.11 4 250 0.15 4

250 0.16 4 250 0.13 4
8 0.06 4 95.60 8 0.07 4 94.40

500 0.86 62 95.40 500 0.97 57 94.40
SVM 250 0.24 32 250 0.25 35

250 0.23 30 250 0.24 24
62 0.07 60 95.60 59 0.06 57 94.40
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The Kim Oommen Recursive PRS can be compared with the non-recursive
versions using three criteria, namely, the processing CPU-time (CT), the classi-
fication accuracy rate (Acc), and the prototype reduction rate (Re).

We report below a summary of the results obtained for the case when one
subset was used for training and the second for testing. The results when the
roles of the sets are interchanged are almost identical. From Table 1, we can see
that the CT index (the processing CPU-time) of the pure CNN, PNN, VQ and
SVM methods can be reduced significantly by merely employing the recursive
philosophy.

Consider the PNN method for the “Non normal (Medium-size)” data set. If
the 500 samples were processed non-recursively, the time taken is 81.74 seconds,
the size of the reduced set is 56, and the resulting classification accuracy is 92.4%.
However, if the 500 samples are subdivided into two sets of 250 samples each,
processing each subset involves only 7.58 and 7.54 seconds leading to 31 and 29
reduced prototypes respectively. When these 60 samples are, in turn, subjected
to a pure PNN method, the number of prototype samples reduced to 46 in just
0.22 seconds and yielded an accuracy of 89.2 %. If we reckon that the recursive
computations can be done in parallel, the time required is only about one-tenth
of the time which the original PNN would take. Even if the computations were
done serially, the advantage is marked. Such results are typical, as can be seen
from [16].

4.2 Experimental Results: Large-Sized Data Sets

In order to further investigate the advantage gained by utilizing the proposed re-
cursive PRS for more computationally intensive sets, we conducted experiments
on “large-sized” data sets, which we refer to as the “Non normal (Large-size)”
and “Adult” sets, which consisted of 20,000 patterns and 8 dimensions, and
33,330 samples and 14 dimensions respectively. In this case, because the size of
the sets was reasonably large, the recursive version of the SVM was invoked to
a depth of four.

As in the case of the “Non normal (Medium-size)” data set, the data set
“Non normal (Large-size)” was generated randomly with the normal distribu-
tions. The “Adult” data set, which had been extracted from a census bureau
database1, has also been obtained from the UCI Machine Learning Reposi-
tory [17]. The aim of the pattern recognition task here was to distinguish the
income into two groups, in the first group the salary is more than 50K dollars,
and in the second group the salary is less than or equal to 50K dollars. Each
sample vector has fourteen attributes. Some of the attributes, such as the age,
hours-per-week, etc., are continuous numerical values. The others, such as educa-
tion, race, etc., are nominal symbols. In the experiments, the nominal attributes
were replaced with numeric zeros.
1 http://www.census.gov/ftp/pub/DES/www/welcome.html
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Table 2. The experimental results of the recursive SVM for the “Adult” data set.
Here, Depth(i) means the depth at which the data set is sub-divided into 2i−1

subsets. DS, CT, SV and Acc are the data set size (the number of sample vectors),
the processing CPU-time (in seconds), the number of support vectors, and the
classification accuracy rate (%), respectively

Depth(i) DS1 CT1 SV1 Acc1 DS2 CT2 SV2 Acc2

1 16665 3825.46 6448 82.84 16665 2365.16 6218 82.63

2084 19.19 843 2084 17.07 801
2083 17.82 819 2083 15.04 814
2083 15.94 825 2083 14.01 771
2083 20.17 821 2083 19.32 825

4 2083 15.94 836 2083 29.01 810
2083 21.75 807 2083 12.10 802
2083 15.26 853 2083 17.01 808
2083 18.39 814 2083 16.20 775

6621 256.80 6270 81.28 6406 219.46 6059 79.49

Although the experimental results for the “Non normal (Large-size)” and the
“Adult” data sets are given in [16], we briefly cite the results for the latter in
Table 2.

Consider Table 2. At the depth 1, the data set of 16,665 samples was processed
requiring a computation time of 3,825.46 seconds, and gave an accuracy of 82.84
% with a reduction of 61.31 %. However, if the 16,665 samples are subdivided
into eight subsets of 2,083 each at the depth 4, processing each of these involves
only the times given in the third column whose average is 18.06 seconds, leading
to 843, 819, 825, 821, 836, 807, 853 and 814 reduced prototypes, respectively.
When these 6,621 samples are, in turn, subjected to a pure SVM method, the
number of reduced samples reduced to 6,270 in 256.80 seconds and yielded an
accuracy of 81.28 %. As the recursive computations were done serially, the time
required was 401.26 seconds, which is only 10.5 % of the time which the original
SVM would take. The power of the newly-introduced recursive philosophy is
obvious!

5 Conclusions

Conventional PRS (Prototype Reduction Schemes) suffer from a major disad-
vantage, namely that of the excessive computational burden encountered by pro-
cessing all the data, even though the sample data in the interior of the Voronoi
space is typically processed for no reason. In this paper, we proposed a recursive
mechanism, where the data sets are recursively sub-divided into smaller subsets,
and the prototype points which are ineffective in the classification are elimi-
nated for the subsequent invocations of the PRS. These prototypes are, in turn,
gathered and processed by the PRS to yield more refined prototypes.
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The proposed method was tested on both artificial and real-life benchmark
data sets (of both medium and large sizes), and compared with the reported
conventional methods, and the superiority has been clearly demonstrated both
with regard to the required CPU time and the classification accuracy. The results
obtained are conclusive and prove that it is futile to invoke a PRS on any large
data set. Rather, it is expedient to recursively split the data, and invoke the PRS
on the smaller subsets. Undoubtedly, the advantage of the recursive invocations
increases with the size of the data set.
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