
Algorithms for Learning Function

Distinguishable Regular Languages

Henning Fernau1� and Agnes Radl2

1 School of Electrical Engineering and Computer Science, University of Newcastle
University Drive, NSW 2308 Callaghan, Australia

fernau@cs.newcastle.edu.au
2 Wilhelm-Schickard-Institut für Informatik, Universität Tübingen

Sand 13, D-72076 Tübingen, Germany
agnes.radl@student.uni-tuebingen.de

Abstract. Function distinguishable languages were introduced as a new
methodology of defining characterizable subclasses of the regular lan-
guages which are learnable from text. Here, we give details on the im-
plementation and the analysis of the corresponding learning algorithms.
We also discuss problems which might occur in practical applications.

1 Introduction

Identification in the limit from positive samples, also known as exact learning
from text as proposed by Gold [10], is one of the oldest yet most important
models of grammatical inference. Since not all regular languages can be learned
exactly from text, the characterization of identifiable subclasses of regular lan-
guages is a useful line of research, because the regular languages are a very
basic language family, see also the discussions in [12] regarding the importance
of finding characterizable learnable language classes.

In [4], we introduced the so-called function-distinguishable languages as a
rich source of examples of identifiable language families. Among the language
families which turn out to be special cases of our approach are the k-reversible
languages [1] and (reversals of) the terminal-distinguishable languages [13,14],
which belong, according to Gregor [11], to the most popular identifiable regular
language classes. Moreover, we have shown [4] how to transfer the ideas under-
lying the well-known identifiable language classes of k-testable languages, k-
piecewise testable languages and threshold testable languages to our setting. In
a nutshell, an identification algorithm for f -distinguishable languages assigns to
every finite set of samples I+ ⊆ T ∗ the smallest f -distinguishable language con-
taining I+ by subsequently merging states which cause conflicts to the definition
of f -distinguishable automata, starting with the simple prefix tree automaton
accepting I+.

� Work was done while the author was with Wilhelm-Schickard-Institut für Informatik,
Universität Tübingen, Sand 13, D-72076 Tübingen, Germany

T. Caelli et al. (Eds.): SSPR&SPR 2002, LNCS 2396, pp. 64–73, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Algorithms for Learning Function Distinguishable Regular Languages 65

Another interesting property of each class f -DL of function distinguishable
languages is established in [6]: the approximability of the whole class of regular
languages in the sense that, given any regular language L, a learning algorithm
for f -DL infers, given L, the smallest language L′ ∈ f -DL including L.

Applications of the learnability of function-distinguishable languages have
been reported in [8] for the identifiability of parallel communicating grammar
systems and in [7] for inferring document type definitions of XML documents.

Here, we aim at giving more details on the implementation and analysis of
the learning algorithms for function-distinguishable languages. We also give a
proof of a counterexample originally given by Radhakrishnan and Nagaraja.

2 General Definitions

Σ∗ is the set of words over the alphabet Σ. Σk (Σ<k) collects the words whose
lengths are equal to (less than) k. λ denotes the empty word. Pref(L) is the set
of prefixes of L and u−1L = { v ∈ Σ∗|uv ∈ L } is the quotient of L ⊆ Σ∗ by u.

Regular languages can be characterized by (deterministic) finite automata
A = (Q,T, δ, q0, QF), where Q is the state set, δ ⊆ Q× T ×Q is the transition
relation, q0 ∈ Q is the initial state and QF ⊆ Q is the set of final states.
As usual, δ∗ denotes the extension of the transition relation to arbitrarily long
input words. The language defined by an automaton A is written L(A). An
automaton is called stripped iff all states are accessible from the initial state
and all states lead to some final state. Observe that the transition function of a
stripped deterministic finite automaton is not total in general.

We denote the minimal deterministic automaton of the regular language L
by A(L). Recall that A(L) = (Q,T, δ, q0, QF) can be described as follows: Q =
{u−1L|u ∈ Pref(L)}, q0 = λ−1L = L; QF = {u−1L|u ∈ L}; and δ(u−1L, a) =
(ua)−1L with u, ua ∈ Pref(L), a ∈ T . According to our definition, any minimal
deterministic automaton is stripped.
The product automaton A = A1 ×A2 of two automata Ai = (Qi, T, δi, q0,i, QF,i)
for i = 1, 2 is defined as A = (Q,T, δ, q0, QF) with Q = Q1 × Q2, q0 =
(q0,1, q0,2), QF = QF,1 × QF,2, ((q1, q2), a, (q′1, q

′
2)) ∈ δ iff (q1, a, q′1) ∈ δ1 and

(q2, a, q′2) ∈ δ2.

3 Function Distinguishable Languages

In order to avoid cumbersome case discussions, let us fix now T as the input
alphabet of the finite automata we are going to discuss.

Definition 1. Let F be some finite set. A mapping f : T ∗ → F is called a dis-
tinguishing function if f(w) = f(z) implies f(wu) = f(zu) for all u,w, z ∈ T ∗.

In the literature, we can find the terminal function [14]

Ter(x) = { a ∈ T | ∃u, v ∈ T ∗ : uav = x }

66 Henning Fernau and Agnes Radl

and, more generally, the k-terminal function [5]

Terk(x) = (πk(x), µk(x), σk(x)), where
µk(x) = { a ∈ T k+1 | ∃u, v ∈ T ∗ : uav = x }

and πk(x) [σk(x)] is the prefix [suffix] of length k of x if x /∈ T<k, and πk(x) =
σk(x) = x if x ∈ T<k. The example f(x) = σk(x) leads to the k-reversible
languages, confer [1,5]. In particular, the trivial distinguishing function, whose
range is a singleton set, characterizes the 0-reversible languages.

To every distinguishing function f , a finite automaton Af =(F, T, δf , f(λ), F)
can be associated by setting δf (q, a) = f(wa), where w ∈ f−1(q) can be chosen
arbitrarily, since f is a distinguishing function. Here, we will formally introduce
function distinguishable languages and discuss some formal language properties.

Definition 2. Let A = (Q,T, δ, q0, QF) be a finite automaton. Let f : T ∗ → F
be a distinguishing function. A is called f -distinguishable if:

1. A is deterministic.
2. For all states q ∈ Q and all x, y ∈ T ∗ with δ∗(q0, x) = δ∗(q0, y) = q, we have

f(x) = f(y).
(In other words, for q ∈ Q, f(q) := f(x) for some x with δ∗(q0, x) = q is
well-defined.)

3. For all q1, q2 ∈ Q, q1 	= q2, with either (a) q1, q2 ∈ QF or (b) there exist q3 ∈
Q and a ∈ T with δ(q1, a) = δ(q2, a) = q3, we have f(q1) 	= f(q2).

Informally speaking, an automaton is f -distinguishable if backward nonde-
terminism conflicts can be resolved with the help of the distinguishing function f .

A language is f -distinguishable iff it can be accepted by an f -distinguishable
automaton. The class of f -distinguishable languages is denoted by f -DL.

We need a suitable notion of a canonical automaton in the following.

Definition 3. Let f : T ∗ → F be a distinguishing function and let L ⊆ T ∗ be a
regular set. Let A(L, f) be the stripped subautomaton of the product automaton
A(L) ×Af . A(L, f) is called f -canonical automaton of L.

Theorem 1. Let f : T ∗ → F be some distinguishing function. Then, L ⊆ T ∗

is f -distinguishable iff A(L, f) is f -distinguishable.
�
This characterization was proved in [4] and used in order to establish the

inferability of f -DL. A(L, f) was employed to construct a characteristic sample
for L (with respect to f), and moreover, the A(L, f) (note that A(L, f) is usually
larger than A(L)) are the hypothesis space of the learning algorithm.

4 An Extended Example

Radhakrishnan showed [13, Example 3.4] that the language L described by
ba∗c+ d(aa)∗c lies in Ter-DL but its reversal does not. Consider the determinis-
tic (minimal) automaton A(L) with transition function δ (see Table 1). Is A(L)

Algorithms for Learning Function Distinguishable Regular Languages 67

Table 1. The transition functions δ, δTer and δinferred

a b c d

→ 0 − 1 − 2
1 1 − 3 −
2 4 − 3 −

3 → − − − −
4 2 − − −

Ter a b c d

∅ → 0 − 1 − 2
{b} 1 1′ − 3 −
{a, b} 1′ 1′ − 3′ −
{d} 2 4 − 3′′ −

{a, d} 2′ 4 − 3′′′ −
{b, c} 3 → − − − −

{a, b, c} 3′ → − − − −
{c, d} 3′′ → − − − −
{a, c, d} 3′′′ → − − − −
{a, d} 4 2′ − − −

Ter a b c

∅ → 0 − 1 −
{b} 1 1′ − 3
{a, b} 1′ 1′ − 3′

{b, c} 3 → − − −
{a, b, c} 3′ → − − −

Ter-distinguishable? We have still to check whether it is possible to resolve the
backward nondeterminism conflicts (the state 3 occurs two times in the column
labelled c). This resolution possibility is formalized in the second and third con-
dition in Definition 2. As to the second condition, the question is whether it is
possible to assign Ter-values to states of A(L) in a well-defined manner: assign-
ing Ter(0) = ∅ and Ter(4) = {a, d} is possible, but should we set Ter(1) = {b}
(since δ∗(0, b) = 1) or Ter(1) = {a, b} (since δ∗(0, ba) = 1)?; similar problems
occur with states 2 and 3. Let us therefore try another automaton accepting L,
whose transition function δTer is given by Table 1, we indicate the Ter-values of
the states in the first column of the table. As the reader may verify, δTer basically
is the transition table of the stripped subautomaton of the product automaton
A(L) × ATer. One source of backward nondeterminism may arise from multiple
final states, see condition 3.(a) of Def. 2. Since the Ter-values of all four finite
states are different, this sort of nondeterminism can be resolved. Let us consider
possible violations of condition 3.(b) of Def. 2. In the column labelled a, we find
multiple occurrences of the same state entry:

– δTer(1, a) = δTer(1′, a) = 1′: since Ter(1) = {b} 	= Ter(1′) = {a, b}, this
conflict is resolvable.

– δTer(2, a) = δTer(2′, a) = 4: since Ter(2) = {d} 	= Ter(2′) = {a, d}, this
conflict is resolvable.

Observe that the distinguishing function f can be also used to design efficient
backward parsing algorithms for languages in f -DL. The only thing one has
to know are the f -values of all prefixes of the word w to be parsed. Let us
try to check that daac belongs to the language L in a backward fashion. For
the prefixes, we compute: Ter(d) = {d}, Ter(da) = Ter(daa) = {a, d}, and
Ter(daac) = {a, c, d}. Since Ter(w1) = {a, c, d}, we have to start our backward
parse in state 3′′′. The column labelled c reveals that after reading the last
letter c, we are in state 2′. After reading the penultimate letter a, we are therefore
in state 4. Reading the second letter a brings us into state 2, since the Ter-value

68 Henning Fernau and Agnes Radl

Table 2. The transition functions of ALR and of A(LR,Ter); X is one of {a, b, c},
{a, c, d}, {b, c} and {c, d}

a b c d

→ 0 − − 1 −
1 2 3 − 3
2 1 3 − −

3 → − − − −

a b c d

→ (0, {λ}) − − (1, {c}) −
(1, {c}) (2, {a, c}) (3, {b, c}) − (3, {c, d})

(1, {a, c}) (2, {a, c}) (3, {a, b, c}) − (3, {a, c, d})
(2, {a, c}) (1, {a, c}) (3, {a, b, c}) − −
(3, X) → − − − −

of the prefix left to be read is {d} = Ter(2). Finally, reading d brings us to the
initial state 0; hence, daac is accepted by the automaton.

Let us discuss why LR described by ca∗b + c(aa)∗d is not in Ter-DL, as
already Radhakrishnan claimed (without proof) [13, Example 3.4]. Table 2
shows the transition function of the minimal deterministic automaton ALR and
the transition function of A(LR,Ter). As the reader may verify, A(LR,Ter)
is not Ter-distinguishable. Our characterization theorem implies that LR is
not Ter-distinguishable either. A similar argument shows that LR is not σ1-
distinguishable. On the contrary, LR is σ2-distinguishable. This can be seen by
looking at A(LR, σ2).

5 Inference Algorithm

We present an algorithm which receives an input sample set I+ = {w1, . . . , wM}
(a finite subset of the language L ∈ f -DL to be identified) and finds the smallest
language L′ ∈ f -DL which contains I+.

The prefix tree acceptor PTA(I+) = (Q,T, δ, q0, QF) of a finite sample set
I+ = {w1, . . . , wM} ⊂ T ∗ is a deterministic finite automaton which is defined as
follows: Q = Pref(I+), q0 = λ, QF = I+ and δ(v, a) = va for va ∈ Pref(I+).

A simple merging state inference algorithm f-Ident for f -DL now starts
with the automaton A0 = PTA(I+) and merges two arbitrarily chosen states q
and q′ which cause a conflict to the first or the third of the requirements for f -
distinguishing automata.1 This yields an automaton A1. Again, choose two con-
flicting states p, p′ and merge them to obtain an automaton A2 and so forth, until
one comes to an automaton At which is f -distinguishable. In this way, we get
a chain of automata A0, A1, . . . , At. Observe that each Ai is stripped, since A0

is stripped. In a fashion analogous to the algorithm ZR designed by Angluin for
inferring 0-reversible languages, a description of the algorithm f-Ident, where
f : T ∗ → F , can be given as follows:

Algorithm 1 (f-Ident).
Input: a nonempty positive sample I+ ⊆ T ∗.

1 One can show that the second requirement won’t ever be violated when starting the
merging process with A0 which trivially satisfies that condition.

Algorithms for Learning Function Distinguishable Regular Languages 69

Output: A(L, f), where L is the smallest f -distinguishable language containing I+.

*** Initialization

Let A0 = (Q0, T, δ0, q0,0, QF,0) = PTA(I+).

For each q ∈ Q0, compute f(q).

Let π0 be the trivial partition of Q0.

Initialize the successor function s by defining s({q}, a) := δ0(q, a) for q ∈ Q0, a ∈ T .2

Initialize the predecessor function p by p({q}, a) := (q′, f(q′)), with δ0(q
′, a) := q.3

Let LIST contain all pairs {q, q′} ⊆ Q0 with q �= q′, q, q′ ∈ QF,0 and f(q) = f(q′).
Let i := 0.

*** Merging

While LIST�= ∅ do begin

Remove some element {q1, q2} from LIST.

Consider the blocks B1 = B(q1, πi) and B2 = B(q2, πi).

If B1 �= B2, then begin

Let πi+1 be πi with B1 and B2 merged.

For each a ∈ T , do begin

If both s(B1, a) and s(B2, a) are defined and not equal,

then place {s(B1, a), s(B2, a)} on LIST.

If s(B1, a) is defined, then set s(B1 ∪ B2, a) := s(B1, a);

otherwise, set s(B1 ∪ B2, a) := s(B2, a).

For each z ∈ F , do begin

If there are (pi, z) ∈ p(Bi, a), i = 1, 2, then:

If B(p1, πi) �= B(p2, πi), then place {p1, p2} on LIST.

Set p(B1 ∪ B2, a) := p(B1, a).

If (p2, z) ∈ p(B2, a) then:

If there is no p1 with (p1, z) ∈ p(B1, a),

then add (p2, z) to p(B1 ∪ B2, a).

end *** for z

end *** for a

Increment i by one.

If i = |Q0| − 1, then LIST= ∅.
end *** if

end *** while

An induction shows that any pair {q, q′} ever placed on LIST obeys f(q) = f(q′).

Example 1. Let us illustrate the work of f-Ident by means of an example
(with f = Ter): Consider I+ = {bc, bac, baac}. Since Ter(bac) = Ter(baac),
initially (only) the state pair {bac, baac} of the PTA is placed onto LIST. In
the first pass through the while-loop, these two states are merged. Since both
s({bac}, u) and s({baac}, u) are undefined for any letter u, s({bac, baac}, u) will
be also undefined. Since Ter(ba) = Ter(baa), the pair {ba, baa} is placed on
LIST when investigating the predecessors. In the next pass through the while-
loop, {ba} and {baa} are merged, but no further mergeable pairs are created,
2 According to the initialization, both s and p may be undefined for some arguments.
3 Note that this state q′ is uniquely defined in PTA(I+).

70 Henning Fernau and Agnes Radl

since in particular, the predecessors b and ba of ba and baa, respectively, have
different Ter-values. Hence, the third transition function δinferred of Table 1 is
inferred; for clarity, we indicate the Ter-values of the states in the first column
of the table.

The somewhat peculiar names of the states were chosen in order to make the
comparison with the Ter-distinguishable automaton presented in Section 4 easier
for the reader. In terms of the block notion used in the inference algorithm, we
have 0 = {λ}, 1 = {b}, 1′ = {ba, baa}, 3 = {bc}, and 3′ = {bac, baac}. Observe
that the resulting automaton is not the minimal automaton of the obtained
language ba∗c, which is obtainable by merging state 1 with 1′ and state 3 with 3′.

Theorem 2 (Correctness, see [4]). If L ∈ f -DL is enumerated as input to
the algorithm f-Ident, it converges to the f -canonical automaton A(L, f).
�

Here, we will give a detailed complexity analysis valid for the popular RAM
computation model where arbitrarily large integers fit into one register or mem-
ory unit. This means that values of the s and p functions can be compared in
unit time. The following analysis is based on an implementation which uses the
operations UNION (of two disjoint subsets, i.e., classes, of a given n-element
universe) and FIND (the class to which a given element belongs).4

Theorem 3 (Time complexity). By using a standard union-find algorithm,
the algorithm f-Ident can be implemented to run in time

O(α(2(|F | + 1)(|T | + 1)n, n)(|F | + 1)(|T | + 1)n),

where α is the inverse Ackermann function5 and n is the total length of all words
in I+ from language L, when L is the language presented to the learner for f -DL.

Proof. In any case, PTA(I+) has basically n states; these states comprise the
universe of the union-find algorithm. UNION will be applied no more than n−1
times, since then the inferred automaton will be trivial,

How many FIND operation will be triggered? Two FIND operations will be
needed to compute the blocks B1 and B2 to which a pair (q1, q2) taken from
LIST belongs. Apart from the initialization, a certain number of new elements
is put onto LIST each time a UNION operation is performed. More precisely,
each letter a ∈ T may cause {s(B1, a), s(B2, a)}, as well as |F | “predecessor
pairs” {p1, p2}, to be put onto LIST. In the initialization phase, no more than
min{|F |2, n2} elements are put onto LIST. So, no more than

(|F | + 1)|T |(n− 1) + min{|F |2, n2} ≤ (|F | + 1)(|T | + 1)n

elements are ever put onto LIST.
�
4 A thorough analysis of various algorithms is contained in [15]. A simplified analysis

can be found in [3]. Angluin’s algorithm ZR for 0-reversible languages works similarly.
5 For the exact definition of α, we refer to [15].

Algorithms for Learning Function Distinguishable Regular Languages 71

Observe that this basically leads to an O(α(|T |2k+1n, n)|T |2k+1n) algorithm
for k-reversible languages; but note that we output a different type of canonical
automata compared with Angluin. When k is small compared to n (as it would be
in realistic applications, where k could be considered even as a fixed parameter),
our algorithm for k-reversible language inference would run in nearly linear time,
since the inverse Ackermann function is an extremely slowly growing function,
while Angluin [1] proposed a cubic learning algorithm (always outputting the
minimal deterministic automaton). Similar considerations are also true for the
more involved case of regular tree languages [9].

Note that the performance of f-Ident depends on the size of Af (since the
characteristic sample χ(L, f) we defined above depends on this size) and is in
this sense “scalable”, since “larger” Af permit larger language families to be
identified. More precisely, we can show:

Theorem 4. Let f and g be distinguishing functions. If Af is a homomorphic
image of Ag, then f -DL ⊆ g-DL.
�

This scalability leads to the natural question which distinguishing function
one has to choose in one’s application.

Let us assume that the user knows several “typical” languages L1, . . . , Lr.
Possibly, the choice of fL1 × · · · × fLr as distinguishing function has a range
which is too large for practical implementation. Recall that the identification
algorithm proposed in [4] exponentially depends on the size of the range of the
distinguishing function. Therefore, the following problem is of interest:
Problem: Given L1, . . . , Lr, find a distinguishing function f with minimal range
such that L1, . . . , Lr lie all within f -DL. Although we expect this problem to be
NP-hard, we have yet no proof. We even suspect the problem is hard if r = 1.

6 A Retrievable Implementation

Under www-fs.informatik.uni-tuebingen.de/~fernau/GI.htm, the program
inference written in C++ can be retrieved. Usage:
inference -a [-k|-t|-kn|-tn] [fdist] sample

You can specify your own distinguishing function in the file fdist as the tran-
sition relation of a finite automaton. The format of fdist is a table where the rows
are terminated by line feeds or by carriage returns and line feeds. Columns are
separated by space characters or tabs or both. fdist must contain all the symbols
used in sample. The learner generalizes according to the specified algorithm and
writes the inferred automaton to standard output.

If the -k or -t option is given, fdist will be ignored. The -k option invokes a
k-reversible inference algorithm. If k is followed by a positive integer n, σn will
be used as the distinguishing function, else σ0 will be used. The -t option causes
the learner to use Ter as the distinguishing function—basically corresponding
to the terminal distinguishable languages. If -t is followed by a positive integer
n, Tern will be used as the distinguishing function. As an example, consider

72 Henning Fernau and Agnes Radl

invoking inference -a -t sampleRN with the samples bc, bac, dc, daac, baac
and daaaac listed in the file sampleRN; this yields δTer from Table 1.

Moreover, the program can be used to infer document type definitions (DTD)
for XML documents base on the inference of function distinguishable languages,
as explained in [7]. Usage:
inference -x [-k|-t|-kn|-tn] xml-doc [dtd-file]
Most of the options are used as explained before. Additionally, the created DTD
rules will be written to the file dtd-file, if specified. An existing file dtd-file will
be overwritten. Note that the DTD will most probably be incomplete because
no attribute rules are inferred.

As a peculiarity, let us finally mention the 1-unambiguity requirement for
DTDs: If some rule violates this requirement, the DTD-rule will be
<!ELEMENT tag ANY >.
The one-unambiguity is checked according to [2].

At the mentioned website you can also find a similar program for learning
regular tree languages, also see [9].

References

1. D. Angluin. Inference of reversible languages. J. of the ACM, 29(3):741–765, 1982.
64, 66, 71

2. A. Brüggemann-Klein and D. Wood. One-unambiguous regular languages. Infor-
mation and Computation, 142(2):182–206, 1998. 72

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd. edition, 2001. 70

4. H. Fernau. Identification of function distinguishable languages. In H. Arimura,
S. Jain, and A. Sharma, editors, Proceedings of the 11th International Conference
Algorithmic Learning Theory ALT 2000, volume 1968 of LNCS/LNAI, pages 116–
130. Springer, 2000. 64, 66, 70, 71

5. H. Fernau. k-gram extensions of terminal distinguishable languages. In Interna-
tional Conference on Pattern Recognition (ICPR 2000), volume 2, pages 125–128.
IEEE/IAPR, IEEE Press, 2000. 66

6. H. Fernau. Approximative learning of regular languages. In L. Pacholski and
P. Ružička, editors, SOFSEM’01; Theory and Practice of Informatics, volume 2234
of LNCS, pages 223–232. Springer, 2001. 65

7. H. Fernau. Learning XML grammars. In P. Perner, editor, Machine Learning
and Data Mining in Pattern Recognition MLDM’01, volume 2123 of LNCS/LNAI,
pages 73–87. Springer, 2001. 65, 72

8. H. Fernau. Parallel communicating grammar systems with terminal transmission.
Acta Informatica, 37:511–540, 2001. 65

9. H. Fernau. Learning tree languages from text. In J. Kivinen, editor, Conference
on Learning Theory COLT’02, to appear in the LNCS/LNAI series of Springer.
71, 72

10. E. M. Gold. Language identification in the limit. Information and Control, 10:447–
474, 1967. 64

11. J. Gregor. Data-driven inductive inference of finite-state automata. International
Journal of Pattern Recognition and Artificial Intelligence, 8(1):305–322, 1994. 64

Algorithms for Learning Function Distinguishable Regular Languages 73

12. C. de la Higuera. Current trends in grammatical inference. In F. J. Ferri et al.,
editors, Advances in Pattern Recognition, Joint IAPR International Workshops
SSPR+SPR’2000, volume 1876 of LNCS, pages 28–31. Springer, 2000. 64

13. V. Radhakrishnan. Grammatical Inference from Positive Data: An Effective Inte-
grated Approach. PhD thesis, Department of Computer Science and Engineering,
Indian Institute of Technology, Bombay (India), 1987. 64, 66, 68

14. V. Radhakrishnan and G. Nagaraja. Inference of regular grammars via skeletons.
IEEE Transactions on Systems, Man and Cybernetics, 17(6):982–992, 1987. 64,
65

15. R. E. Tarjan and J. van Leeuwen. Worst-case analysis of set union algorithms. J.
of the ACM, 31:245–281, 1984. 70

	Algorithms for Learning Function Distinguishable Regular Languages
	Introduction
	General Definitions
	Function Distinguishable Languages
	An Extended Example
	Inference Algorithm
	A Retrievable Implementation

