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Abstract. This article presents a method suitable for the characteri-
zation of fishes evolving in a basin. It is based on the analysis of video
sequences obtained from a fixed camera. One of the main difficulties of
analyzing natural scenes acquired from an aquatic environment is the
variability of illumination. This disturbs every phase of the whole pro-
cess. We propose to make each task more robust. In particular, we pro-
pose to use a clustering method allowing to provide species parameters
estimates that are less sensitive to outliers.

1 Introduction

Segmentation of natural scenes from an aquatic environment is a very difficult
issue due to the variability of illumination [17]. Ambient lighting is often insuffi-
cient as ocean water absorbs light. In addition, the appearance of non-rigid and
deformable objects detected and tracked in a sequence is highly variable and
therefore makes identification of these objects very complex [13]. Furthermore,
recognition of these objects represent a very challenging problem in computer
vision. We aim at developing a method suitable to the characterization of classes
of deformable objects in an aquatic environment in order to make their online
and real-time recognition easier to a vision-based system. In our application, the
objects are fishes of different species evolving in a basin of the Aquarium of La
Rochelle (France). The method we propose is composed of the following tasks:

1. scenes acquisition: a basin of the aquarium is filmed by a fixed CDD camera
to obtain a sequence in low resolution (images of size 384 x 288);

2. region segmentation: color images are segmented to provide the main regions
of the each scene;

3. feature extraction and selection: different features (e.g. color, moments, tex-
ture) are computed on each region, then selected to form pattern vectors;

4. species characterization: pattern vectors are clustered using a robust mixture
decomposition algorithm.
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2 Segmentation

Image segmentation is a key step in an object recognition or scene understanding
system. The main goal of this phase is to extract regions of interest corresponding
to objects in the scene [9]. Obviously, this task is more difficult for moving objects
as fishes or parts of fishes.

Under the assumption of almost constant illumination and fixed camera,
the motion detection is directly connected to temporal changes in the intensity
function of each pixel (z,y). Then, background substraction is usually applied
to segment the moving objects from the remaining part of the scene [10][3]. By
assuming that the scene background does not change over successive images,
the temporal changes can be easily captured by subtracting the background
frame Ipger(, y) to the current image I(z,y,t) at time ¢t. The obtained image is
denoted Iy (z,y,t). However, such detection of temporal changes are not robust
to illumination changes and electronic noise of the camera. A solution consists in
updating dynamically the background image by Ipqer (2, y,t) = Zi:l I(x,y,s)/t.
Since obtaining a suitable background requires numerous images, Ipock (2, y, t =
1) is initialized off-line (from another available sequence). Then, thresholding
the difference image provides the so-called binary difference picture:

o 1 if |Isub(xay7t)| > T

Lyin (2, y,t) = {O otherwise (1)

When color images are available, e.g. in the three dimensional color space
RGB (Red, Green and Blue), one can proceed for each color plane. Three corre-
sponding binary difference pictures I, (x,y,t), IS, (x,y,t) and IZ (x,y,t) are
combined to compute the segmented image:

e (TR _ G _ B _
Loy (1) = 1 if (Ibm.(x,y,t) =1lor I}, (z,y,t) =1) or I; (z,y,t) =1)
0 otherwise

(2)

Thresholds are fixed empirically according to the sequence properties. Fig-
ure 1 shows: (a) an individual frame in the sequence, (b) the reconstructed
background and (c) the resulting segmented image with 7 = 40, 7¢ = 30 and
75 = 35. Note that changes in illumination due to the movement of water induce
false alarms as one can see at the top right part of (c).

3 Feature Extraction and Selection

Regions issued from the segmentation process can be used as objects for the
identification task. 38 features of different types, e.g. in [18], are extracted from
each object:

— Geometric features directly relate to the objects’ shape, e.g. area, perimeter,
roundness ratio, elongation, orientation. Note that the wide variety of pos-
sible orientations of fishes to the camera focal axis makes geometric features
inappropriate. A fish which is parallel to the image plane will exhibit its
main shape while another one being orthogonal will not.
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(c) Segmentation result Iseq(x,y,t)

Fig. 1. From an input image to segmented regions

— Photometric parameters are descriptors of the gray level distribution or the
different color ones, e.g. maximum, minimum, mean and variance.

— Texture features are computed from the co-occurrence matrix, e.g. contrast,
entropy, correlation.

— Moments of Hu which are known to be invariant under translation, scaling
and rotation. Only the first four ones showed significant values.

— Motion features are computed from two consecutive frames within a se-
quence. Correspondence between regions from frame ¢ and t + 1 are es-
tablished with respect to geometric and photometric features. A classical
hypothesize-and-verify scheme [2] is used to solve this correspondence prob-
lem which is similar to the correspondence problem in stereo [11] except that
a geometric constraint (a disparity-window centred around the each region’s
centroid) replaces the epipolar one. The extracted features are the centroid
displacement and the angle of this displacement. Note that some regions do
not match because of occlusion, disappearance and appearance of objects.
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Feature reduction is motivated by making the characterization process easier
and speeding the recognition step up to achieve a real-time processing. In order
to eliminate features which are either not useful or redundant, we have selected
the most pertinent features in a two-stage process:

1. Group-based clustering: To make sure that every features group is rep-
resented in the reduced feature space, a hierarchical clustering algorithm is
applied to each group with respect to the minimization of an aggregation
measure, e.g. the increase of intra-cluster dispersion for Ward’s method [1].
Cutting the hierarchy to a significant value leads to a partition of the fea-
tures in clusters. Among the features within a cluster, the most discrimina-
tory powerful one is selected and the others are discarded. We recall that the
discriminatory power of a feature is its usefulness in determining to which
class an object belongs.

2. Global clustering: In order to check whether some features from different
groups are similar or not, the same clustering method is globally applied to
the remaining features.

4 Species Characterization

From a statistical point of view, each extracted region being described by p
features can be considered as a realization x of a p-dimensional random vec-
tor X [8]. We have then to estimate the Probability Density Function (pdf) f(z)
from a set of realizations x = {z1,...,zn}, i.e. featured regions. In mixture
model approach, f(x) is decomposed as a mixture of C' components:

c
Fl@) =" mef(x;0k) (3)
k=1

where f(z;60;) denotes the conditional pdf of the k** component and pairs
(7, 0% ) are the unknown parameters associated with the parametric model of the
pdf [12]. A priori probabilities 7; sum up to one. If a normal model is assumed,
0r = (ur, Xx)” reduces to the mean u; and the covariance matrix Y. Under
the assumption of independent features of X, estimates of the model parameters
O =(m,...,mc,07,...,05)" can be chosen such as the likelihood £(O)

N ©
L) =Px|0) =] D mrf(aibr) (4)

i=1 k=1
is maximized.
To solve this estimation problem, the EM (Expectation-Maximization) al-

gorithm [5] has been widely used in the field of statistical pattern recognition
because of its convergence. However, it is sensitive to outliers as pointed out
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in [15]. This is a major drawback in the context of our application because
incorrectly segmented regions can disturb the estimation process. Several strate-
gies to robust clustering are available, including:

1. contamination models of data, e.g. fitting Student distributions [14],
2. influence functions of robust statistics, e.g. using an M-estimator [6],
3. adding a class dedicated to noise, e.g. Fuzzy Noise Clustering (FNC) [4].

We propose to use a robust clustering method (based on EM algorithm) that

is a combination of the first two types [15]. Each component is modelled as a
mixture of two sub-components:
F@;0k) = (L= )N (25 gy D) + 1N (25 o, 0k X)) ()

(4) (B)

where N stands for the gaussian multivariate pdf.

First term (A) intends to track cluster kernel points while second term (B) allows
to take into account surrounding outliers via multiplicative coefficients ;. These
v, and ay control respectively the combination of the two sub-components and
the spread of the second one by modifying its variance. Parameters of both sub-
components are estimated through different estimators so that the conditional
pdf is estimated by:

F@;08) = (1 — )N (5 i, D) + N (@5 i, e S (6)

where fig, fk are robust estimates whereas jig, ﬁk are standard ones. Among the
possible M-estimators to be used, e.g. Cauchy, Tuckey, Huber, we have chosen
the Huber M-estimator [7] because it performs well in many situations [19]. Tt
is parametrized by a constant value h that controls the size of the filtering area.
Such an estimator is an influence function ¥ (y, h), e.g. the Huber one:

yif [yl <h

1/)Huber (ya h) = {h Sgn(y) otherwise

(7)

This function allows to associate a weight w(y, h) = as a decreasing func-

Y(y;h)
Yy
tion of y, e.g. the Huber one:

Tif |y <h

Whuber (yv h) = { ﬁ otherwise
Y

(8)
We apply it to the distances between each point z; and the cluster prototypes
in order to compute a weight w; associated with each x;. According to the equa-
tion (8), all w; belong to [0, 1] and outlying points are given a zero weight (see
Figure 2).

Algorithm 1 replaces the parameters updating in the M-step of the EM algo-
rithm. The more iterations, the less points are taken into account in the es-
timation process, so that one needs to use a stop criterion in order to ensure
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Fig. 2. Huber M-estimator weight as a function of distance y and threshold A

H 1: Iterative robust estimation of means and covariance matrices

Input: x = {x1,...,2N}, Zir current estimates of P(Cj|x;) from the E-Step,
h the M-estimator threshold

Eili1 Zik i

fik = i =

Ez‘lil Zik
N 4. L~ .~ \T
I A D (fUzN ufg)(:cz i)
2z Zik
repeat
for i = 1to Ndo
di = (wi — fue)" D (@i — fir) (Mahalanobis distance)
Wi = Whuber (di, h) (Huber M-estimator weight function - see Fig. 2)

Sy wi e (@i — i) (@i — in)"

2= N ~
Dim1 Wi Zik

until Stop Criterion;

sufficient statistics. We use a combination of maximum number of iterations and
maximum elimination rate (proportion of sample having a quite zero weight).
It can be shown that the property of monotonous increase of log-likelihood of
the EM algorithm no more holds because the iterative estimation process yields
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an approximated realization of the maximum log-likelihood estimator. However,
relaxing the maximum likelihood estimation principle allows to obtain more ac-
curate estimates.

5 Experiments and Discussion

A sequence of 550 images was acquired in the Aquarium of La Rochelle, the filmed
basin comprising 12 species. After segmentation and false alarms discarding, 5009
regions were obtained and labelled according to the different species. The first
feature selection step (group-based clustering) allowed to reduce the 38 original
attributes to 22 ones while the second step (global clustering) allowed to keep

only 18 of them (see Table 1 for details), representing a compression rate greater
than 52%.

Table 1. Summary of features selection

|Number of features |Bef0re selection|Group—based clustering|Global clustering

Geometric 10 4 4
Photometric 14 7 5
Texture 7 5 4
Moments of Hu 4 3 2
Motion 3 3 3
Total 38 22 18
Compression rate (%) 42.11% 52.63%

At least two features of each group are present in the final set of 18 selected
features:

Geometric feautures: width, elongation, roundness ratio and orientation.

— Photometric feautures: gray-level mean, minimum and variance ; blue aver-
age and minimum of the color.

Texture features: entropy, contrast, homogeneity, and uniformity.

— Moments of Hu: second and third moments of Hu.

Motion features: vector and angle of displacement.

During the labelling, we have noticed that different species were indeed sub-
species members of which look very similar, e.g. subspecies Acanthurs bahianus
and Acanthurs chirurgus shown in Figure 3. We decided to merge such sub-
species decreasing the number of classes to 8. This choice was validated by the
BIC (Bayesian Information Criterion) using unconstrained normal classes [10].
As labels were available and under the assumption of gaussian classes, class pa-
rameters 0 = [uP XP ... uP XP] were computed directly from training 5009
samples.
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Our goal was to provide as accurate as possible class parameters estimates
with an unsupervised technique in order to characterize the fish species. We
applied our clustering algorithm several times under random initializations. Pa-
rameters v, ax and h were fixed empirically and identical for each class (v, = 7
and ap = «a). According to the semantics of theoretical model of classes, only
robust estimates 6 = [fix, 2] were considered (k = 1,¢). In order to assess
the species characterization, a distance between 8 and the final estimated pa-
rameters provided by the algorithm was calculated. Because of possible labels
switching in class numbering, optimal permutation ¢* was obtained by comput-
ing the minimum over all possible permutations o:

c
A(GD, 0, ") = min <Z diSfM(ezga éo(k))> )
k=1

where dist o, is the Mahalanobis distance between two normal distributions:

dist pm(Or, 01) = dist ag (g Sy p, 21) = (e — p) " (S + 20~ e — ) (10)

A value of 15.07 was obtained for A(0P,6,0*). Using the EM algorithm,
standard estimates 0 are involved, so (9) becomes A(07, 0, c*). In this case, we
obtained a value of 20.30. This clearly shows the advantage of including robust
estimators as well as a contamination model.

(a) Acanthurs bahianus (b) Acanthurs chirurgus

Fig. 3. Specimens from different subspecies to be merged

6 Conclusion

In this paper, we address the problem of characterizing moving deformable ob-
jects in an aquatic environment using a robust mixture decomposition based
clustering algorithm. Despite several difficulties in our application, particularly
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changes in illumination conditions induced by water, preliminary experiments
showed that our approach provides better estimates than the EM algorithm.
Further investigations will concern the automatic selection of the different coef-
ficients involved in the model and the test of non normal models.
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