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Abstract. Data projection is a commonly used technique applied to
analyse high dimensional data. In the present work, we propose a new
data projection method that uses genetic algorithms to find linear pro-
jections, providing meaningful representations of the original data. The
proposed technique is compared with well known methods as Principal
Components Analysis (PCA) and neural networks for non-linear dis-
criminant analysis (NDA). A comparative study of these methods with
several data sets is presented.

1 Introduction

Data projection is a commonly used technique applied to exploratory data anal-
ysis [3]. By projecting high dimensional data into a 2- or 3-dimensional space,
a better understanding of the structure of the data can be acquired. Charac-
teristics such as clustering tendency, intrinsic dimensionality, similarity among
families or classes, etc. can be studied on a planar or tridimensional projection,
which also can help to build a classifier or another statistical tool [12][3].

Data projection methods can be divided into linear and non-linear, depending
on the nature of the mapping function [7]. They can also be classified as super-
vised or unsupervised, depending on whether the class information is taken into
account or not. The best known linear methods are Principal Component Anal-
ysis, or PCA (unsupervised), Linear Discriminant Analysis or LDA (supervised)
[3], and projections pursuit [2]. Schematically, PCA preserves as much variance
of the data as possible, LDA tries to group patterns of the same class, separating
them from the other classes, and, finally, projection pursuit tries to search projec-
tions in which points do not distribute normally. On the other hand, well known
non-linear methods are: Sammon’s Mapping (unsupervised) [10] , non-linear dis-
criminant analysis, or NDA (supervised) [8] and Kohonen’s self-organising map
(unsupervised) [6]. Sammon’s mapping tries to keep the distances among the ob-
servations using hill-climbing or neural networks methods [8][10], NDA obtains
new features from the coefficients of the hidden layers of a multi-layer perceptron
(MLP) and Kohonen Maps project data trying to preserve the topology.
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In the present paper, a new linear supervised data projection method referred
to as GLP (genetic linear projection) is proposed. The goal of this method is
to find a set of linear projections maximising a certain criterion function. In
this work, the accuracy of a Nearest Neighbour classifier has been used as the
criterion to maximise. The optimisation is performed by means of a genetic
algorithm (GA) [5] [1].

In Section 2 we describe the GLP algorithm, in Section 3 a comparison be-
tween a linear method (PCA), a non-linear method (NDA) and the proposed
GLP algorithm over several data sets is presented. Finally, some conclusions
and further works are presented in section 4.

2 Genetic Linear Projection (GLP)

A linear projection (LP) is defined as follow,
LP(z) = c1x1 + cox1 + . .. cqa,

where x is a d-dimensional vector with components z;, and ¢; are the projections
coefficients representing the projection axis.

The GLP searches for m (being m the projected space dimensionality) LP’s
at the same time, optimising the accuracy rate of a Nearest Neighbour classifier.
The goal of using this criterion is to preserve the class structure of the data
in the projected space. Since the projections obtained are always linear, the
representation does not produce an excessive distortion of the original space and
therefore the observed data is directly related to the original data.

This criterion does not impose the orthogonality of the projections, as op-
posed to methods such as PCA or LDA, neither forces the recomputation of the
data distribution after choosing each new axis, as in Projection Pursuit.

The number of parameters to estimate by GLP is m x d, since a linear
projection is defined by d coeflicients, being d the dimensionality of the original
data, and m the dimension of the projected space. If we want to project high-
dimensional data, the number of parameters to estimate will be large. For that
reason, we propose a Genetic Algorithm to carry out the optimisation.

Genetic Algorithms have proved to be specially useful on large search
spaces [4]. We have used a GA with the following properties:

— An individual is composed of m chromosomes representing the m LP’s to
search. Each chromosome contains d genes, holding each a binary string of b
bits that encodes a coefficient of the LP in fixed point format.

— For the fitness function, the computed accuracy of a Nearest Neighbour
classifier trained with the projected data obtained from the linear projection
coded in the individual is used.

— As a genetic selection scheme, a rank-based strategy [9] has been used. In this
strategy, the probability of being selected is computed from the rank position
of the individuals. This method gave in our case a faster convergence than
a fitness-proportionate method.
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— Finally, the following setting are used for the rest of parameters: crossover
probability is 0.6, mutation probability is 0.001, population size is 100, and
the maximum number of generations is 300.

Finally, because to estimate the accuracy of a Nearest Neighbour classifier is
a time consuming task. A micro-grain parallel GA [11] has been implemented to
reduce computational time. In these algorithms several computers are used to
compute individual fitness functions, obtaining a linear speedup.

3 Comparative Study

3.1 Methodology

In this section our GLP method will be compared with the well known PCA
(linear, unsupervised) and NDA (non-linear, supervised) methods. The three
methods will be applied to four data sets in order to obtain 2-dimensional pro-
jections. The data sets used are described below.

— Digits. This is a high-dimensional data set containing 3000 patterns, repre-
senting 128 x 128 images of hand-written digits. Each pattern is obtained by
resizing images to 14 x 14 and using gray values as features. The dimension
of the data is 196.

— IRIS. This data set, obtained from the UCI repository [1], consists of 150
4-dimensional pattern from 3 classes. It contains four measurements on 50
flowers from each of three species of the Iris flower.

— Cookies. This synthetic corpus consists of two 10-dimensional normal distri-
butions with

0.00010---0
0 1---0

Y1 =2s = R
0 0---1

1 = (+0.1,0,0,...) and pe = (—0.1,0,0,...), having each class 1000 pat-
terns. These distributions represent two hyperspehers flattened (like cookies)
in the dimension they are separated. This data set represents a well known
case in which PCA does not work well because the maximal scattered axes
are not the most significant.

— Page Blocks. This corpus, also obtained from the UCI repository, consists of
5473 10-dimensional patterns representing block documents. Each pattern is
represented by 10 features representing geometrical and image properties of
the segmented blocks. Blocks are classified into 5 classes.

The performance of these methods will be first compared by means of visual
judgement over the 2-dimensional projections obtained from the data sets. And
then by means of the error rate of a Nearest Neighbour classifier (Eyy) computed
for each data set in the original and projected spaces. This quantitative criterion
shows how well the class structure is preserved by the projections.
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Fig. 1. Digits data set 2D projections using: a) PCA, b) GLP and c¢) NDA
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Fig. 2. Cookies data set 2D projections using: a) PCA, b) GLP and ¢) NDA
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Fig. 3. Iris data set 2D projections using: a) PCA, b) GLP and ¢) NDA
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Fig. 4. Page Blocks data set 2D projections using: a) PCA, b) GLP and ¢) NDA
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Table 1. Average error rates (%) of the Nearest Neighbour classifier (Eny)
computed over the four data sets

| | Digits | Iris |Cookies |Page Blocks|
[ORIGINAL[ 33 | 40 [ 04 | 92 |

PCA 56.3 4.0 42.7 11.4
GLP 24.0 £ 4.4(0.6 £ 0.6/0.3 £ 0.4] 3.9 £0.8
NDA 0.2 +04|3.7£1.3/0.0 £ 0.0 8515

3.2 Results

These data sets have been projected into a 2-dimensional space. In the case of
GLP and NDA methods, 10 runs have been averaged for each data set with
different initialisations values. The number of generations necessary to obtain
GLP convergence for the Digits, Cookies, Iris and Page Blocs data sets was 300,
50, 25 and 50 respectively.

As can be seen from Figure 1a and 2a, PCA projections are not particularly
meaningful for the Digits and Cookies data sets. In them, the directions of max-
imal data scatter are not interesting. Nevertheless, the projections obtained for
the Iris and Page blocks data sets (Figures 3a and 4a) give an interesting view of
the data structure. On the other hand, while GLP projection obtains a view of
the Iris data set (Figure 3b) similar to the PCA projection, a more interesting
view of the rest of data sets is obtained because the class information is con-
sidered. In Figure 2b, the cluster structure of the Cookies data set appears now
clearly. In the same way, a much more meaningful view of the cluster structure
from the Digits data set (Figure 1b) can be seen. Finally, the NDA projection
shows the power of a supervised non-linear method extracting the cluster struc-
ture of the data sets. In the case of the digits data set, an remarkable view of
its strong cluster structure can be seen (Figure 1c).

On the other hand, the study of Exn values (Table 1) leads to similar con-
clusions. PCA obtains poor results for the Digits data set, this is not surprising
considering that the original space is 196-dimensional. Results for the Cookies
data set are particularly bad because the projection found by PCA, completely
mixes the classes. GLP outperforms clearly PCA specially for this data set be-
cause the optimal projection is found. The NDA method shows that non-linear
transformations are necessary to extract the class structure of the data when
the intrinsic dimensionality is higher than the projected space dimensionality,
this can be shown by the results obtained for data set Digits. For the remaining
data sets, similar Exy values as in the GLP method have been obtained. In
some cases, the GLP method outperforms NDA, although the GLP algorithm is
oriented to optimise this criterion, and therefore small differences of Exn values
are not important.
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4 Conclusions

From the results obtained, it can be concluded that NDA projections outperform
our GLP method for high dimensional data. In these cases, the NDA projection
is able to extract the class structure even in a 2-dimensional projection. Nev-
ertheless, we consider that NDA shows two important drawbacks. In the first
place, because non-linear transformations are used, an important distortion of
the original space is obtained, specially when projecting into a 2-dimensional
space, trying to preserve the class structure. In these situations, a synthetic
view of the configuration of real clusters is obtained. Moreover, the process of
training an NDA neural network is not straightforward in many cases. The GLP
method uses linear transformations, producing less distorted and more mean-
ingful views of the original space (distortion can appear because the new axes
are not necessarily orthogonal). Additionally, this method does not present the
convergence problems of NDA networks. The PCA method is linear and does not
present convergence problems, but it is an unsupervised method and therefore,
the projections computed do not always show a good view of the class structure
if the discriminant axes are not the ones with the higher variance.
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