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Abstract. We reinterpret the morphologically unbiased ’tomographic’
method of multiple classifier combination developed previously by the au-
thors as a methodology for graphical PDF correlation. That is, the origi-
nal procedure for eliminating what are effectively the back-projection ar-
tifacts implicit in any linear feature-space combination regime is shown to
be replicable by a piecewise morphology matching process. Implementing
this alternative methodology computationally permits a several orders-
of-magnitude reduction in the complexity of the problem, such that the
method falls within practical feasibility even for very high dimensional-
ity problems, as well as resulting in a more intuitive description of the
process in graphical terms.

1 Introduction

Within the field of machine learning there has been a considerable recent interest
in the development of Multiple Classifier Systems [1-6], which seek to make use
of the divergence of classifier design methodologies to limit a priori impositions
on the morphology applicable to the decision boundary, such that a consistent
boost in classification performance is observed.

In establishing a general theoretical framework for such approaches, the au-
thors have determined previously [7-10] that classifier combination in virtually
all of its variant forms has an aspect which may be regarded as an approximate
attempt at the reconstruction of the combined pattern space by tomographic
means, the feature selection process in this scenario constituting an implicit
Radon integration along the lines of the physical processes involved in NMR
scanning, etc (albeit of a multi-dimensional nature). It was thereby ascertained
that an optimal strategy for classifier combination can be achieved by appropri-
ately restructuring the feature-selection algorithm such that a fully-constituted
tomographic combination (rather than its approximation) acts in its most ap-
propriate domain: that is, when the combination is comprised of classifiers with
distinct feature sets.
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As in medical imaging, this fully constituted tomographic combination neces-
sarily involves the application of a deconvolution procedure to a back-projected1

space, which, in the context of pattern-recognition, we were able to demonstrate
amounted to the composite probability density function (PDF) constructed im-
plicitly by the Sum-Rule decision scheme [7]. In conventional implementations
of tomography [eg 11], such deconvolution is most usually accomplished via a
collective prior filtering of the Radon integrals. This would take the form of a
differentiation operator that acts to remove what, in the reconstructive space,
would (for the case of perfect angular sample coverage) amount to convolution by
an |1/r| function. The very low angular sampling implied by feature-selection,
however, means that only the broadest-scale structure of the back-projection
artifacts can be removed in this fashion, leaving a deconvolution with angular
artifacts that are still overtly and unrepresentatively correlated with the feature
axes - precisely the eventuality that we are seeking to eliminate, having tested
for the possibility of actual correlation at an earlier stage of feature selection.

The most appropriate approach [8] to removing these spurious correlations
is therefore that of unfiltered (post-)deconvolution, via an adaptation of a pro-
cedure developed for use with astrophysical data: namely, the Högbom decon-
volution algorithm [12], which was specifically engineered for the removal of
telescopically-correlated morphology. The iterative nature of this technique al-
lows a piece-by-piece removal of systematic artifacts such that, in its unmodified
and mathematically ideal form, the procedure can be considered to impose an
a priori condition of least possible dependence of the recovered morphology on
the individual classifiers’ feature-axis geometry. Thus, the procedure embodies
a distinct methodology for distinguishing between the degenerate solutions that
all methods of deconvolution are required to address whenever there exist zeros
in the Fourier transform of the entity to be deconvolved.

It is, however, possible to view the degenerate form that the Högbom method-
ology reduces to in the particular environment of the stochastic domain from an
entirely different perspective: that of graphical PDF correlation. In setting out
this relation precisely, we shall first seek to describe how the Högbom algorithm
is implemented within the Sum-Rule domain for the two-dimensional case2.

2 Nature of Högbom Deconvolution
in the Two-Dimensional Sum-Rule Domain

It was was established in [7-10] that the back-projection artifact implied by
the composition (via the sum rule) of two classifiers representing the differing
decision spaces; x and y, is the equivalent of a “cross” of infinitesimal width
(ie Partefact(x, y) = δ(x) + δ(y), with δ the Dirac delta function). It is conse-
quently this spurious entity (modified appropriately to account for the discrete
1 For definitions of this, and other tomographic terms, refer to [11]
2 We shall retain the two-dimensional paradigm for simplicity throughout the pa-
per, the generalisation to higher dimensionalities being self-evident unless otherwise
stated (or else see [7-10] for a full description).
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Fig. 1. The composite PDF in the Sum-Rule space

sampling of the PDF inherent in a computational methodology) that we are
seeking to remove (deconvolve) from the composite feature-space PDF through
recursive Högbom subtraction. In the two-dimensional case this is enacted as
follows: a counter value, z, is set at the peak value of the Sum-Rule space, with
a recursive scanning cycle then initiated to establish the set of all coordinates
within a probability density value | < ∆z| below this. After registration of these
points in a deconvolution matrix (so called because it will ultimately constitute
the proposed deconvolution), through the addition of a value ∆z to any existing
value at the designated coordinates, a set of cross-artifacts centred on the cor-
responding points of the sum-rule space are then subtracted consecutively. This
process is repeated until a subtraction is proposed by the procedure that would
yield negative values in the Sum-Rule space, with, hence, a complete deconvolu-
tion resulting in a residual-free, zero-valued space. (Note that in the application
to astronomical data, the procedure must rely instead on a stochastic criterion of
completion in the absence of an absolute zero-point, namely the indistinguisha-
bility of the histogram of point values from a Poissonion “noise” distribution).
The terminal point of the procedure therefore invariably represents (even in the
absence of a proper termination) a positive-definite solution in the deconvolution
matrix, as demanded by probability theory. This procedure will be more fully
quantified at the computational level in the following section, however, we must
first address a significant difficulty that arises with this approach:

2.1 Finite ∆z Issues

It rapidly becomes apparent in any computational implementation of the
Högbom deconvolution algorithm in the tomographic domain that the issue of
the necessarily finite setting of the value ∆z becomes non-trivial. It is intuitively
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obvious that the process achieves mathematical ideality only in the asymptotic
limit: ∆z → 0, in which case each iterative stage registers an unambiguous set
of discrete points at uniform height. However, the fact that any computational
implementation must rely on a finite value of ∆z gives rise to complications
that have consequences that go far beyond issues of sampling accuracy: selecting
different values of ∆z for the situation set out above would in fact generate a
vastly divergent set of completions at the termination of the procedure. Mitigat-
ing this consideration, however, is the fact that these terminal sets do represent
consistent deconvolutions given the initial data, in the sense that the recovered
distributions all revert, if re-convolved by the cross-artifact, to the originally
specified Sum-Rule space.

It would perhaps, therefore, seem logical to choose ∆z = 0 as being in some
sense a favoured option on (as yet not fully specified) a priori grounds. How-
ever, any practical implementation must take place within a discretely-sampled
computational setting: in proposing a finite ∆z procedure that does not expe-
rience the above problem (ie, whose solution has no explicit dependence upon
the value of ∆z), we have to consider more systematically what is taking place
during the simultaneous subtraction of cross-artifacts implicit in each iteration.
As is uniquely the case for tomographic reconstruction of a pattern-space, these
subtraction entities share an identity with the form of the axial system (that is
to say, constitute a complex of intersecting quadrilaterals of varying dimension-
ality [8]). We can therefore appreciate that the simultaneity of the subtraction
immediately gives rise to an irreconcilable ambiguity: we see that the overlap of
these entities necessarily gives rise to further intersections at specific points of
the pattern space, the artifacts around which are of the same form as the axial
system, which are hence not in any real sense distinguishable from the original
points at which axial artifacts are subtracted.

It is therefore apposite to propose as a modification of the Högbom method
(when acting in the expert fusion domain), that these additional points are
put forward as candidates for registration alongside the originals. It is, in a
sense, therefore possible to regard this modification as summing over all possible
deconvolution solutions that we earlier encountered at the iterative level. This
amounts to applying the most conservative criterion of PDF correlation within
the terms of the Högbom approach, while maintaining the most presumptive a
priori condition on the feature correlation in more general terms (which is to
say, imposing an assumption of minimal feature dependence on the axes, the
alternative having been eliminated at the feature selection stage).

In visualising this alternative approach, it is most useful to focus on the effect
that the Högbom algorithm has on the PDFs constituting the combination, rather
than the Sum-Rule space, as we have hitherto done. The nature of the Högbom
iteration is also rendered far more graphically evident from such a perspective:

2.2 PDF-Centred Approach

As we have thus far understood it, then, the commencement of the Högbom pro-
cedure consists the determination of the peak position of the Sum-Rule space
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Fig. 2. Requisite subtractions from the two PDFs constituting the combination
in the modified methodology: note the presence of P 2

k in the first diagram’s
subtraction (and vice-versa)

(P sum(Xpeak, Ypeak) from fig. 1), and the derivation of the set of points, P sum
1 ,

that lie in the probability density range (P sum(Xpeak, Ypeak) → P sum(Xpeak,
Ypeak) − ∆z), prior to subtracting a series of cross-artifacts centred on those
points. We should now like to associate these points with particular sets of or-
dinates in the PDF domain such that it is possible to view the 3-dimensional
process of fig. 1 within the 2-dimensional format of fig. 2. This would not in gen-
eral be possible to do in a straightforward fashion if the subtraction entity were
of an arbitrary form. However, the fact that the subtraction artifact mirrors the
axial system means that it may be equivalently represented as the independent
summation of 1-dimensional Dirac delta functions (convolved by the sampling
element ∆x) centred on the appropriate ordinates of the PDF domain. The
process of subtraction of a single artifact in this domain therefore acquires the
intuitive aspect of a subtraction of individual delta functions from the appro-
priate points of the respective classifier PDFs (δ(x − x0)∆x from P 1(x), and
δ(y − y0)∆x from P 2(y), in our case).

Although this situation readily generalises to the arbitrarily-dimensioned
case, it becomes somewhat more complex for multiple subtractions of the type
indicated earlier, in that the subtraction of cross-artifacts centred on the addi-
tional set of points created by the intersections of the artifacts (arising from the
originally detected points) leads to an asymmetry in the corresponding PDF do-
main subtractions: the particular value to be subtracted from each of the ordinals
in a particular PDF turns out to require a proportionality to the subtractions
in the remaining PDFs constituting the combination. This is illustrated in fig. 2
for a mid-point of the deconvolution’s execution (since we are required to exter-
nally impose an infinitesimal subtraction on the first iteration of the sequence
k = 1, 2 . . ., which cannot, therefore, exhibit this effect explicitly).
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A subtraction, then, of the points above P sum
k+1 (points above P sum

k having
been assumed to have been removed by previous iterations) leads to a replace-
ment of the ordinal sets: {x|P 1(x) = P 1

k } with {x|P 1(x) = P 1
k+1} and {y|P 2(y) =

P 2
k } with {y|P 2(y) = P 2

k+1}: that is to say, a reduction of ∆z|P 2
k | and ∆z|P 1

k |
in P 1

k (x) and P 2
k (y), respectively (with a corresponding registration of ∆z in the

deconvolution matrix for the coordinate-set {x|X1 ≤ x ≤ X2}×{y|Y1 ≤ y ≤ Y2},
that is, all combinations of ordinals over this range). Note in particular the trans-
fer of width information from one PDF to the other, giving rise to the mutually
morphologically dependent convergence alluded to earlier: we are then now im-
plicitly regarding the PDFs, not as maps R → R, but rather as morphological
entities delineating ’areas’ in an ordinate-probability space.

The fact that these points lie in bands is critical to the method’s economy,
and a consequence both of the explicit inclusion of the intersection point-sets
(of which more later), but also of the particular nature of this stage-by-stage re-
mapping. For the set of ordinates newly incorporated into the (k+1)’th iteration
to be consistent with the line defined by the ordinate set arising from the k’th
iteration, this involves imposing a transformation:

{P 1
x} → {P 1

X1
} ∀ (X1 < x < X2) and ∀ (X3 < x < X4) (1)

{P 2
y } → {P 2

Y1
} ∀ (Y1 < y < Y2) and ∀ (Y3 < y < Y4), (2)

at each new stage of the process, such that each new ordinate set is contained
within its predecessor. Thus, the algorithmic recursion applies solely now to these
ordinal sets (two single-dimensioned entities, rather than to a single Sum-Rule
density function of three dimensions). It should also be noted that this approach
is equally valid for the more complex case of multiply-peaked PDFs, the exten-
sion to the mapping protocol being a matter of straightforward extrapolation.

The other issue which we have yet to approach systematically within this
framework arises in relation to multiple subtractions, and concerns the afore-
mentioned ambiguity arising from the cross-correlation between subtractive en-
tities. In fact, it transpires that a quantitative treatment of this effect is rendered
significantly more straightforward on consideration within the PDF domain: in
removing multiple delta-function elements from the individual density functions,
all of the interstitial “overlap” artifacts are implicitly dealt with at the same time.
This can be illustrated in the two-dimensional case via an appreciation of the fact
that the subtraction of delta-function elements centred on the P 1 ordinals; X1

and X2, and the P 2 ordinals; Y1 and Y1, would imply a subtraction of cross arti-
facts centred on; P sum(X1, Y1), P sum(X2, Y1), P sum(X2, Y2) and P sum(X1, Y2):
that is to say, the complete set of detectable points in the Sum-Rule domain as
well as their subtraction-artifact overlaps. The only remaining issue to address
in relation to the PDF-centred approach to Högbom deconvolution is then the
construction of the actual co-ordinates for registration in the deconvolution ma-
trix, which, it is readily seen, are just the set of all permutations of detected
ordinals within the current iteration.

In this manner, by switching to a PDF-oriented approach, necessitating what
is effectively a varying ∆z methodology within which the issue of multiple reg-
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istrations and subtractions is dealt with automatically, we have effectively dis-
solved the distinction between PDF point-detection, artifact-correlation and ar-
tifact subtraction, generating a significant speed increase through the fusion of
the three space-scanning processes implicit in the tomographic method, as well
as a further, arbitrarily large speed increase determined by the implicit fusion
of the ∆z parameter with the morphology of the PDFs (through the inclusion
of cross-sectional magnitude terms within each iteration).

We shall determine more precisely the effect that this has on the computa-
tional efficiency of the tomographic method as follows:

2.3 Computational Implementation

The first economization attributable to the new approach, arising as a conse-
quence of the implicit identification of the peak-search, peak-correlation and
artifact-subtraction procedures, reduces a process of originally ∼ [X ]2n[Xn−1 +
X ] cycles to around Xn−1 cycles (n being the dimension of the reconstructive
space, and X its linear sampling resolution: the square brackets denote a max-
imum value). This is determined in the following way: within the unmodified
Högbom procedure each iterative scan of the Sum-Rule space to obtain a set
of points for subtraction carries with it a penalty of Xn cycles. Because ∆z
is not correlated with the PDF cross-sections as it is in the modified case, the
requisite analysis of subtraction-artifact overlapping will require that the addi-
tional interstitial points are all individually constructed and registered within
the deconvolution matrix. In the worst case scenario, when the ordinates of the
detected points cover the entirety of the feature axes, this would amount to an
implicit scan over the entire reconstructive space, requiring an additional compu-
tation of [X ]n cycles (a scan being effectively the exhaustive cyclic construction
of ordinal permutations).

A deconvolution-artifact subtraction at each of these points would then re-
quire a further scanning agent to act over the reconstructive space, ostensibly
involving a further Xn cycles per point. However, it is possible to break the arti-
facts down into their constituent iterations to obtain a reduction in this. That is,
if the set of classifiers constituting the combination have an individual feature-
dimensionality given by di, then this would represent a required per-point cycle
count of magnitude (Xd1 +Xd2 +Xd3 . . .) in order to perform the subtraction.
In execution terms, this represents a maximum of Xn−1 + X cycles (the best
case scenario being just nX cycles, or 2X in our example). The total cycle count
per iteration for the Högbom method is therefore: Xn[X ]n[Xn−1+X ], where it
is understood that this (and all following terms) represent worst-case scenarios.

By contrast, the proposed alternative, in combining the detection, correlation
and subtraction procedures, permits a cycle count of only Xn per iteration.
This comes about through combining the activity of a detection/subtraction
scan that acts over just the constituent PDF feature dimensions (which would
in itself now carry only a [Xn−1 +X ] cycle penalty) with a correlation analysis
(which would normally constitute an additional [X ]d1 + [X ]d2 + [X ]d3 . . . = [X ]n

cycles per point), such that the correlation analysis, in generating every possibly
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ordinal permutation, now implicitly performs both the detection and subtraction
operations in the manner described above.

It is possible, within the proposed alternative to tomographic combination,
to further improve on this performance for the particular case of the constituent
classifiers constituting point-wise continuous PDFs, through the introduction of
a second-order computational economy. We note in fig. 2 that P 1

k is fully con-
tained within the set P 1

k+1, with only the sets P 1(X1) → P 1(X2) and P 1(Y1) →
P 1(Y2) then contributing a new behavioural aspect to the (k + 1)’th iteration
(and similarly for P 2(Y )). Thus, the newly correlated and registered points in
the (k + 1)’th iteration will all lie inside of the P sum region defined by the
coordinate range: (X1 → X4, Y1 → Y4), and outside of the smaller region
(X2 → X3, Y2 → Y3). Hence (and this is equally true for multiply-peaked PDFs),
it becomes possible to simply discard this region within the correlation analysis
(by far the most computationally expensive part of the proposed methodology),
leaving only the originally specified artifact subtraction to perform, at a penalty
of [Xn−1 + X ] cycles. In algebraic terms this results in a cycle count reduction
to:

{[Xn−1 +X ]} + {(X + dx)n − Xn} ≈ {[Xn−1 +X ]}+ {n dx Xn−1} (3)

(the later bracketed term in the addition constituting the generalisation of the
above reasoning to arbitrary dimensionality, and dx being the sampling element
[of similar fractional width to ∆z]). This is clearly, then, a very substantial
additional saving.

As a final note, it is evident that the number of iterations is itself a key
dictator of execution time and, as we have observed, is a quantity that need not
necessarily be fixed, a fact from which we have considerably benefited. However,
the actual value of the number of iterations is governed by PDF morphology, and
consequently not straightforwardly enumerable. The original Högbom method,
however, does not suffer this limitation, requiring a fixed (P 1

max+P 2
max+. . .)/∆z

iterations to execute, and serves as an upper limit for the modified procedure
(although in practice we would expect the actual value to be a small fraction of
this).

Thus, in the final analysis, the total cycle count for the more efficient method-
ology can be written:

[(P 1
max + P 2

max + . . .)/∆z]{[Xn−1 +X ]}+ {ndxXn−1}
≈ [(P 1

max + P 2
max + . . .)]{[Xn−1 +X ]/∆z}+ {nXn−1} (4)

as opposed to:

(P 1
max + P 2

max + . . .)/∆z{Xn[X ]n[Xn−1 +X ]} (5)

under the original proposal.

3 Conclusion

We have set out to reinterpret the tomographic method of classifier combination
within its most natural context, significantly reducing the computation time
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involved to the extent that the method now poses very little obstacle to practical
implementation.

The basis of this efficiency gain is the observation that, viewed in terms of
the constituent PDFs, the three chief computational components of the recursive
tomographic procedure (the peak-seek, the peak correlation analysis and the sub-
traction/registration of correlated components) need not actually be performed
on an individual basis, reducing an iteration requirement of Xn[X ]n[Xn−1 +X ]
computational cycles to a maximum of Xn, with the further possibility of an
order of magnitude decrease in this figure for point-wise continuous classifiers.
Finally, there are further (if not precisely quantifiable) gains arising from dy-
namically varying the ∆z parameter throughout the procedure.

The authors would like to gratefully acknowledge the support of EPSRC
under the terms of research grant number GR/M61320, carried out at the Uni-
versity of Surrey, UK.
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