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Introduction 

A few years ago, formal developments were still considered an academic task. 
The main reasons were the size of address~ble problems, the heaviness of notations, 
the lack of support tools, and the time overhead compared with usual empiric 
developments. These few arguments become more and more obsolete excepted for 
the last one: formalizing developments is still ressource over consuming. Nevertheless 
we can observe a growing interest of industrial companies for formal methods applied 
to real scale problems. Real experiences like compiler construction, user interface 
development of safety critical systems, security systems development are reported in 
[10]. Several reasons may explain this change of interest: 

• formalizing developments aims at mastering the correctness of the developed 
objects. This is specially the case for safety critical systems. It has been observed 
that usual systematic testing methods become less and less applicable when the 
complexity of systems grows. Indeed, tests themselves must be formally specified 
to be credible, and this activity is also time consuming. In this case formal 
developments become competitive. 

• it is in common agreement that rigorous methods are mandatory to be used to 
produce correct software. But it makes no use to define such methods without 
giving means to control their application. Such a control must dispose of a formal 
notion of development it can refer to when checking the correctness of a given 
development step. 

• developments, when totally formalized, give a complete precise description of the 
set of steps leading from a specification to the corresponding program. If they are 
represented by terms which can be manipulated by higher order functions, they 
become reusable and applicable to different close problems. Then the overcost 
becomes acceptable. 
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The present paper is based on some results of two projects partially funded 
by the European ESPRIT-1 programme: ToolUse and REPLAY. The first one - 
ToolUse [2]- aimed at producing a software development environment offering a 
high level of parameterization. In this environment, software development methods 
are formally defined, and their application is checked. This implies the formalization 
of the developments themselves. A major issue of the project is the development 
language DEVA which will be overviewed in section 1. Examples of formal devel- 
opments expressed with DEVA are given in section 2. 

The second project - R E P L A Y  [3] - aimed at studying reusability of formal- 
ized developments .  This is an original point of view compared to the usual practice of 
reusing developed components.  The approach will be shortly illustrated in section 3. 

1. T h e  d e v e l o p m e n t  l a n g u a g e  D E V A  

1.1. T e c h n i c a l  basis  

A major characteristics of the environment developed in the ToolUse project 
is to be ins t i tu t ion  free. That means notations and tools which are the basis of the 
environment are not devoted to a specific method or to particular specification and 
programming languages. As a consequence, the DEVA language has been defined as 
a very general notation to support a calculus on developments. 

DEVA can be briefly described as a typed lambda-calculus. The main works 
which influenced its definition have been the Automath project [7], the Calculus 
of Constructions [4], and Intuitionistic Type Theory[6]. The general idea driving 
the defmition is to give means to describe the developed objects, the development 
steps and the underlying rules as terms (the so-called texts introduced in section 1.2) 
and to use a general typing mechanism to control the correctness of these objects. 
Moreover developments, and underlying theories can be structured and organized 
using the context  notion introduced in section 1.3. 

In the current section, we will only introduce some basic elements which are 
useful for understanding the typing mechanism of DEVA and the examples of the 
next section. Nevertheless DEVA is not an extensive language and its complete 
syntax is presented in appendix A. A complete formal semantics can be found in [8] 

The following syntactic conventions will be used to increase the readibility of the 
definition: 
x,y,z,  xi, yi, zi... 

t, ti, tt, tti ... 

c, ci... 

stand for variable symbols 

are DEVA texts. More often tti is used to denote the type of the 
text ti 

are DEVA contexts 



122 

1.2.  D E V A  t e ~ t s  

The t e x t s  objects are the basic entities supported by DEVA. Each text is built 
up from other texts and is typed. Types are themselves typable texts. We dispose 
of a recursive system, supporting a type hierarchy whose the root is the untypable 
initial text pr imal .  

Table 1 introduces some basic texts constructors: the texts are built from the 
initial text,  or symbols defined in the current context (see below') using abstraction 
and application.. ludgements are used to affirm that the type of a given text tl is t2. 
They can be considered as formal comments, supporting partial specifications given 
by the user, and which will be checked by the DEVA evaluator. The validity of texts 
and the typing function which provides a basis for this mechanism are developed 
in section 1. 

initial text p r i m a l  

symbol x 

abstraction [c F- t] or equivalently 

application tl(t2) 

judgement tl .'. t2 

Table 1 Some usual tezt constructors 

1.3. D E V A  c o n t e x t s  

The notion of c o n t e x t  has been used in the previous section to define text 
abstraction. More generally, it allows to structure DEVA programs by expressing 
theories which these programs are based ore for example, basic mathematical 
theories, logics, algebraic data-ty~es, specification and programming languages, and 
miles constituting a method. 

Some basic context constructors are introduced in Table 2. Contexts are built 
up in a sequential way, starting from the empty context. A text declaration allows 
to introduce a new text symbol with its type. An anonymous declaration allows 
to introduce in a context a text which is unused in the following, but  the type of 
which must be known. This is useful for defining, for example, the type profile of 
a function. A text definition gives a name to a given text, and can be considered 
as an abbreviation. In a similar way, a context definition allows to give a name to 
a locally defined context. The importation mechanism opens the imported context 
and gives access to all the declarations and definitions it contains. 

The implicit definition allows to introduce in an abstraction a new" text symbol 
with its type. The symbol plays the same role as any symbol introduced by a text 
declaration. I~evertheleas, the corresponding argument will not require to be given 
when applying the abstraction : it will be synthesized from the other text arguments 
using a pat tern matching mechanism. Such a feature avoids the user to give all the 
clerical typing details during applications. 
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empty context nilc 

sequential composition ~cl; c2] 
text declaration x : t 

anonymous text declaration t 

text definition x :-- t 

implicit definition x?t 

context definition p a r t  p := c 

context importation i m p o r t  c 

Table 2 Some of the main context constructors 

The scoping rules are fairly simple: each symbol introduced at a given place 
in a sequence is usable in the following of the sequence, i.e. in the current context 
and in the innerly defined ones. The symbols defined in a given context are usable 
after the importation of that  context and importation is transitive. 

1.4. I n f o r m a l  e x a m p l e s  

The first example shows how we can use DEVA to start  the usual defmition 
of natural numbers: 

p a r t  N a t u r a l s  := [nat  : p r imal ;  

0 : nat; 

s u c c :  [nat ~- nat] ] 

n a t  is introduced as a new symbol the type of which is p r imal .  Then two construc- 
tors for naturals are declared: 0 the type of which is na t  and succ  which is declared 
as an abstraction from n a t  to nat .  

If we want to develop some proofs from these definitions we can do that  in a 
new context P r o o f s  - on  - nats:  

p a r t  P r o o f s  - on  - n a t s  := [ impor t  N a t u r a l s ;  

succ(O) .'. n a t  ] 

In this context, we i m p o r t  the previously defined N a t u r a l s  context, so we can use 
the definition of 0, n a t  and succ. Following the typing rules presented in the next 
section, we can apply the abstraction succ  to any text of type na t ,  0 for example. 
Doing so, we shall get a text the type of which is defined as the right hand side of 
the abstraction succ, i.e. na t .  The judgement succ(O) .'. n a t  expresses this fact and 
will be successfully checked by the DEVA evaluator. 

1.5. V a l i d i t y  a n d  T y p i n g  r u l e s  

DEVA texts can be considered as A-terms of a typed A-calculus. A text is 
wel l - formed if it is built up using correct texts constructors introduced hereabove. 
A wel l - formed text  is valid if it is made of valid texts and contexts and if it is well- 
typed (i.e. if some conditions, mainly applicability conditions and judgement validity, 
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hold). A context is valid if it is built from declarations and defimtions of valid texts 
or contexts using correct contexts constructors. 

The next three sections aim at giving some intuition of the validity rules for 
texts and contexts and of the typing mechanism supported by DEVA. The following 
notations will be used: 

• Vt{c, t} is a predicate stating the validity of a text t in a given context c (i.e. the 
symbols used in t are declared or defined in c), 

• Vc{cl, c2} states the validity of a context c2 in the context of Cl. A context will 
be totally valid if it is valid in the empty context nilc (intuitively if it is self 
contained, and if each of its elements is valid), 

• Y(c, t) is the type of the text  t in the context c. 
• Et{c, t l ,  t2} states the equivalence of two texts tl and tz in a given context c 

Val id i ty  o f  t ex t s  

The validity of texts may be checked in a given valid context. Here follows 
some rules on which this validity is based: 

• if a context is valid, then the text p r i m a l  is valid in this context: 

Vc{nilc, c} 

Vt{c, pr imal}  

• if a context c is valid, if another context ct is valid in c, and if t is a valid text in 
the context obtained by sequential composition of c and cl, then the abstraction 
[cl t- t] is valid in c: 

Vc{nilc, c} Yc{c, cl} Yt{[c;cl] , t} 

Vt{c, [Cl k- t]} 

• the following rule ("applicability condition" rule) states the validity of the appli- 
cation of a text  tl to a text tz. The type of tl must be an abstraction, the first 
element of which is a declaration of a text equivalent to the type of tz. Of course 
each element ti, t2 must be valid in c: 

Vc{nilc, c} Vt{c, t l}  V~{c, t2} Et{c, t l , [x  : tt2 t- t3]} Et{c, t2,tt2} 
vt{c, tt(t2)} 

This rule is used, for example, to decide the validity of succ(0) in the previous 
section. 

• a judgement is valid if the type of the left hand side operand is equivalent to the 
right hand side. This is stated in the "judgement validity" rule: 

Vc{nilc, c} Vt{c, tl} Vt{c, t2} Et{c,'l'(c, tl),  t2} 
Vt{c, t l  .'. t2} 
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Val id i ty  o f  contexts 

Validity of contexts can be described by a a similar set of rules: 

• the empty context is valid: 

Yc{nilc, nilc} 

• and it is valid in any valid context 

Yc{nilc, c} 

Vc{c, ni lc)  

• the sequential composition of two contexts cl and cz is valid in the context c, if cl 
and ce are respectively valid in c and in the sequential composition of c and c1: 

Vc{nilc, c} Vc{c, cl} Vc{[c;cl],c2) 
Vc{c, [cl; c2]} 

Combined with the previous rule, this allows to check the validity of contexts 
from right to left. 

• a declaration of a new symbol typed with a valid text is a valid context: 

Vc{nilc,c} Vt{c, t} 
Vc{c, x : t}  

x does not need to be a new symbol; if it is still defined in c, the new definition 
hides the previous one 

• the same for a new" definition (i.e. an abbreviation): 

Vc{nilc,c} Vt{c, t} 
Vc{c, z := t} 

T y p i n g  ru les  

The following rules gives a definition by case of the typing function. Only 
some of the main cases are introduced: 

• p r i m a l  is never typable, whatever the context may be: 

T(c, p r ima l )  = undef 

• any symbol z is untypable in the empty context. This case is encountered when 
an undeclared symbol is used in a text. 

Y(nilc, x) = undef 

• scoping rules for symbols are from right to left, so contexts are scanned in this 
way to find the last definition or declaration associated to a given symboh 

t if x and y are the same symbol 
t ([c;y: t] ,x)  ={  

T(c, x) otherwise 
Y(c, t) if x and y are the same symbol 

r( [c ;  y := t], x)  = { 
T(c, x) otherwise 
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• imported contexts axe unfolded when encountered: 

Y([c; i m p o r t  c1], t) _= -T([c; Cl] , t) 

• the two following cases give the type of an abstraction and of the application: 

T(cl,  [c2 t- t]) -- [c2~- T([cl;c2l,t)] 
T(c, tl(t2)) = Y(c, tl)(t2) 

E q u i v a l e n c e  o f  two  t e x t s  

The equivalence of 2 texts Et{c, tl, t2} is defined as the transitive closure 
of reduction operations. These operations are mainly the usual fl-reduction, the 
elimination of judgement,  and the unfolding of the texts and contexts definitions 
used in tl and te. They are a generalization of the usual reduction rules of the 
A~alculus and they will not be detailed here. 

2.  T h e  f o r m a l  e x p r e s s i o n  o f  d e v e l o p m e n t s  w i t h  D E V A  

2.1. F o r m a l  d e v e l o p m e n t s  in  a t r a n s f o r m a t i o n a l  a p p r o a c h  

The developments that will be manipulated in the following are based on a 
transformational approach. In such a framework, the developed objects constitute a 
continuum from specification to program, and one object is produced from previously 
existing ones by applying elementary transformations. 

The transformations we shall use are based on the fold/unfold system, originally 
developed by Burstall and Daxlington [1]. It allows to transform specifications 
expressed as a set of equations down to the level of a programming language, and it 
is specially tailored for developing prograras in an applicative style. 

Target 

l I Con~tn1¢,ion~ ~ l 

L 

Problem Development 1 
Oriented 

Specification S p e c ~ - ~ .  Spec 2 ~ g  

Figure 1 A schematic development and its context 
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To develop a program in such a framework, we have to dispose of an initial 
rigorous specification. In the following examples, this will bh formulated in classical 
set theory. We do not worry about producing this early specification which is a 
mat ter  of requirement engineering, out of the scope of our work. 

The development does not start  from scratch. Indeed an initial library contains 
a set of DEVA contexts expressing general theories or knowledge about development 
and their objects (such a library is enriched during succesive developments). This is 
summarized on figure 1 where boxes represent DEVA contexts and lines importation 
relationships: 

- each data-type involved in the development (e.g. sets, pairs...) is DEVA-typed. 
Generic properties of these types are defined in a specific DEVA context Sorts 

- the Equations context is generic and defines properties of equations between 
objects having the same type 

- elementary data-types like Sets, Pairs, propositions are defined in specific contexts 
- Specific Functions contaihs the definitions of functions which are in common use 

although not defined in basic data-types (like Filter, Map, aso...) 
- Target Language Constructions allows to introduce in a progressive mamler, the 

basic expressions which the developed program will be made of. 

So, to complete a development, we have to import useful contexts from the 
initial library, to express the elements of the problem oriented specification as DEVA 
texts, and to express the development as a set of other DEVA texts Step1, Stepz, 
... Stepn. Each development step S t e p i  , when applied to one or several previously 
developed objects Specgl, produces a new object Speci. This object is correct if it is 
well typed. The result of the last step is the program Prog. 

2.2. A p i e c e  o f  d e v e l o p m e n t  

The development presented hereafter is extracted from a case study which 
has been formally conducted with DEVA. The whole specification consists in the 
definition of 9 sets as presented in appendix B. 

In the following, we shall focus on the development of the program computing 
the first set E + defined in this specification as: 

E + =~ {p e i°(.4) I (P, +) e n }  

this can be read as: "E + is defined as the set of dements  p in the powerset of .4 
such that  the pair (p, +) belongs to the set 7~". 

The development corresponding to the computation of this set is given in a 
semi-formal way in figure 2, where the notations are as follows: 

E x  i 1 * ~ R u  e means that  Expout is produced by applying an instance of the rule 
gcf g e heme Rule to a sub-expression of Expin, and unfolding Expin with the result. 
The sub-expression which is concerned is underlined in Expin. 

• x:t denotes an element ot type t, 
, A and R are respectively the types of the elements of `4 and 7~. SA and PSAR 

abbreviate respectively set(A) and pair(set(A ),R), 
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E+ A {p ~ p(A) 1 (p, +) ~ n}  

= P:SA 

E+A{ = P:SA 

= P:sA 

, T¢ }'Intset 
(p,+) e 

2intro 
3y:eSAa.y E ~ A y = (p, ÷)}  

IIintro 
3Y:psAR-Y e n ^ ( p =  17~(y) ^ + = n 2 ( y ) ) }  

- Acomm 
E+ =~ {p:~a 3y:,~. .y e u ^ (+ = n~(y) ^ p = 17~(y))} 

- A a s s o c  

E+ ~-~ {P:sA ~Y*,PSAR'(Y e T'~ ̂  + -~" ri2(Y) ) A P --~ I'II(Y) } 
"Filterintro 

E+ A= {P:sa 3Y:PsAR.Y E Filter()tx.172(x) = -I-, 7E) A p = IIl(y)} 

Map~impl  
E+ A___ Map(II1, Filter(Ax.YI2(x) = +,  7~)) 

Figure 2 The development related to E + 

• 171 and II2 are the projection operators associated to pairs 

2.3. Expression using DEVA 
To express formally this development with DEVA, we shall make an extensive 

use of the basic operation "unfold". It a~ows to replace the left hand side of an 
equation by its right hand side inside the right hand side of another equation. This 
operation is defined in the Transformation System context of the initial hbrary as 
a DEVA text: 

Sl,  S2?sorts; Xl?Sl; x2, Y2?S2; f?[sl ~-s2] 
unfold : 

X2 = Y2; Xl = f(x2) 
Xl = f(Y2) 

To use it, we have only to apply it to two arguments whose the DEVA types are 
x2 = Y2, and Xl = f(x2). The other parameters of the abstraction (Sl, sz, ... ]) will 
be synthesized, and we shall get a new text of type Xl = f(Y2)- 

Let us consider now the first development step: 

E + ~ {p e P (A)  I (P,+) e n} in t~e  ' 

E+ ~ {P:sA I(P, +) e n }  

It expresses that  starting from a specification of E +, we decide to keep the informa~ 
tion p e P(A)  only as a typing information (i.e. we represent the powerset P(A) in 
intention). To express it with DEVA, we must represent: 

• a first level to formalize the sets of the form {x E S ] P(x)}.  This will be done 
with the constructor: 

SO: [s?sort; S : set(s); P :  [s 1- prop] l- set(s)] 
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• the second level where we decide of a representation in extension or in intention, 
and where we keep typing information: {x . t ]P(x ) }  will be represented with 
another constructor: 

Sl: [s?sort; P :  Is ~- prop] ~" set(s)] 

• the rule representing the design decision to represent a set in intention: 

intset: Is?so, t; S: set(s); £ !  prop!] 
 o/KT) - s (p) ] 

• the initial definition of E + with the corresponding type: 

E + :  set(a); 

de fE+ : E + = So(pow(A), [p: set(a) F isin((p, +), 7Z)]) 

• the first step consists then in unfolding the whole right hand side of the equation 
using the intset  rule: 

step1 := unfold(intset(pow(A),  [p : set(a) ~- isin((p, +), 7~)]), d e f E  +) 
.'. E + = SI([p : set(a) F isin(~p, +),TZ)]) 

and so, the transformed definition for E + is the type of the resulting application 
(this is expressed in the right hand side of the judgement). 

The whole development can be expressed in the sarae way. Each elementary 
step builds a text, the type of which is a new refined definition for E +, which will be 
itself the type of input argument for the next step. The rules which axe to be used 
for the whole development of E + are given in appendix C. 

. . .  

s tep1:= unfo ld( in tse t ( . . . ) ,de fE +) 
.'. E + = SI([p : set(a) F i s in (~ ,  +) ,n ) ] ) ;  

step2 : = un fold(exintro(. . .) ,  step1) 
.'. E + = SI([p : set(a) F exists([y : pair(set(a), res) 

[- and(isin(y, 7~), (y = (p, +)))1)]); 
steps : = un f old(piintro(...), step2) 

. ' .  E + = S l ( . . . ) ;  

step7 : = uu f old(mapsimpl(...), step6) 
.'. E + = map(pil ,  f i l ter([x : pair(set(a),res) [-pi2(x) = +] ,n ) ) ;  

. . . ]  

The development steps stepi which are detailed hereabove are definitions, i.e. 
abbreviations used in the next steps. So in each stepi is accumulated the part of the 
development starting from stepl. Therefore, the last step step7 is the formal object 
which represents the complete development: 
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un fold( mapsimpl (... ), 
un fold( f i l terintr o(... ) , 

un f old( andassoc(... ) , 
un fold( andcomm(... ), 

un f old(piintro(... ), 
un f ol d( exintro(... ), 

unfold(intset(. . .),  defE+)))))))  

3. R e u s i n g  f o r m a l  d e v e l o p m e n t s  

3.1.  G e n e r a l  idea  

An interesting application of formally described developments is to reuse them 
to deal with problems close to each other. The intuitive idea to address this topic 
is to consider the development as a function which applies to a specification and 
gives the corresponding program. This function may be modified by a higher order 
function so as to take into account the differences between the two specifications. 
Then the resulting new function may be applied to the new specification. 

This can be summarized on the following schema: 

Spec 1 

FS 

Dev 1 

F D 
x- Prog I 

Dew 2 
Spec 2 ,~ Prog 2 

where F s  expresses the changes on the initial specification, and F/)  the related 
changes in the development. In an ideal situation, it should be nice to give only 
the new specification Spec2, and the main changes in the development (e.g. "change 
the set representation from list to ordered listg'), and to have the two functions 
automatically defined. 

The work we present hereafter is far less ambitious and gives only means to 
formally express the changes from Devl to Dev2. The idea is not to automate the 
development of F s  and FD functions, but  rather to give means to express F/) in such 
a way that significant checked parts of the first development can be reused. In any 
case, the development of these functions only depends on the skill of the developer. 

The approach that  we propose is based on an abstraction/instantiation mecha- 
nism which can be applied at the level of DEVA texts or DEVA contexts as detailed 
hereafter. 
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3.2 .  A b s t r a c t i o n / i n s t a n t i a t i o n  on  t e x t s  

When we have constructed a first development as a DEVA text, the idea is to 
get first a more general object, by abstracting on a part  of this first development. 
The resulting text and its use, do not differ from a usual abstraction we could have 
written with DEVA. The main difference is that  we are not enforced to write doom 
first the most abstract  development text before instantiate it on the first problem 
then on the second one. 

The a posteriori abstraction can be defined as follows: 

A B S ( t l , t 2 ) -  Ix:  t t l  ~ t2[x/tl]] 

where x is a new symbol free in t2 

t t l  is the type of tl 

t2[x/tl ] is the substitution of x for tl in t2 

The use of this simple operation to address reuse issues can be illustrated on 
another part  of the example given in appendix B. Indeed the second set to compute 
is defined as 

E -  ~= {m e P(A)  i (m,-> e n }  

We can notice that  this specification can be deduced from the specification of E + 
only by changing + to - ,  and the corresponding definition d e f E  + to d e f E - .  This 
can be simply expressed in DEVA using twoABS abstractions as follows: 

First we introduce the type and the definition of the new set: 

E -  : set(a); 

d e f E -  := E -  = So(pow(A), [m: set(a) ~- isin((m,-),7~)]); 

Then we produce the abstract development from the one of E+: 

devabs := A B S ( + , A B S ( d e f E + , s t e p T ) ) ;  

and finally, we apply the result of this abstraction to the new values characterizing 
E-: 

step'7 := devabs( - ,de fE- )  
.'. E -  = map(pil ,  f i l ter( Ix:  pair(set(a), res) ~- p/2(x) = - ] , n ) ) ;  

And so we get in one step a correct development for the second set. 

3.3 .  A b s t r a c t i o n / i n s t a n t i a t i o n  on  c o n t e x t s  

The same mechanism can be applied to context themselves containing the trace 
of an existing development. It can be defined as follows: 

C A B S ( t ,  c) =_ [x : tt; c[x/t]] 
where x is a new symbol free in c 

tt is the type of t 

c[=/t ] is the substitution of x for t in c 
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To address reuse issues with this operation, we need also context application and 
renaming operations which are not detailed here. Their syntax is given in appendix 
A and their semantics in [8]. In this case, if the first development has been conducted 
in a first DEVA context: 

part  ctxdevE+ :--- 
[E+ : set(a); 
defE+ : E + = So(pow(A), ~ : set(a) ~- isin((p, +) ,n ) ] ) ;  

. . °  

step7 :---- un f old(mapsimpl(...), step6) 

.'. E + = map(pil, f ilter([x : pair(set(a), res) ~- pi2(x) = + ] , n ) )  

1 
we can then abstract this first context on +,  then apply it to - : 

p a r t  ctxdevE- := CABS(+,  ctxdevE+ ) ( -  ) 

If we import the resulting context as such, old definitions will be hidden by the new 
ones obtained after abstraction and instantiation: 

; i m p o r t  ctxdev E- 
; E + .'. set(a) 

;d e r E  + .'. E + = So(pow(A), [p : set(a) ~- isin( (p , - ) ,  n)]); 

; step7 .'. E + = map(pil, filter([x : pair(set(a), res) ~- pi2(x = - ) ] ,  n ) )  

Moreover, we can use renaming to avoid the confusion introduced by hiding: 

i m p o r t  ctxdev E- (E + =: E - ,  d e f E  + =: d e f E - ,  step7 =: steP~7); 

E -  .'. set(a); 

d e f E - . ' .  E + = S0(pow(A), ~v: set(a) F- isin((p,-),7~)]); 

I 

stePI • E -  = map(pil, filter([x : pair(set(a), res) ~- pi2(x = -) ] ,  T/)) 

The difference with abstraction on texts is that  this last solution gives access 
to each elementary results of the first development after adaptation to the charac- 
teristics of the second one. So any number of development steps can be reused from 
the first development and constitute potential choice points to apply new rules. 

C O N C L U S I O N  

The DEVA language overviewed in this paper is a powerful notation which 
allows to express the semantics of development in a totally formM way. The examples 
given in this paper are very sketchy, but  DEVA has proved to be able to support 
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various calculus like the Bird-Meertens'one [9] and significant parts of methods like 
VDM [5] and 3SP/JSD. 

The DEVA language is supported by an evaluator which can be considered 
as a high level type-checker. It forbids the user to cheat with the application of a 
method, enforcing him to formally describe all the developments steps he follows. 

What may look like a heavy task in a first shot development is, on the contrary, 
fruitful in the context of reuse, and allows to get in a few steps programs correct wrt 
their specifications. This is made possible by the explicit manipulation of objects 
representing developments. Experiments conducted in the REPLAY project have 
shown that we can get other benefits of these formal objects. For example, applying 
them abstract interpretation and complexity analysis technics has proved to make 
it possible to master operational properties of the objects during the developments, 
and so to take them into account in the design decisions. 
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Appendix A The complete DEVA syntax 

• tex ts  const ructors  

initial t ex t  primal 
symbol  x 

abs t rac t ion  [c }- t] or 

application t l ( t 2 ) 
judgement  t l  .'. t2 

sum [tl I t2 I . . - I tn ]  

p roduc t  - [Xl :=  t l ,  ..., xn := tn] 

• specific t ex ts  const ructors  for control expression 

sequential  composit ion tlot2 
case distinction c a s e  t 

i terat ion l o o p  t 

• context  constructors  

emp ty  context  nilc 
sequential  composit ion [Cl; c2] 

tex t  declarat ion x : t 

t ex t  definition x := t 

implicit definition x?t 
context  definition p a r t  p := c 

context  impor ta t ion  i m p o r t  c 

context  application c(t) 

symbol  renaming c(x =: y) 

symbol  hiding c\x  
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Appendix B A problem-oriented specification 
The developments presented in section 2 and 3 are extracted from a case study 

formally conducted as a whole with DEVA. The developed program must process 
the result of experiments in biological area (typing of human cells and serum). The 
problem oriented specification of this program amounts to the definition of 9 sets 
which must be computed by the final program: 

E + ~ {p e P(`4) 1 (P,+) e n}  

E-  ~ {m e P(`4) I (m,-) e n}  
g ~ {p e E+[ vz e p.2m e E - . x  e m} 

Cred ~ {a e ,4 [ Cred(a,T~)} 

E'+ =~ { p e E +  Ipn`4cre~ = ¢ ~ ~(p e H)} 

E'- ~ {m e E-  IVp e H.m npn`4er~d = 0} 

~'~ {~ ~ ~'+ I v~ ~ ~.3~ ~ ~'-.~ ~ ~ }  
E,, + A E, + _ H i 

={ ,,+ } ResultZX q E P ( ` 4 ) ] 3 P E E  . q = p -  U m 
m- t EE- 

The target language in the case study is Common Lisp, and the resulting program 
is about 800 lines long. 

The reuse aspects illustrated in this paper are based on the analogy between E + 
and E- expressions. The formal development has been used as well to address reuse 
issues like change of data type representation for a given set, change of algorithm 
or local optimizations. 
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Appendix  C 

e x i n t r o  : 

Development  rules used in section 2 

in t se t  : s?sort; S : set; P : Is ~- prop] 
So(S, P)  = S l ( P )  

Sl, s2?sort; x : Sl; S : set(s2); f : [Sl t-- s2] 
i s i n ( f ( x ) ,  S) = exists([y : s2 ~- and( i s in (y ,  S) ,  (y = f (x ) ) ) ] )  

sl ,  s2?sort; p : pair(s1,  s2); x l  : Sl; x2s2 
p i i n t r o  : (p = (Xl, X2)) = and( (x l  = pi l (p)) ,  (x2 "- pi2(p))) 

a n d c o m m  : ~,  q : prop ~- and(p, q) -- and(q, p)] 

andassoc  : ~p,q,r :prop  ~- and(p,  and(q ,r ) )  = and(and(p ,q) , r ) ]  

f i l t e r i n t r o  : 
s?sort; P : [s ~ prop]; x : s; S : set(s)  

and( i s in(  x, S),  P(  x ) ) = i s in(  x, f i l t e r ( P ,  S) ) 

s l ,  s2?sort; S : set(s1);  y : s2; f : [Sl t- s2] 
m a p i n t r o  : ex i s t s ( Ix  : Sl F- and( i s in (x ,  S),  (y = f (x ) ) ) ] )  = is in(y ,  m a p ( f ,  S))  

m e m e l i m  : [s?sort; S :  set(s)  ~ Sl( [x  : s b i s in (x ,  S)]) = S] 


