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Abstract 

Non-standard interpretations of LOTOS specifications are proposed as a most convenient 

and conservative way to extend the expressivity of the language without affecting its 

standard syntax and transition-system-based semantics. Some simple non-standard 

interpretations, alse called view functions,  are introduced. Two different styles of formal 

definition are adopted (denotational and operational) for providing, respectively, a 

refinement of the standard LOTOS process functionality parameter, and a new parameter 

measuring the degree of synchronization exhibited by a specification. 

I N T R O D U C T I O N  

A LOTOS [ISO89a, BB87] specification is meant to capture, a priori or a posteriori, some properties of, 

typically, a concurrent and reactive hardware/software system (Figure 1.t). 

A LOTOS spec ] captures ~ ~  

Figure I. 1 - Describing a real system in LOTOS 

The main motivation of our work is found in the observation that the expressive power of standard 

LOTOS is inadequate for capturing a variety of desirable system properties. LOTOS is meant to describe 

temporal orderings of events. The standard LOTOS semantics is based on Labelled Transition Systems 

1) This work has been carried out within the ESPRIT-LOTOSPHERE Project 
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(LTS); a LOTOS specification ultimately describes a system's behaviour as a tree of events that unrolls 

along the time axis (without involving explicit time values). Consider now, for example, properties like 

functional behaviour, physical distribution of functionality, time demands and ergonomics of user- 

interface, 

In virtue of the LTS-based LOTOS semantics, we can safely adopt LOTOS for capturing the functional 

behaviour of a system, based on the assumption that it can be expressed in terms of sequences of events. 

However, the language is unsuited for characterizing properties 2, 3, and 4: the standard LTS derived 

from a given LOTOS specification does not provide any information on the physical distribution of 

functionality, on the timing of events, or on the ergonomics of the user-interface. 

Several extensions to LOTOS have been proposed in recent years. Syntactic extensions, offering 

alternative syntactic forms (such as the G-LOTOS graphical syntax) or short-hands, attcmpt to provide 

more convenient notations, without altering the underlying semantic model. Semantic extensions include 

new behavioural operators, notions of structured events or explicitly timed events, and the module 

concept, and are meant to offer more expressive underlying semantics. 

Clearly we cannot hope to express more properties in the list above by adopting pure syntactic extensions: 

enhancements are needed at a semantic level. On the other hand LOTOS is today an international 

standard, whose development took almost a decade; it is quite clear that stability is now a key requirement 

for the wide-spread acceptance and application of the language. The main purpose of this paper is to 

propose a solution to these two apparently confficting needs. Such solution is based on the idea that the 

enhanced expressiveness should not be achieved at the cost of replacing or modifying the existing standard 

syntax and semantics, but it should, rather, co-exist with them. By viewing the standard semantics of 

LOTOS as an interpretation function that maps the LOTOS syntax into the domain of LTS's, our approach 

essentially consists in adding to the standard LOTOS semantic interpretation some non-standard (semantic) 

interpretations, called view functions, also applied to the standard LOTOS syntax. To our knowledge, 

none of the extensions proposed for LOTOS so far falls under such scheme. We believe, instead, that our 

"multi-semantic approach" bears the promise of offering to the LOTOS users a wide selection of 

expressive tools (the view functions) without jeopardizing the stability of the standard language, and 

deserves the attention and contribution (in terms of new view functions) of the LOTOS community. 

The paper is organized as follows. In Section 2 wc discuss the notion of compatible extensions to 

LOTOS, and present a classification of such extensions. In Section 3 we concentrate on extensions based 

on non-standard interpretations and present some simple examples. Sections 4 and 5 introduce two 

different techniques (denotational and operational approaches) for the definition of view functions. Such 

techniques are applied, respectively, for (re-)defining the LOTOS process functionality parameter, and a 

newly introduced view function called SyncDegree (technicalities are found, respectively, in Appendices A 

and B). In the conclusive Section 6 we discuss how the ideas presented in the paper can be put to work in 

the framework of a LOTOS-bascd software development environment, and present some preliminary 

implementation experiences. Some familiarity with LOTOS (processes) is assumed. 
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COMPATIBLE LOTOS EXTENSIONS 

We discuss here, at an abstract level, three different ways to conceive extensions to the LOTOS language 

(see Figure 2.1). They are called compatible extensions because in all three cases some syntactic and 

semantic elements of the standard language are preserved. (Indeed, based on such definition of 

compatibility, any non-compatible extension to LOTOS should be considered as a new language, that may 

at most claim to have been inspired by LOTOS; thus the attribute "compatible" is a bit redundant). 

The starting point of any extension is the LOTOS standard [ISO89a], which consists of the three elements 

shown in Figure 2.1.a: 

the standard syntax, 
the standard semantic model (LTS's plus, possibly, an equivalence relation) and 

the standard semantic interpretation, which associates a semantic model to syntactic objects 

(specifications). 

Syntactic extensions (Figure 2.1.b) 

Shorthands are syntactic extensions that are meant to provide abbreviations for cumbersome constructs or 

combinations of constructs of the standard syntax. The expansion of a shorthand returns the original, 

cumbersome notation. An example of LOTOS shorthand is: 

MaxCoop {Pt[G1] . . . . .  Pn[Gn] } 

proposed in [B90], which denotes a behaviour expression (indeed, many equivalent ones) where n 

processes P1 . . . . .  Pn, with associated actual gate sets G1 .. . .  Gn, are composed by multiple occurrences 

of the (binary) parallel operators "1[...]1" or "111". 

Alternative concrete syntaxes are meant to provide alternative representations of the constructs of the 

language, and enhance the readability of LOTOS specifications. An example of such an extension is the 

G-LOTOS (for "graphical") syntax being standardized in ISO [ISO89b], which is meant to provide first 

glance recognizability of the fundamental structure of a specification, and of its behaviour expressions in 

particular. G-LOTOS provides simple and well distinguishable graphic representations for sequentiality, 

parallelism, and nondeterminism. An alternative syntax is typically provided with a translation function 

that maps it onto the standard syntax, so that the former inherits the semantic interpretation (and model) of 

the latter. 

In conclusion, shorthands and alternative syntaxes do not affect the semantic level of the language. 
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Upward compatible extensions (Figure 2.1.c) 

Such extensions are meant to enhance the expressiveness of the language at the semantic level. First a 

desirable extension of the underlying semantic model is identified, and then further syntactic constructs 

and an associated extension of the semantic interpretation function are introduced, that "cover" the 

extended semantic model. "Upward compatibility" means that the extended interpretation is conservative: 

its restriction to the standard syntax coincides with the'standard interpretation, thus it yields instances of 

the standard model. 

As an example, consider a LOTOS extens~bn where events are no longer atomic, but composite objects 

such as sets. Synchronization may then take place based on the non-empty intersection of two events, and 

hiding can be applied to just a subset of an event (partial hiding). Still, it may be possible to design such 

new features in such a way that the standard syntax and semantics are special cases of the extended ones: a 

standard event is a singleton, standard hiding is partial hiding applied to the complete event, and so on. A 

proposal for LOTOS extensions of this kind is found in [B88]. 

Another interesting branch in the research on LOTOS extensions deals with the introduction of time 

parameters (see, among others, [B88, HTZ89, QAF89, BLT90]). The question on whether such 

extensions are really upward compatible (is the new semantic model a proper superset of the standard one 

?) is not an easy one, and we do not discuss it here. 

Finally, the introduction of specification modules [B89] as a means for the decomposition of a 

specification into a set of distinct, self-standing documents has to be mentioned here. In fact, it allows for 

a better management of specification development activities, still keeping compatibility with the LOTOS 

existing features for hierarchical specification. 

While in principle upward compatibility is very elegant and appealing, since, in some sense, it preserves 

the standard syntax and semantics of the language, in practice it still seems to conflict with the need of 

stability of the standard language: the user of the extended language, which does want to take advantage of 

the enhanced expressivity offered by it, is essentially confronted with a new language. 

The multi.semantic approach (Figure 2.1.d). 

Rather than enhancing the standard language by conservatively extending its syntax and semantics, the 

multi-semantic approach leaves the syntax unchanged, and offers further, non-standard interpretations of it 

that are simply added to the standard one. The new, non-standard interpretations, also called view 

functions, are meant to exploit the same syntax for capturing various aspects of the specified system/hat 

are out of the reach of the standard, LTS-based interpretation. 
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While on one hand such an approach offers enhanced expressivity at the semantic level, on the other hand 

it is truly conservative, and by no means destabilizes the standard; the approach is further discussed in the 

next section. 

a )  ~ + syntax It, 

,1, 
stanrnoded~dl ~ i n t e r p r e t a t a o n  

.l + semanttcs 

d) 

Figure 2.1 - Compatible LOTOS extensions 

b) 

c) 

conservative 
extended 
semantic 
interpretation 

VIEW FUNCTIONS 

Figure 3.1 is a refinement of Figure 1.1 which illustrates more precisely the sense in which a LOTOS 

specification describes a real system. Property capturing is only possible by means of interpretations of 

the specification, that map it into mathematical objects, or models. Figure 3.1 is also a refinement of 

Figure 2.1.d which illustrates the multi-semantic approach. 
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Functionalproperties are modeled via the standard, LTS-based semantic interpretation. 

Non-functional properties require the ad-hoc definition of non-standard interpretations, also called view 

functions. 

Further properties exist that remain unspecified formally. 

~ _ .  ~_a_P .t?!e_ _s_ 

~ ~ _  . . . .  captures ..... 

object) . . . . . . . . . . . . . .  v properties... 

~ non-standard - ~  

...ofa ,ob oo  
interpretation ] (view function) 

A LOTOS spec I 
I 

(a piece of text) I 

Figure 3.1 - Property capturing by standard and non-standard interpretations 

For example, with respect to the four properties listed in Section 1, we may 

rely on the standard LTS for modelling the functional behaviour of a system (e.g., for stating 

formally that a ConnectRequest event is followed either by a ConnectConfirm or by a 

DisconnectIndication); 

adopt a specific view function for modelling the physical distribution of functionality 

(e.g. for stating formally that the system is decomposed into a Caller, a Responder, and a Medium, 

that must be interconnected according to the well known pattern); and 

• leave aspects such as the timing of events and ergonomics of user-interface not formally specified. 
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Thus, a view function maps LOTOS specifications (or parts of it) into a suitable set of mathematical 

objects, called view domain. The application of a view function to a specification yields an element of the 

relevant view domain, called view. 

In principle one may define very complex view functions, perhaps for capturing also functional properties 

that escape the modelling capabilities of the standard interpretation. Thus, the correspondence between 

standard (resp. non-standard) interpretations and functional (resp. non-functional) properties, as implied 

by Figure 3.1, should not be taken as too rigid. Indeed, even the distinction between functional and non- 

functional properties is not commonly agreed upon as one might wish. 

Without further discussing terminological issues, we simply observe that, in practice, views are not 

complex, possibly infinite objects with functional-semantic flavour, such as failure sets [BHR84]; they 

are rather simple, finite objects, such as a natural number, a finite set of LOTOS gates, or of LOTOS 

behavioural operators. Moreover, most of them are understood as conveying information on the structure 

, rather than the functionality or behaviour of the specified system. 

The argument of a view function depends on the particular view one is interested in, and may be either a 

process definition or a behaviour expression. Of  course, views on process definitions will make 

reference to the defining behaviour expressions of such definitions. We shall let Bex denote the set of 

LOTOS behaviour expressions. For the illustrative purposes of this paper, we restrict to Basic LOTOS, 

where data type definitions and value expressions are not present. Furthermore, we shall make reference 

to Fiat process definitions of the type: 

process P [gl . . . . .  gn] F := Bp 

where  process P1 ... :=BP1 endproe  

* o o  

process Pk ...:= BPk endproc  

endproc 

F stands for P's declared functionality (either exit or noexit). The behaviour of P is defined by its 

top-level behaviour expression Bp (also called "def'ming behaviour expression") which, in turn can make 

reference to processes P1 ..... Pk. The definitions of the Pi's processes do not include, in turn, process 

definitions, that is, they have no "where" clause and, in general, mutually recursive. Also, when no 

ambiguity may arise, we shall avoid to make explicit reference to the environment defined by the 

definitions of processes P1 ..... Pk. 

Some view functions are informally introduced below, by means of examples. In describing them, we 

shall refer to the variables that appear in the process definition scheme above. 

Given expression BP, ObsGates (BP) identifies the set of gates where process P may be active. For 

example, ObsGates(a; stop [] b; P[c, d]) = {a, b, c, d}. An interesting extension of the ObsGates is the 

TypedGates view function, formally defined for full LOTOS in [BBFN90]. The typed gates of BP are, 
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again, the gates where process P may be active, but also include information on flae sorts of the (tuples of) 

data values that may be exchanged at those gates. 

A ~ate structure is a set of gate sets; let GateStructures be the set of such objects (GateStructures = 
,.Jates 

22 ). The GateStructure view function is a kind of refinement of the ObsGates function, that is 

sensitive also to the parallel substructure of the given behaviour expression BP: it is meant to provide a 

family of gate sets, each corresponding to one of the parallel components of BP. Some examples follow: 

GateStructure(a; stop [] b; P[c, d]) = { {a, b, c, d} }. 

GateStructure(a; stop 111 b; P[c, d]) = { {a}, {b, c, d} }. 

The GateStructure view function represents a good example of what we mean by extracting from a 

specification (or, rather, a process definition of P) some information that is not provided by the standard 

semantic interpretation. Clearly a labelled transition system is a "flat" object that does not show the 

partitioning of the gate space corresponding to the parallel sub-processes of P. 

We are not interested here in a detailed presentation of several view functions, and on motivating each one 

of them individually. At the general level, we have already advocated the notion of non standard 

interpretation as a means for extending the expressivity of LOTOS in a most conservative way. The 

application of the newly introduced concept to the definition of correctness preserving transformations is 

thoroughly discussed in [BBFNg0]. In that document, correctness preserving transformation problems 

are decoupled into (semantic) correctness preservation requirements, which deal with standard 

interpretations, and transformation requirements, dealing with non standard interpretations. 

In the rest of the paper we concentrate, instead, on two alternative approaches to the formal definition of 

view functions: denotational and operational. The former is applied to (a refinement of) the definition of 

the LOTOS process functionality; the latter is used for defining a new view function, called SyncDegree. 

DENOTATIONAL APPROACH TO THE DEFINITION OF VIEW FUNCTIONS 

In this section we shall follow the denotational approach for the definition of view functions. The 

denotational approach has been introduced by Scott and Strachey [$70] as a means for defining the 

semantics of programming languages. The approach consists in providing a direct mapping of language 

constructs into the mathematical objects they denote, like sets and functions. A suitable interpretation 

function must be defined for each syntactic category of the language. Such a function wilt map the 

syntactic category into its semantic domain, giving thus meaning to the constructs in that category. Some 

special technicalities are needed for handling recursion: it is required that semantic domains be complete 
partial orders (c.p.o.) rather than unstructured sets, and that functions be continuous over them. When 
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such requirements are fulfilled, standard fixpoint theory results can be used. The reader is referred to 

[$77] for a comprehensive description of the approach. 

The denotational approach has been devised for giving language constructs their "standard" interpretation, 

also called dynamic semantics because it accounts for actual program execution. However, a major 

advantage of the method is that, given the high degree of freedom in the choice of semantic domains, one 

may similarly define non-standard interpretations of the language, including static semantic aspects. For 

example, one may define Type interpretation functions, which map into a domain of types, thus providing 

a mathematical framework for type-checking. Other interpretations may be defined for supporting 

strictness analysis, which gives information about the behaviour of programs with respect to termination in 

the context of functional programming languages [CPJ85]. 

A general scheme for the denotational definition of view functions 

The two fundamental syntactic categories of Flat Basic LOTOS are ProcDefs for process definitions and 

Bex for behaviour expressions (see the process definition scheme in Section 3). Thus, for a given view 

domain, i.e. non-standard semantic domain V, we have to define two different interpretation functions. 

One of them, BexV, gives meaning to behaviour expressions and has the following type: 

BexV : Bex -* V k ~ V 

Given a behaviour expression B which, in the general case may contain instantiations of the local process 

definitions occurring in the top level process definition, BexV[B1 takes the meaning of such definitions, 

represented by a k-tuple vl,..,vk, as parameter and returns the meaning of B. Thus, in order to determine 

the interpretation of  a behaviour expression we need the interpretations of all the process definitions 

appearing in the top level definition. This is done by means of the PDefsV interpretation function, the 

type of which is the following: 

PDefsV : ProcDefs k -* V k 

PDefsV takes the k-tuple of process definitions occurring as local definitions in the top level process 

definition and returns the k-tuple of their interpretations. 

PDefsV[PD1,..,PDk] will in tttrn be defined in terms of BexV which will give meaning to the defining 

behaviour expressions B1,..,B k of PD1,..,PDk. Now a problem arises; some of the Bi s may contain 

recursive instantiations of some PDjs. So, BexV[Bi] must be provided the meaning of PD1,..,PDk 

which is just the object we are trying to define! This induces a recursive structure on the definition of 

PDefsV[PD1,..,PDkJ itself which must indeed satisfy the following equation: 
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PDefsV[PD1,..,PDk] ---<BexV[B 1 ](PDefsV[PD1,..,PDk]),..,BexVIB k ](PDefsV[PDI,..,PDk])> 

Under proper assumptions, namely that V is a c.p.o, and that BexV[B1 is continuous over V k the above 

equation has solutions; such equation is written in more readable form as a system of k equations in k 

variables ranging over V: 

Vl = BexV[B 1]VlV2..Vk 

v2 = BexV[B2]v 1 v2..Vk 

Vk = BexV[Bk]vlv2..Vk 

We define PDefsV[PD1,..,PDId as follows: 

PDefsV[PD1,..,PDk] = ~t(Vl..Vk).<BexV[B 1]vl..Vk .... BexV[Bk]vl..Vk> 

which is the minimal solution of the above system of equations in the partial order V k. 

We are now ready for defining the view we are interested in on the top level process definition PD. It will 

be given by the application of the Vlnt -erpretation function to PD, where Vlnt will be defined in terms of 

BexV and PDefsV : 

VInt[process P [gl,..,gln] : F :---B where PD1,..,PDk endproe] = 

BexV[B](PDefsV[PDI,..,PDk]) 

In the following we shall apply the denotational fratr~work to the definition of the functionality parameter. 

In the case of Basic LOTOS, the functionality parameter reduces to the possibility of successful 

termination of a behaviour expression. The formulation of the problem that the view would be requested 

to answer is then: "Is there any computation, among those derived from a behaviour expression, which 

successfully terminates?" or, more formally: "Is there a path starting from the root of the labelled transition 

system associated to the behaviour expression which leads to a 5-transition?". 

It is well known that such a property is undecidable ([ISO89a]) so, there is no hope to define a computable 

interpretation function which decides it in all possible situations, i.e is total, and which gives correct and 

complete information. So, apart form giving an effective definition of apartial function which returns an 

answer when applied to a possibly successfully terminating behaviour expression and which may be 

undefined otherwise, the best we can do is to effectively define an appropriate abstract interpretation 

function which only approximates the functionality property, namely a function which enjoys the 

following properties: 

i) It must be 'safe' in the sense that it must never suggest that a behaviour expression cannot 

terminate successfully when the associated labelled transition system does contain a 8-transition. 
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li) It should be as 'informative' as possible, that is it should detect in as many cases as possible the 

impossibility of termination of behaviour expressions, namely the fact that the associated labelled 

transition systems does not contain 8-transitions,. 

Using the notation introduced in [ISO89a] we shall say that the functionality of a process is <> iff there is 

a path starting from the root of its labelled transition system which leads to a 5-transition and it is 0 

otherwise. We define the Func set as {0,<>}. Safety implies that, for any process P: 

Funclnt[P] = <> iff maybe there is a path starting from the root of P's labelled 

transition system which leads to a 8-transition, and 

Funclnt[P] = 0 iff there is definitely no path starting from the root of P's labelled 

transition system which leads to a &transition 

Now, a function Funclnt such that Funclnt[P] = <> for all P would be safe, but it would be of no help! 

So, the problem is to find a definition forFunclnt which is safe but also sufficiently informative. There is 

not an obvious solution to such problem. For instance, one possible solution could be a modification of 

the standard functionality function func defined in [ISO89] obtained by simply removing all the 

information related to LOTOS types. A consequence of such a choice would be that a process definition 

like the one given below would be assigned a <> functionality, while it is obvious that any instantiation of 

process P will definitely fail to terminate! 

process P [g] : exit := g ; P[g] endproc  

For the same reason, the standard functionality assigned to P[g] >> exit, where P is the process defined 

above, is <> while 0 would be more appropriate. The only way out from such situations is to compute 

the functionality of the body by means of a safe interpretation function and define the functionality of the 

instantiation to be equal to the result, possibly checking the declared one for consistency. 

In Appendix A a safe functionality interpretation function is defined which is a bit more informative than 

the standard one; for instance, it assigns 0 to the behaviour expressions of the above examples. 

OPERATIONAL APPROACH TO THE DEFINITION OF VIEW FUNCTIONS 

In this section we shall follow the operational approach for the definition of view functions. The 

operational approach has been used in the standard definition of the LOTOS language for defining its 

dynamic semantics. The approach consists in providing a derivation system for transitions that is used for 

the definition of labelled transition systems. 
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The derivation system consists of axioms and inference rules that can be used for deriving the transitions 

associated with a given behaviour expression, based on its syntactic structure. For an introduction to 

structured operational semantics, see [P81]. 

The standard interpretation of LOTOS does not give explicit relevance to all the possible aspects of a 

specification or process in which one can may be interested. However, it may happen that a relatively 

small enrichment of each individual axiom and rule of the semantics be sufficient for defining interesting 

view functions and capturing some of these aspects. An advantage of such an approach is that it preserves 

the structure of the existing standard dynamic semantics. On the other hand, the transition system 

associated with a behavionr expression may be infinite: this implies that, in some cases, the computation of 

the view function may diverge, and that the function is only partial. This is what happens with the 

SyncDegree view function def'med below. 

Consider the labelled transition system LTS(BP) associated to the defining behaviour expression BP of a 

process definition PD of process P. The arc-labels on the LTS(BP) do not provide information on how 

the actions are performed. For example, the two expressions: 

B 1 = a ; stop and B2 = (a ; stop I[a]l a; stop) 

are associated to the same labelled transition system, shown in Figure 5.1. 

a 

Figure 5.1 - A Labelled Transition System 

However, the a action of B 1 is performed by a single entity, while the a action of B2 is the result of the 

synchronization between two entities, namely the two sub-expressions that form the parallel construct. 

We shall extend the action labels with the number of entities, or sub-expressions, involved in performing 

it. Indeed, these numbers indicate how many action prefixes are "consumed" by the execution of the 

event. 

The standard LOTOS inference rules are modified by associating to every transition label an integer n 

called synchronization parameter. An instance of the new, extended transition relation will have the 

following form: 

B1 . . . .  < x , n >  . . . .  > B2. 

Let SLTS(BP) be the labelled Iransition system associated to the deeming behaviour expression BP of a 

process definition PD of process P. We shall let SyncDegree(BP) denote the maximum of the 

synchronization parameters occurring in SLTS(BP). 



229 

More formally SyncDegree(BP) = max{ n / B--< x, n >-->B' is a transition in SLTS(BP)}. The 

inference rules that define the extended transition relation are extensions of the standard rules: the most 

relevant case is that of the synchronization rule for the parallel operator. The complete set of extended rules 

for Basic LOTOS is provided in Appendix B. 

C O N C L U S I O N S  

Non-standard interpretations of LOTOS specifications, also called view functions, have been proposed as 

a most convenient and conservative way to extend the expressivity of the language without affecting its 

standard syntax and transition-system-based semantics. We envisage two fundamental and related usages 

of view functions. 

1. Some requirements may be formulated in terms of specific view functions fl  ..... fn, and specific 

views vl  . . . . .  vn: the formal specifier is then required to write a LOTOS specification S is such 

that fl(s) = vl  . . . . .  fn(s) = vn. 

2. In the context of a transformational design and implementation method based on LOTOS, some 

transformation step S 1-->$2 between two specifications may be characterized by the requirements 

that some (standard) semantic relation between S 1 and $2 be preserved (correctness preservation 

requirement), and that some relation between the views f(S1) and f(S2), or some independent 

requirement on f(S2), be fulfilled, where f is a predefined view function (transformation 

requirement). For instance, one could ask ParDegreefBs2) >_ ParDegree(Bsl), in order to increase 

the degree of parallelism of S 1, or SyncDegree(Bs2) = 2 for not allowing more then processed to 

synchronize on any gate. 

A number of useful tools could be developed for supporting the computation and manipulation of view 

functions and views. For those view functions that are defined by structural induction on the syntax of 

LOTOS, tools for view generation can easily be implemented by means of (meta-)tools based on attributed 

grammars. 

We are now developing a general framework for LOTOS non-standard interpretations based on the 

denotational approach within an algebraic setting. In such an approach, starting from a grammar which 

defines the abstract syntax for LOTOS, a sort set L and a signature A are derived in such way that the 

abstract syntax is exactly the term algebra TA, which is initial for any interpretation domain, when such a 

domain is a A-algebra. This means that there exist a unique morhism, namely the interpretation function, 

from the abstract syntax to the interpretation domain. In other words, the "pattern of recursion" of all 

interpretation functions is the same and depends only on the structure of the abstract syntax terms. An 

interesting implication of this approach is that such a pattern of recursion can be "frozen" into a 

polymorphic, higher-order function "1,, written in a suitable functional language, which will take abstract 
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syntax terms as well as all the operations of any actual A-algebra as arguments, returning values in that 

algebra: any interpretation function will be nothing more than the instantiation of 1, on the interpretation 

domain. A preliminary prototype of a transformational environment for LOTOS has been implemented in 

Miranda 2 ~86] and is described in [L90]. 

For implementing view functions defined in structured operational style, such as the SyncDegree 

introduced in the paper, one may most likely take advantage of already existing implementations of the 

standard dynamic LOTOS semantics. 

Some topics for further research are listed below. 

Define further view functions for a better assessment of the range of expressive possibilities 

offered by the method. 

Differentiate between view functions used as definitions of properties and view functions used as 

approximations of possibly undecidable properties. 

Investigate the differences between the denotational and structured operational methods for the 

definition of view functions, in terms of expressivity. 
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Appendix A - Formal definition of  the LOTOS process Functionality parameter 

In the following we shall instantiate the definition schema sketched in Section 4 on the functionality 
parameter for Basic LOTOS. 

The def'mition of the interpretation functions makes use of two auxiliary functions defined below: 

MinFunc, MaxFunc : Func 2 ~ Func. 

Recall that Func = {0, <>}. For all functionalities x 

M i n F u n c  0 x = 0 
MinFunc x 0 = 0 
MinFunc <> <> = <> 

MaxFunc <> x = <> 
MaxFunc x <> = <> 
MaxFunc 0 0 = 0 

We are now ready for the definition of the functionality view function; 
Funclnt : ProcDefs --) Func 

Funclnt  [process P [gl,--,gln] : F := B where PD1,..,PDk endproe]  = 
BexFunc[B]PDefsFunc[PD I,..,PDk] 

BexFunc is defined by structural induction on behaviour expressions as follows: For all 

B, B1, B2 
g, g l  .... gn .... g ' l , . . ,g 'm,  a l  . . . . .  an 

behaviour-expression 
gate-identifier 
parallel-operator op 
functionalities t~ 1,..,(~k 

BexFunc[stop]O 1..~k = 0 

BexFunc[exit]~l..¢l¢ = <> 

BexFunc[i; B](~1..(~1¢ =BexFunc[B](~ 1..t~1¢ 

BexFunc [g;B ]t~ 1..(~: =BexFunc[B](~l ..(~1¢ 

BexFunc[choice  gl, . . ,gn in[g ' l , . . ,g 'm] []B](~ 1..~1¢ 

= BexFunc[B]O 1..(~¢ 

BexFunc[par  gl , . . ,gn in[g ' l , . . ,g 'm] op B](~I..(~: 

= BexFunc[B](p 1..(p~ 

BexFunc[hide gl , . . ,gn in B]~1..(I)1< 

BexFunc[(B)]Ol..(~K 

BexFunc[B 1[] B2]t~I..~K 

BexFunc[B 1 [> B2]@1..@1¢ 

BexFunc[B lop B2]~l..~)~ 

BexFunc[B 1>> B2]~1..(~¢ 

BexFunc[Pi [a 1 .. . . .  an]](~l..(~l¢ 

= BexFunc [B](H..(~I¢ 

= BexFunc[B](~ 1..(~¢ 

= MaxFunc (BexFunc[B1]t~l..(~Q(BexFunc[B2](~l..(~¢) 

= MaxFunc (BexFunc[B1]@l..(~)(BexFunc[B2]~l..(~:) 

= MinFunc (BexFunc[B1]~l..t~lc)(BexFunc[B2]~l..(~l¢) 

= MinFunc (BexFunc[B1](~l..t~c)(BexFunc[B2](~l..(~l¢) 

= ¢ i  

The functionality of a process instantiation is defined to be equal to the interpretation of its related process 
definition. Here is the main difference with [ISO89] where the functionality of a process instantiation is 
defined simply as that (syntactically !) declared by the user in the header of the process definition, so that 
process definitions like that given in Section 4 for process P are considered correct  w.r.t, static 
semantics. Under our definition of the functionality view, at least something like a bad quality warning 
should be issued for such process definitions. It is also worth comparing our definition for the enabling 
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operator >> with the standard one where func(Bl>> B 2 ) = func(B2 ) so that func(Bl>> B2 ) may be 
equal to <> also when B1 definitely fails to successfully terminate, namelyfunc(B1) =0. 

Finally, the definition of PDeclFunc is: 

PDefsFunc[ process R1 [ g l l  . . . . .  g l n l ] :  F I : =  B1 e n d p r o c  

process "I~ k [gkl  . . . . .  gknk]: Fk:= Bk endproc]  = 

Ix(~ 1..@K:).<BexFunc[B 1 ]~ 1..~1¢ . . . . .  BexFunc[Bk]@l..~:> 

Continuity of BexFunc[B] can easily be proved (see [L90]) by structural induction on B when Func is 

made a c.p.o, by means of <<¢ --- Func x Func defined as follows: 

(Vx,yE Func)[x<<~y iff ( x = 0 V x=y )] 

One has simply to observe that all chains in Func are finite and that MinFunc and MaxFunc are 
monotonic. Safety of  BexFunc[Bl can also be proved proved [L90] by structural induction onB.  

Append ix  B - F o r m a l  def ini t ion of  SyncDegree  

Ex tended  In fe rence  Rules  of  Trans i t ion  

Let: .g, gl , . . ,gn 
! 

IX 

g+ 

Ix+ 

range over the set G of user-definable gates; 
denote the unoservable action; 

range overAct  = G  u {i}; 

denote the successful termination action; 

range over G + = G u { 6 } 

range over Act + = Act u { ~ } 

exit) 

act prefix) 

sam) 

par) 

parenthes is )  

choice)  

exit . . . .  <$, 1 > . . . .  > s top 

Ix; B . . . .  <ix, l >  . . . .  > B' 

(B)[gi / g] -- <IX+, n> --> B' 
cho ice  g in [gl , . . ,gn ]B -- <IX+, n> --> B' 

Let op be a parallel operator 
(B)[gl / g] op.. op(B)[gn / g]-- <IX+, n> --> B' 
p a r  g in [gl,.. ,gn] op B -- <Ix +, n> --> B' 
B-- <IX+, n> --> B' 
(B) -- <IX+, n> --> B' 

B 1 -- <l x+, n> --> B 1' 
B1 [] B2 -- <IX+, n> --> BI '  

B2 -- <¢+,  n> --> B2' 
B1 [] B2 -- <It +, n> --> B2' 

is an axiom. 

is an axiom. 

implies 

implies 

implies 

implies 

implies 
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p a r a l l e l )  

h i d e )  

p r o c  ins t )  

e n a b l i n g )  

d i s a b l i n g )  

B1 -- <It, n> --> BI ' ,  It ¢ [g l  . . . .  gn] implies 
B1 I[gl . . . .  gn]l B2  -- <It, n> - ->  B I '  I[gl . . . .  gn]l B2  

B2  -- <It, n> - ->  B2',  It ¢ [g l  . . . .  gn] implies 
B1 I[gt . . . .  gn]l B2  -- <it, n> --> B I  l[gl . . . .  gn]l B2'  

B t -- <g+,  n> - ->  B1 ', B 2 - -  <g+,  m >  --> B2 ', g+  E S u { 8 }  
implies 

B1 I[gl . . . .  gn]l B2  -- <g+, m + n> - >  B I '  I[gl . . . .  gn]l B2'  

B -- <it+,  n> --> B', It+ ¢ g l  . . . .  gn 
h ide  g l  . . . .  gn in B -- <It +,  n> --> B' 

implies 

B -- <g, n> --> B', g E g l  . . . .  gn  
hide  g l  . . . .  gn in B -- <i ,  n> --> B' 

implies 

Let  B = p r o c e s s  P [g l ' ,  ..,gn'] := Bp e n d p r o c  be a process  defini t ion,  

B p  [ g l / g l ' ,  .... grggn']  -- <i t+,  n>  --> B '  
P [ g l  . . . .  gn] -- <It +, n>  --> B'  

implies 

B 1 -- <it, n>  --> B 1' implies 
B1 >> B2 -- <It, n> --> B I '  >> B2 

B1 -- <8,  n> --> B I '  implies 
B 1 >> B2 -- <i, n> --> B2 

B1 -- <it, n>  --> B I '  implies 
B 1 [> B2 -- <it, n> --> B 1' [> B2 

B1 -- <8,  n> --> B I '  implies 
B1 [ > B 2  -- <~, n> --> BI '  

B2 -- <It +, n> --> B2'  implies 
B 1 [> B2 -- <p.+, n> --> B2'  


