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Abst rac t  

Results from Unification Theory and type inference with coercions are combined to 
produce a new method for performing strictness analysis of functional programs. 
A formal deduction system is developed in which extended types are derivable for 
terms of the A-calculus. These extended types contain Boolean rings describing the 
reduction behaviour of terms. Algorithms implementing the method are described, 
as well as proofs of their correctness. The method is extended to deal with recursion, 
polymorphism, and constants. 

1 I n t r o d u c t i o n  

The type of a function may be considered as an abstract description of its behaviour. 
Traditionally, types have described the domain and range of a function. In this paper the 
notion of type will be extended to include a description of the reduction behaviour of a 
function. This new notion of type will tell us whether or not a function is dependent on the 
structure of its argument, as well as providing the usual domain and range information. 
For the purposes of the current paper, a function will be said to be dependent on the 
structure of its argument if, in every reduction to head normal form of the application 
of the function to its argument, the argument is reduced to head normal form (formal 
definitions of these concepts are given later). 

The  basic idea is to introduce two function type constructors: one to represent the 
set of functions which are strict on their argument, and one to represent the set of func- 
tions whose result is independent of their argument. These function type constructors 
represent t ru th  and falsity in a Boolean algebra. It is then natural to permit  function 
type constructors to also include variables and Boolean expressions. Thus function type 
constructors may range over the full Boolean algebra. With just a little more machinery, 
this allows the representation of strictness information for all the conventionally typable 
terms (see Wright [28]). 

The  main application for this work is in the implementation of functional programming 
languages. Information about the reduction behaviour of a function is useful as this 
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information allows the selection between alternative reduction strategies while preserving 
the semantics of the function. It is advantageous to be able to safely select alternative 
reduction strategies as some strategies have increased opportunity for the exploitation of 
parallelism, or are less costly to implement in a sequential fashion (see Peyton-Jones [21]). 

In this paper a syntactic connection between the reduction behaviour of a function and 
its type is given. The approach is thus a formal one, in the sense that it is not necessary 
to attach any meaning (or interpretation) to functions in order to carry out deductions 
of types for the functions. Readers interested in semantics may wish to consult the 
forthcoming thesis (Wright [28]). 

The structure of the paper is as follows. After some preliminary concepts are intro- 
duced in Section 2, Section 3 explains the intuition linking types and reduction, as well as 
the link with Unification Theory and type inference with coercions. The deduction system 
is presented in Section 4, then Section 5 presents an implementation of this deduction 
system. Section 6 considers how the deduction system may be extended to deal with 
recursion, polymorphism and constants. Finally, in Section 7 brief consideration is given 
to the time complexity of the method. Section 8 concludes the paper. The Appendix 
presents a proof of correctness for the main algorithm introduced in this paper. 

1 .1  R e l a t e d  w o r k  

Several other approaches for determining information about the reduction behaviour of 
functions exist. To place the current work in context, thesc alternative methods are briefly 
considered. 

In abstract interpretation ([5, 7, 10]) a function is evaluated under a non-standard se- 
mantics designed so that the evaluation yields information about the function's behaviour 
under the standard semantics. This approach has proved a useful framework for a variety 
of analyses, but does have some disadvantages. Probably the most significant of these is 
the time complexity of the method as it is necessary to perform fixpoint iteration in order 
to deal with recursion. Furthermore, it is (currently) required that the whole fixpoint 
be calculated, forcing the domains being iterated over to have finite chains and adja- 
cent elements to be finitely comparable (if an effective analysis is desired). Although I am 
not aware of any formal complexity analysis of higher-order strictness analysis by abstract 
interpretation, it appears that the method may be n-exponentially complete 1. The frame- 
work of abstract interpretation has been successfully extended to higher-order functions 
(Burn et al [7]), non-fiat domains (Wadler [24]), and polymorphism (Hughes [11]). 

Another alternative is projection analysis (Wadler and Hughes [25]). In this approach 
particular functions which perform some evaluation of their arguments are used as anno- 
tations to describe how much of the structure of an argument to a function is required. 
The analysis may be used in both a backwards and a forwards sense. Backwards analysis 
involves asking the question "given that the result of a function f must be evaluated to 
the  extent required by the function g, what function h exists which may be applied to 
the  argument of f such that f;  g = h; f;  g?" (writing composition from left to right). 
Forwards analysis is simply asking this question the other way around (determing g in- 
stead of h). Projection analysis has been used to analyse non-flat domains (Wadler and 

1An analysis for first-order strictness analysis appears in [10], in which it is shown that such an analysis 
is DEXPTIME-complete (thanks to Nick Benton and Geoffrey Burn for bringing this to my attention). 
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Hughes [25]) and polymorphism (Hughes [121) , but not higher-order functions. Burn [6] 
has investigated the relationship between projection analysis and abstract interpretation. 

Barendregt, Kennaway, Klop and Sleep [3] take yet another approach. Classes of so- 
called spine redexes are identified in the head reduction of a term to head normal form. 
These spine redexes are particulax sets of the head needed redexes of a term. Barendregt 
et al cast their work in terms of the untyped A-calculus and define a series of Mgorithms 
to identify spine redexes in a term. 

Kuo and Mishra [15] have developed a method for performing strictness analysis using 
the techniques of type inference. As in the work presented here, their method has the 
advantage that fixpoint iteration is avoided. However, their type language fails to give 
information obtainable in some semantic-based approaches about some useful examples 
involving recursion (see [15] and Section 6.3 of this paper). Unlike the present work, 
the type system of Kuo and Mishra is non-structural in the sense that coercions (or 
constraints) between structured types (such as functional types) cannot be broken up 
into coercions between the components of these structured types. This complicates their 
type inference algorithm. 

In the approach described in this paper, results from Unification Theory [23] are 
combined with the theory of type inference with coercions, to produce a decidable analysis 
of strictness information for functional languages. The result is an expressive and natural 
type language for expressing strictness information, which has the additional advantage 
of having a structural nature. 

2 P r e l i m i n a r i e s  
Defini t ion 1 (A-terms) 
Let X = ~v0, vl , . . .}  be a set of term variables, then the set A of A-terms is inductively 
defined to be the smallest set containing X which is closed under function application 
and abstraction, namely 

• i f M C A a n d N c A t h e n M N E A a n d  

• i f x E X a n d N E A t h e n A x . N C A .  

Following the usual conventions, application associates to the left, and the scope 
of an abstraction is as far to the right as possible. Parentheses will often be omitted 
where these conventions make clear the intended meaning. Also, a term of the form 
(Axl.Ax2.... Axn.N) will often be written as (Axlx2... x,~.N). 

Defini t ion 2 
In a A-term (Ax.N) the object Ax is the binder of the term, and x in Ax is the binding 
occurrence of x. A variable x occurs bound in a term M if M has a subterm (Ax.N) and 
x occurs in N, in which case the term N is the scope of this binding occurrence of x. A 
variable x occurs free in M if it is a subterm of M, and occurs outside the scope of any 
binding occurrence of x. The set of all free variables of a term M is denoted by FV(M). 
The set of all bound variables of a term M is denoted by BV(M). 

Defini t ion 3 
Let Mix := N] denote the result of replacing each free occurrence of x in M by N. The 
three rules of A-reduction are: 



238 

(a - reduc t ion)  if y • FV(N) U BV(N), then (Ax.N) -% (Ay.N[x :=y]), 

(f l -reduction) ('kx.N)M ~ Nix := M] and 

(y- reduct ion)  if x ¢ FV(N), then ('kx.Nx) ~ g .  

If a ,k-term M has the form of any of the left-hand sides of these rules, then M is a (a,~ 
or 7l)-redex. If a term contains no fl-redexes then it is in fl-normal form (and similarly 

for r/- and fly-normal forms). Let the reflexive, transitive closure of ~ be denoted by -*~ 

(and similarly for 2, and -*'), and the reflexive, transitive and symmetric closure of ~ be 

denoted by ~ (similarly ~ and -"-), this relation being called ~3-conversion. 

From now on 'k-terms will be considered modulo a-conversion (i.e. A/-~). Also, only 
fl-reduction will be considered in the following and so "reduction" will mean fl-reduction, 
"redex" will mean fl-redex and "normal form" wilt mean fl-normal form. 

Defini t ion 4 
A subterm N of a term M is at the head of M iff 

* M - N ,  or 

* M - 'kx.N' and N is at the head of N', or 

* M -- N1N2 and N is at the head of N1. 

Suppose M is not in normal form. The leftmost redex of M is the redex whose binder 
is to the left of the binder of every other redex in M. The leftmost redex, R, of M is a 
head redex of M iff R is at the head of M. M is in head normal form if it has no head 
redex. The head reduction path of a term M is a sequence of reduction steps in which 
every redex which is reduced is a head-redex. 

Suppose M ~ N, then the descendents of some subterm M' of M can be found in N 
(if any exist), by marking M' and following it through the reduction from M to N. See 
Klop [14], pplS-19 for a formal definition of descendent in terms of labelled reduction. 
Any descendent of a redex, R, is itself a redex, and is called a residual. 

Defini t ion 5 
Suppose R =- ('kx.N1)N2, then 'kx.N1 head needs its argument, N2, if a descendent of N2 
occurs at the head of some term on every reduction path of R to head normal form. 

Defini t ion 6 (Ba rend reg t  et  al [3]) 
Suppose R is a redex of M, then R is head-needed in M if every reduction sequence of/l~r 
to head normal form reduces a residual of R. 

Terms which cannot be reduced to head normal form are identified with the symbol 
_1_. A function f is strict on its argument if f_l_ = _1_. The process of determining 
whether a function is strict is referred to as strictness analysis. Similarly the process of 
determining whether a redex is head needed is referred to as head neededness analysis. By 
Proposition 5.1 of Barendregt et al [3] (due to H. Mulder), strictness analysis is equivalent 
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to head neededness analysis, since a function is strict on its argument iff the function head 
needs its argument. 

Now some notation concerning substitutions of various kinds. Let Vars(x) for some 
object x denote the set of all variables of that object (in the case of a A-term, M, 
Vars(M) = FV(M) U BV(M)). Composition of substitutions will be written from left 
to right, (f;g)(x) = g(f(x)). Write R[x := y] for the substitution which is equal to R at 
every point except x, at which point it is equal to y. A substitution for a set of variables 
will often be extended to operate over a term by applying the substitution to each variable 
in the term. Finally, write Dom(R) for {x]x ~ R(x)}. 

3 Types  and Reduct ion  

Consider the identity function, (Ax.x). Traditionally this function is given the type a ~ a 
to reflect the fact that it is a function and that its argument type, a, is the same as 
its result type, a. This function certainly head needs its argument (Definition 5) since 

(Ax.z)M ~-~ M, for every M E A. To incorporate into the type the fact that it head needs 
its argument, the type of the identity function will be written as 

This now tells us that the term (Ax.x) is a function, that its argument type is identical to 
its result type and that it head needs its argument. (Read this type as "a head needed-to 
a" or "a strict-to a"). Note that this type contains both strictness information as well 
as all the information of a conventional type, and so is a true extension of conventional 
types. 

Similarly, consider the constant function (Ax.y). This function is traditionally given 
the type c~ ~ fl (with a and fl possibly distinct) to indicate that it is a function and that 
its argument and result types are independent of each other. The value of this function, 
when given an argument, is surely independent of the value or structure of this argument 

as (Ax.y)M ~-~ y, for every 114" E A. This information is added to the type of (Ax.y) by 
writing the type as 

~ - ~ f l .  

This type states that (Ax.y) is a function, that its result and argument types are inde- 
pendent of each other and that for its value to be determined, when given an argument, 
it is not necessary that the value of its argument be determined. (Read this type as "a 
constant-to fl ') .  

Although it would be convenient if the above notation were sufficient, it is necessary 
to consider more complex functions and the types which should be assigned to them. 

The function (Af.fx) head needs its argument as (Af.fx)M ~ Mx. Traditionally 
(Af.fx) is given the type (a --* fl) ---, ft. The difference here is that the argument 

of (Af.fx) has an explicit functional type. In the reduction sequence (Af.fx)(Ay.y) 
(,~y.y)x ~ x, it can be seen that the functional argument to (Af.fx) head needs its 
argument and therefore the type of (Af.fz) in this instance may be reasonably written 

as (a =~ a) =¢, a. In contrast, in the reduction sequence (Af.fx)(Ax.y) ~ (Ax.y)x ~ y, 



240 

the functional argument of (Af. fx) has a constant type and so the type of ()tf .fx) in this 
instance may be written as (a -~ fl) =~ ft. 

There are two things to note about these two types for (Af.fx).  Firstly, both of 
these types for (Af. fx)  tell us that  it head needs its argument no matter what form that 
argument takes. Hence, the second function type constructor in both types is the head 
needed function type constructor. Secondly, both types disagree on the first function type 
constructor. While it is easy to decide which is correct given the argument to ()~f.fx), 
the problem arises as to what type should be given to ()tf . fx) when no argument is 
present. It is of course still desirable that if an argument is eventually given to (Af. fx)  
then the appropriate one of the two types for (Af. fx)  given above should be derivable. 
This problem is solved by the introduction of variable function type constructors, which 
are denoted by an arrow with a subscripted number. Thus the type of ()tf .fx) can be 
written, for some variable function type constructor --'1, as 

This type states that 

• ()~f.fx) is a function, 

• that its argument is also a function, 

• that this functional argument takes an argument which is possibly independent of 
its result type, 

• that the result type of the fnnctional argument is the same as the result type of 
(Af.fx), 

that the head neededness property of its functional argument is unknown, and 

• that (Af. fx)  head needs its argument. 

((a --+1 8) =~ ~ may be read "a function which takes a functional argument of type a 
variable-one-to fl which is head needed-to 8"). 

As another example, consider the function (Ax.f(gx)). Ordinarily this function would 
be assigned the type a --~ 7, assuming (g: a --~ 8) and ( f :  fl --~ 7). To determine 
whether (.~x.f(gx)) head needs its argument, the manner in which the variable x is used 
in the function must be found. It is easy to see, upon examination of (Ax.f(gz)), that 
this function will head need its argument if both f and g head need their arguments. 

To capture this kind of information, the function type constructors are extended to 
a Boolean algebra of function type constructors. So function type constructors may now 
be Boolean expressions built from the function type constructors introduced above. Thus 
the type a (-'1 A 42)  7 should be assigned to (,kx.f(gx)), assuming (g: a --~1 fl) and 
( f : /~  "-~2 7)- (The type a (--~1 A --'2) 7 may be read "a variable-one and variable-two 
to #"). 

It is instructive to see how the choice of functions for f and g in the above example 
affect its head neededness. For example, let f and g both be the identity function, then --~1 
and --~2 should both be instantiated to =~ and so the expression (--~1 A "--+2) = (=~ A =~) 
should "evaluate" to =~, giving the expected type a =~ cr for ()~x.f(gx)). (This is of course 
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the behaviour to be expected of A). Alternatively, if g is the constant function (,~x.y), 
then ~1  should be instantiated to -~. In this case ( ~ z . f ( g x ) )  is constant on its argument 
(g ignores x in (gx)) and so (~1  A ~2)  = ( ~  A --+2) should evaluate to -t+. 

Similarly, functions such as ( ) , z . f x (gx ) )  have more complex types, this function having 
the type a (--~1 V (--+2 A --'3)) 7, assuming (g: a --~3 fl) and ( / :  a --'1 fl --+2 7). This 
type conveys the following facts about (~x . f x (gx ) ) :  

• it is a function, 

• its argument and result types are possibly unrelated, 

• it head needs its argument if the function f head needs its first argument, and 

• it head needs its argument if f head needs its second argument and the function g 
head needs its sole argument. 

From these examples it can be seen that a Boolean algebra of function type construc- 
tors is required to describe the dependency relations between subterms. In this Boolean 
algebra, =~ plays the role of the distinguished element 1 of a traditional Boolean Mgebra 
and -~ plays the role of the 0 element. Although the negation operator, -~, has not yet 
entered into any of the examples, an important use of this will be made later. 

It is worthwhile taking a moment to consider the utility of this notation. Every A- 
abstraction of a typed term will introduce a new function of type T 1 b r2, where r2 is 
the type of the term, rl is the type of the variable being abstracted over and b is a 
Boolean algebra expression over function type constructors as described above, which 
denotes the useage of the abstracted variable in the term. Thus to determine whether a 
particular argument to a function is head needed, M1 that  must be done is to see if the 
Boolean algebra expression b is (or is equivalent to) ==~. Furthermore, if T1 and r2 are 
both functional types, it is possible for the head neededness of the argument(s) to the 
first argument to affect the strictness of subsequent arguments to the term. In this case 
there will be variable function type constructors common to both rl and T2. 

3.1 Unification Theory, Arrow Expressions and Types 

Since the types used in this paper have Boolean expressions of arrows in them it will be 
necessary to perform unification of these Boolean expressions while doing type inference. 
Fortunately, results from Unification Theory are available which make this task decidable 
(Martin and Nipkow [18]). 

A Boolean algebra is a set B containing distinguished elements 0 (the zero element) 
and 1 (the unit element) under the operations A, V and -~, where for all x, y and z E B 
the following hold: 

x A x  = x x V y  = y V x  -11 = 0 
= A 1  = x ( x V y )  Vz = = V ( y V z )  -0  = 1 

( x V y )  A z  = ( x A z )  V ( y A z )  xVO = x ~ ( x V y )  = "~xA-~y 
x A y  = y A x  x V x  = x -~(xAy) = -~xV-~y 

( = ^ y ) ^ z  = = ^ ( y A z )  = 1 
x A 0  = 0 

Let s~ denote the "="  operation over Boolean algebras above. 
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Function type constructors are built from a set of basic function type constructors 
called arrows: 

Def in i t ion  7 (Arrows)  
The set of arrows (A) is /k _- A s U A~, where 

• The ground arrows (As) are {=~,-~ } 

• The variable arrows (A~), also called arrow variables, are {--+1,--+2,...} 

The arrow => is cMled the head needed (or strict) arrow and the arrow -.~ is cMled the 
constant arrow. The set of function type constructors will also be called arrow expres- 
sions and the letters b, bl, b2 . . .  will be used to range over them. Following Martin and 
Nipkow [18], write T ( B ,  A, V, --) for the Boolean algebra over B generated by A, V and 
- '1,  

Def in i t ion  8 (Ar row Express ions )  
The Boolean algebra of arrow expressions is Ba = T(A,  A, V,-1). The set of variable 
arrow expressions is Bz~. = Bz~ - A s. 

In the following, arrow expressions and variable arrow expressions will be considered 
modulo B=A. 

It will prove useful in the following sections to extend this notion of equality between 
arrow expressions. 

Def in i t ion  9 
Let bl and b2 be arrow expressions, then an arrow constraint is a term of the form bl _< b2. 
An arrow constraint, bl _< b2, is valid iff there exists a substitution R:  A,  --. BA such that  
b2 B=A R(bl). An arrow expression, bl, is substitution equivalent to an arrow expression, 

b2, (written bl SUB b2) iff bl ~ b2 and b2 _< bl are valid arrow constraints. 

If the arrow expressions are considered modulo substitution equivalence, then they "col- 
lapse" to a three point domain, as shown by the following lamina. This three point domain 
fits well with the intuition that  a function of type a =~ r head needs its argument ~r, a 
function of type ~ -~ r is constant on its argument and that a function of type a b r 
(b 6 Bz~) may head need its argument. (It should be emphasized that  in the last case 
the value b of a b r will still give useful information about the function.) A function 
of type a b r (b E Be,)  should be implemented using a "lazy" reduction strategy, see 
Peyton-Jones [21]. 

Write [b] E for the equivalence class of arrow expressions for b generated by relation 
E. 

L e m m a  1 
= [ ]suB, 

P r o o f  
For all b 6 A s, b SU=B b' iff b' BA b. For all b ¢f Ag, it is easy to show by inddction on b 



243 

BUnify(bl, b2) ~f  BUnify'((b~ A --b2) V (--bl A b2)) 
BUnify'(f(xl,... ,x~)) 

~ f i f n = 0  
then if f (xl , . . . ,  x,~) B=A then Id 

else fail 
else let G = BUnify'(f(-~, x2 , . . . ,  x~) A f(=~, x~ , . . . ,  x~)) 

in G[xl := ((-~f(=~, G(x2),..., G(xn))) A Xl) V f(~*,  G(x2),.  • •, a(x~))l  

Figure 1: The Algorithm for unifying Boolean Arrow Expressions 

that  b svB~i .  Finally, although it is easy to find an R such that b B=A R(---~i), for b E Ag, 

there is no S such that ~S=A S(b). O ~ 
From Martin and Nipkow [18] comes the useful result that unification of Boolean ex- 

pressions is unitary and decidable, that is there exists an effeCtive algorithm for determin- 
ing the most general unifier of two Boolean expressions (if it exists), and furthermore this 
most general unifier is unique. The algorithm for Boolean unification based on variable 
elimination is reproduced from [18] in Figure 1. As a notational convenience, note that  a 
Boolean expression of n variables (n __ 0), b, may be written as a function, f (xl , . . . ,  x~), 
of its variables. 

L e m m a  2 
Either algorithm BUnify succeeds with the most general unifier of its arguments, or it 
reports failure. 

P r o o f  
See Maxtin and Nipkow [18]. [] 

Def in i t ion  10 
Let rv = {to, Q , . . . }  be a set of type variables.The set of Boolean strictness types, T, is 
the smallest set containing r~ closed under function type construction using the Boolean 
arrow function type constructors, Ba. 

The standard unification algorithm for types ([22]) can then be extended by an or- 
thogonal combination with the algorithm for arrow unification, to produce an algorithm 
to unify Boolean strictness types. 

3 . 2  O r d e r i n g s  f o r  A r r o w s  a n d  T y p e s  

Consider a function such as (Ax.Ay.f(gx)(gy)), which would conventionally be assigned 
the type a --~ a --+ fl (assuming (g : a --~ 7) and ( f :  7 -'~ 9' --~ fl)). To give 
(Ax.Ay.f(gx)(gy)) a Boolean strictness type, suppose (g: a --*1 9') and ( f :  ~/--~ 3' --*a fl), 
then a first a t tempt  might be a ("¢1 /k --'~2) C~ ('-~1 A "-'~3) •- However, while this is a 
legal Boolean strictness type for (Ax.Ay.f(gx)(gy)), it is not the most general type that  
can be found. Currently, this type states that 
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• (Ax.Ay.f(gx)(gy)) is a function of two arguments, 

• the type of its two arguments must be identical (including their head neededness 
properties!), 

• the result and argument types are possibly unrelated. 

A more general type  assignable to ()~x.Ay.f(gx)(gy)) is a '  (--'1 A -*~) a"  (---*~ A --~) fl, 
where any type substituted for a '  must be a renaming instance of the type substituted 
for a (and similarily for a").  This notion of "renaming instance" will be formally defined 
below. (For clarity, renamed variables will often be written dashed, this makes it easier 
to identify the "parent" variables). Any head neededness properties substi tuted for ---*~ 
and --~ must also be instances of --*s. To summarise, this example has the following 
constraints: 

• a ~ 3 7 < a '  ' - ' 3  7', and 

• ~ "-+37 -- ~ll --~37H II, 

which can also be expressed as 

• c~ _< c~', -~3_<-+~, 7 -< 7', and 

• ~ < ~", ~ 3 < ~ g ,  7 -< 7". 

One thing to note about this is that  _< is not anti-monotonic over the first argument 
of a functional type (cf. Mitchell [20]). This is because it is desirable to maintain the 
maximum head neededness information in the types assigned to occurrences of functions. 

D e f i n i t i o n  11 
BA 

Write a = T i f f  a and T are identical except that corresponding arrow expressions are 
BA related by = .  

• Let a and T be types, then a type constraint is a term of the form ~r _~ T. 

• A type constraint, a _ 7, is valid iff there exists a renaming R : r~ ~ r~ and a 

substitution on arrows S: A .  --* B~, such that  r ~ R; S(a) .  

A term of the form x <_ y, for any arrow expressions x and y or any types x and y, will 
be called a constraint and is a valid constraint if it is a valid arrow or type constraint. A 
constraint set is simply a set of constraints as defined above and a constraint set C is valid 
iff all its elements are valid. Constraints cr <: a', b _< b' and T _< T ~ are compatible iff there 
exist substitutions R:  T~ --* r .  and S:  A~ -o B/, such that a' B=A R;S(a) ,  b' B__A S(b) and 

r~ B=A R; S(r) .  A constraint set may entail other constraints as captured by the following 
definition: 

D e f i n i t i o n  12  
For any constraint set C, the entailment relation, I>, is defined to be the smallest relation 
satisfying: 

1. C U { x < y }  l>x~_y, 
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2. C t > z < x ,  

{ ~<~' 
3. C U { e r b r < a ' b ' r ' }  [> b < b  ~ 

T ~ T  ! 

4. If o" < a', b _< b' and r < r '  are compatible, then C U {or < a ' , b  ~ b ~,r _< 
T t , r'} t> a b r < a' b' and 

5. C U { z l  < z2, z2 <_ x3} t> z l  < x3. 

L e m m a  3 
If C is valid, then C t> x _ y implies x _< y is valid. 

P r o o f  
Straightforward by induction over I>. [] 

In the following, write C t> C ~ if C entails everything that  C t does, that  is C' t> x < y 
implies C I> x < y. Two constraint sets C and C ~ are equivalent (written C - C ~) iff 
C l> C ~ /> C. Finally, a substitution S respects a valid constraint set C iff S(C) is valid. 

4 A D e d u c t i o n  S y s t e m  for Strictness  Analys is  

As in traAitional type systems, if a A-term has free variables, then its type will be deter- 
mined by what types are assumed for those free variables. It  will thus be necessary to 
associate with each term a set of assumptions about the types of its free variables, in order 
to understand the type assigned to the term. (Denote this assumption set by A: X × T). 

In addition to the assumption set of types for free variables of a term, if an abstraction 
of a term variable is to be performed, then it will be necessary to know how the term 
from which the variable is being abstracted uses (or head needs) that  variable. Thus, for 
each free variable of a term a mapping giving an arrow expression describing its use in 
the term is required. This last is called a variable useagc function, and will be denoted by 
V: X --~ Ba in the following. The variable useage function which maps all term variables 
to -~ will be denoted by V~.. 

A typing statement is a quintuple of a constraint set C, an assumption set A, a variable 
useage function V, a A-term M and a type c~, written as 

C,A  F" V , M :  ~. 

The variable useage function is written to the right of the turnstile as it is a result of the 
deduction system, as will be seen shortly. 

The deduction system for the terms introduced so far is given in Figure 2. A brief 
discussion of the unfamiliar aspects of the system is warranted. 

In rule VAR, the variable useage function is V... except for the point at x at which 
the value is =~, since if an abstraction of the term x with respect to the variable x is 
performed, then the identity fnnction is obtained and the identity function head needs its 
argument. In addition, any type with more specific head neededness information than the 
assumption for x in A may be assigned to x (as long as C entails this). This corresponds 
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VAR 

APP 

ABS 

C,A~:U{x:a}~-V.. ,[x:= ~ ] , X : T  (C i > a _  T) 

C, At-  V 1 , N ~ : a b r  C, At-  ½ , N ~ : a  
C, A t- V, NIN2: r 

~.EX 

C, Ax U {x: a} ~- V[x:=bl, N:  7" 
C , A  ~- V[x:= -~],Ax.N: a b v 

Figure 2: The Deduction System for Strictness Analysis 

to the intuition that a term x may be influenced by the context in which it appears in the 
term. Examples of this were presented earlier in Section 3.2. 

Rule APP is conventional apart from the treatment of the variable useage functions. 
The construction of V from V1 and ½ may be informally justified as follows. Any free 
variable which is head needed by the functional term in the application will be head 
needed in the application. Free variables in the argument term will be head needed by 
the application if the argument term is head needed by the functional term and if the 
argument term itself head needs them. 

In the case of the ABS rule, since an abstraction closes the scope of the term variable 
being abstracted, any further abstraction of that variable will result in a function which 
does not have the variable free within it, thus the variable useage function should have 
its entry for the abstraction variable set to ~ in the resultant typing statement. 

Thus at each stage of the deduction of a typing statement the variable useage function 
is completely specified, which justifies its placement to the right of the turnstile. 

Defini t ion 13 
For any valid constraint set C, a typing statement C, A k V, M : c~ is a well-typing iff it 
is the conclusion of a deduction using the rules of Figure 2. 

At this stage only a rather limited class of terms has been considered. In Section 6 
this class is extended to a more practical language. 

Example  1 
A well-typing for Ax.x is {a <_ fl}, 0 t- V..~, Ax.x : a =¢ ft. This yields the expected 
result that the identity function head needs its argument. Note the constraint a g fl, 
which allows the argument to )~x.x to have its head neededness information specialised to 
another context. 

Example  2 
Consider the function Twice =_ A fx . f ( f x ) .  A well-typing for Twice is 

{0:1 < 0:1,0:  < 0:1,0:1 < 0: ,0:2 < < 
0 F- V..,, Twice: (a l  "-">1 0:2) ~ Q'3(-'~i A "¢I') 0:~' 
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This type for Twice indicates that f is head needed (as expected) and that  x is head 
needed in Twice if it is head needed by both occurrences of f .  This latter is important 
if the argument substituted for f is a function like Aag.ga, which only head needs a if g 
does. 

Write V~ s~ V~ iffVx E X.V~(x) B~ ½(x )  and write A1 s~ A2 iffVi,  j e {1,2}, 
BA x: a E Ai implies x: r E Aj  and a = r. 

Def in i t ion  14 
A typing statement C', A' i- V', M:  r is an instance of a typing statement C, A i- V, M :  a 
iff there exists a substitution S which respects C such that  

• A, IFV(M) B=A S(AIFv(M)) ' 

• V ! BA= S(t[/.), 

BA S(~),a,nd 

• s ( c ) .  

L e m m a  4 ( Ins t ances )  
If C, A P V, M : a is a Well-typing, then every instance, C', A' i- V', M : T, of C, A i- 
V, M :  cr is a well-typing. 

P r o o f  
By induction on the structure of M. 

M = x: Since C , A ,  (3 {x: a'} i- V..~[x := =~],x : cr is a well-typing (that is C I> a '  _< a 
and C is valid), and C' ~- S (C)  (by Definition 14), the result follows by rule VAR. 

M -- N1N2 or  M =_ Ax.N: Both cases follow by induction and use of rule APP or ABS, 
respectively. 

D 

Note that the instance relation on typing statements is a pre-order. 

5 Algorithms for Strictness Analysis 

In defining an algorithm to implement the deduction system it is desirable that  a most 
general representative well-typing of a term is computed. This will enable all other well- 
typings of the term to be obtained from the most general representative (see Lemma 4). In 
this section such an algorithm is described and its correctness is proved. The algorithms 
in this section are presented in a style similar to the work of Mitchell [20] and Fuh and 
Mishra [9] on ordinary type inference with coercions. 

A deduction of a well-typing for a term may be seen as a tree with leaf nodes being 
instances of rule VAR, unary nodes instances of rule ABS and binary nodes instances of 
rule APP. The algorithm works by inserting most general constraints at the leaves (this 
is achieved by using type and arrow variables which have not been used before), and then 
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Freshen(a) de.r fl, where fl is a new type variable, 

Freshen(a b r) ~fF,'eshen(a) b' Freshen(r) 
where b I = b if b E Aa, else b I =--+i, for -*5 a new arrow variable. 

Figure 3: The Algorithm for computing Renaming Instances 

equating types at binary nodes (unification) while ensuring that all leaf inequalities are 
maintained (expansion). 

To create most general constraints two operations are useful. Allnew, simply replaces 
all arrow expressions by new arrow variables and all type variables by new type variables. 
For example, Allnew(a (~1 V 4-*2) fl) = 3' 4-+3 c. Freshen, is defined in Figure 3. 

L e m m a  5 
For all types a, a < Freshen(a) and Freshen(a) < a are valid. 

P r o o f  
By induction on the structure of a. For the basis case, the result follows immediately 
since Freshen simply renames type variables. For the induction case, note that Freshen 
preserves ground arrow types, so the result follows by Lemma t and by the induction 
hypotheses. D 

BA 
Note that Freshen(a) ~ a as Freshen renames type variables. 
The operation of expansion ensures that the conditions of Definition 11 are satisfied, 

that is that a constraint set C is valid. It does this by returning a valid version of the 
constraint set and the substitution required to make the original constraint set valid. Let 
[a]c = {fllC I> a < /3 V C I> fl < a} and [a b Tic = {[a]Vla E Vars(a b r)}. The 
algorithm for maintaining the validity of constraint sets is given in Figure 4. 

L e m m a  6 
If C is a valid constraint set, R is any substitution and (C', R') = Expand( R( C) ) succeeds, 
then 

1. R; R ~ respects C, 

2. C ~ is valid and 

3. R; R'(C) ~- C'. 

P r o o f  
All three of these may be shown by induction and by observing that Expand converts each 
invalid constraint into a valid constraint (using Lemmas 5 and 2), and that R' is the (in 
order) collection of all substitutions required for the conversion. (The first case of Expand 
simply decomposes functional types, which is a validity preserving transformation.) [] 

Algorithm Type (see Figure 5) implements the strictness analyser. The Appendix to 
this paper contains two theorems which together establish the correctness of algorithm 
Type with respect to the deduction system. 
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Expand(CU {cq b, rl _< (r2 b~ r2}) &=rExpand(CU {~r~ <_ ~r2, b~ < b2, rl _< r~}) 
Zxpand(C U {~ < a b r})  &fir [c~]c • [ a b  r]c then fail 

else let R = Id[(~ := Allnew(cr b r)] and 

in 

Expand(C U {a b r <_ e}) &d if [C~]c 
else let 

in 

(C', R') = Expand(R(C U {cr < v" b r}))  

(C',R;R') 

• [a b r ]c  then fail 
R = Id[c¢ := Freshen(a b r)] and 
(c', R') = Expand(R(C U {¢ b r ___ 

( C ' , R ; R ' )  

Expand(C U {bl _< b2}), where bl e Ag 
~f  let R = BUnify(b~,b2) and 

(C', R') = Expand(R(C)) 
in 

( c ', n ; n '  ) 
Expand(C) d_cf (C, Id), if C is valid 

Figure 4: The Algorithm for Expansion of Constraint Sets 

Type(C,A,x) ~f  (C U {A(x) < cr}, V..,[x := =~], a, Id), where cr = Freshen(A(x)) 
Type(C, A, •x.g) 

%f let (C', V, r,  S) = Type(C, A~ U {x: a}, N),  where a ~/Vars(A) U \Tars(C) 
in 

(C', Y[x:= ~+], S(~)V(x)r,  S) 
Type( C, A, N~ N~ ) 

d--4f let 

(C1, 1/1, a~, $1) = Type(C, A, N1) and 
(C2, ½, a2, $2) = Type(C,, S,(A), N2) and 
R, = Unify(S2((rl),cr z ---q c~), where c~ and --*i are new variables, and 
(C', R2) = Expand(R,(C2)) and 
V'=R1;R2( u {x:=S2(VI(x))V(--~IA V2(x))}) 

xEX 
in 

(C', V', R1;R2(c~), &;&;R1;R2) 

Figure 5: The Algorithm for Typing Terms 
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6 P o l y m o r p h i s m ,  C o n s t a n t s  a n d  R e c u r s i o n  

In this section the class of terms is extended to encompass a more practical programming 
language. In particular, recursion is introduced through a fixpoint operator, polymor- 
phism is introduced through the Milner style polymorphic LET construct and constants 
are introduced into the type and term languages. 

The complete deduction system is collected in Figure 6. Due to limitation of space, 
the additions required to algorithm Type in order to implement these extensions will not 
be given here (see Wright [28]). 

6 .1  P o l y m o r p h i s m  

Parametric polymorphism is introduced into the deduction system using Milner's LET 
construct (Milner [19]). To simplify the presentation, the method of Leiss [16] is followed 
instead of the more traditional quantified types of Milner. The LET construct is added 
to the set of terms with the following clause: 

• x E X, N1, 2/2 E A implies let x = N1 in N2 E A. 

For details of the semantics of this term see Milner [19]. The extension to allow strictness 
analysis of this term then proceeds as follows. 

Firstly, the relation of generic instance (Milner [19], Leiss [16]) is required. This must 
operate on both type and arrow variables, instead of just on type variables. 

Definit ion 15 
Write C[{xl , . . . ,x~} for {x _< y[C t> x <_ y A {x ,y}  f3 {Xl, . . . ,xn} # O}, then write 
O'G "~A TG' ( "re' is a generic instance of a C) iff there exists a substitution R which respects 
C such that 

• BA 

• R(C)lVars(r ) -~ C', and 

• Dom(R) = Vars(a) - Vars(A). 

The rule for the polymorphic LET construct then follows as in Leiss [16]. The major 
variation is the treatment of the variable useage function (see rule LET of Figure 6). 
Clearly the polymorphic variable being defined cannot appear in N1, this is enforced by 
requiring the deduction of a type for N1 to be made under the assumption A,. As a result, 
the value of the variable useage function at x should be -~*. The variable useage function 
built as a result of the deduction is similar to the case of the APP rule (as expected). 

Secondly, since the assumption set may now contain polymorphic term variables, a 
new rule is required, rule PVAR (see Figure 6). It is illuminating to compare this rule 
with rule VAR and rule CON. 
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6 . 2  C o n s t a n t s  

Constants may be introduced into types and terms in a straightforward manner. Firstly, 
let K = {. . . ,  bool,  in t , . . .}  be the set of constant types, then extend types (Definition 10) 
with the clause: 

• ~ E K i m p l i e s n E T .  

Secondly, extend the inductive definition of terms: 

• c E n , ~ E T i m p l i e s c E A .  

Some common constants and their types appear in Figure 7. Constants exhibiting para- 
metric polymorphism are dealt with in a similar way to LET-bound variables. Note that 
since constants can never be bound in an abstraction or LET construct, the variable use- 
age function is V..~. Rule CON of Figure 6 incorporates this approach to constants into 
the deduction system. 

Since the present analysis is concerned with determining how much of the structure 
of its argument a function requires, making the assumption 1 : int does not result in any 
loss of strictness information. 

6 . 3  R e c u r s i o n  

In strictness analysers such as [7, 10], the treatment of recursion involves iterating over 
finite chains to find a fixpoint of the abstract function. The present approach avoids this 
costly technique. 

Recursion is modelled in the h-calculus by using terms such as Turing's fixpoint com- 
binator, 0 (see Barendregt [1]), which has the property that for any term M E A, 

OM _,Z ]I¢(OM). Unfortunately, in the type system upon which most functional lan- 
guages are currently based no type can be found for terms which contain self-application 
of variables, as is the case for ® (and other fixpoint combinators). One way to avoid this 
problem is to switch to a complete type discipline (such as intersection types, see Baren- 
dregt et al [2]), but in this paper the more usual approach to types has been used, as type 
inference is decidable for these systems. As a notational convenience, write fix x . N  for 
O(~x.N). 

Consider, a term of the form: fix F.,~a.Fa, which is clearly strict on its argument as 
(fix F . ~ a . F a ) M  = _I_, for all M E A. In contrast, consider the term: fix F.~ab.Ka(Fab),  
where K = ,~xy.x. The value of this term is clearly only strict on its first argument 
(whose binding variable is a), but is independent of its second argument. This is easily 
verified since ~ , ~  F- V.~,)~xy.x: a =~ fl -,~ a is a well-typing for K. 

There are thus two things which influence the strictness of a fix variable (x in fix x .N)  
on its arguments. The first is the strictness properties of the body of the fix expression 
(that is, N in fix x .N) ,  since if this expression is strict (constant) on an argnment then 
the fix expression will be strict (constant) on that argument. The second is that the 
fix variable of a fix expression represents the fix expression itself (thus implementing the 
recursion). If the fix variable is head needed by the fix expression, then non-termination 
will result (and the deduction system can report that it has found a syntactically deter- 
minable non-terminating computation). Of course, in this case the fix expression is strict 
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VAR 

APP 

ABS 

FIX 

PVAR 

LET 

CON 

C,A,~O{x:a}bV.~[x:= =~],x: r (C ~ a _< r) 

C, AF V1,NI:abT C, AF V~,N2:cr 
C,A ~ V, N1N2: r 

y= U xfiX 
{~ := v~(~) v (b A v~(,))}) 

C,A.  U {x: a} b V[x:=b] ,N: r 
C, Ab V[x:= ~],Ax.N: a b r 

C , A , U  {x: ~Tb} F V[x:=b],N: r 
C,A ~ V[x:= -,~],fix x.N: r (C t>r <a)  

C, AO{x:aC'}b V.~[x:= =~],x: r ( C t>C' t>o" < r ) 

C,A~ U {x: a~V',.. . ,x: a ,  v" } }- V~[x := b], N1 : r 
C,A~ F ½[x:=  ~] ,N2:  a 

C,A ~- V,let x = N2 in NI: r 

( V= u{x:=Vl(x) V ( b A V 2 ( x ) ) } ) _  ,ex 

ac" ~A. a~ ', l < i < n  

C, AcU {c: a v'} F- V~,,c: r 
tYC' "~A¢ pC" ) 

C I>C" t>p<r 

Figure 6: The Deduction System with Fixpoints, Polymorphism and Constants 

Constant Type 
........ ,,, ,, ,, , , , , , .  

bool  =~ a~ --+1 a~ (-, ~ I )  as, where {as _< al,  as _< as} if.then_else_ 
(~) 
(=),(<),... 
. . . , - 1 , 0 , 1 , . . .  

( + ) , ( 7 ) , . . .  

bool  => bool  
int  =~ int  ~ bool  
int  
int  ~ int  ~ int  

Figure 7: Some useful constants and their types 
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on its arguments. On the other hand, the fix expression is independent of occurrences of 
arguments to any instance of the fix variable which the fix expression is itself independent 
of. In general, where the strictness of an argument is not determined by the fix expression~ 
it will be determined by the head neededness of the fix variable. 

This intuition motivates the following definition. 

Def in i t ion  16 
The strictified by b form of a type ~r, written aTb  , is defined as follows: 

• c~Tb = a and 

• b' b = { b' b), if b' e 
r b (r'T b), otherwise 

A further complication is that  a fix variable may be used in a strictness context which 
is an instance of that  of the strictness context of the fix expression. The relevent rule is 
rule FIX of Figure 6. 

In the following examples it is useful to refer to Figure 7 to derive the types associated 
with particular constants. 

E x a m p l e  3 
Suppose H = fix F.)~abc. if c then Fab(-~c) else a, then a well-typing for H is: 0 ,  O ]- 
V.~, H :  a =V fl - '1  bool  =v a. This type tells us that H is strict on a and c and lazy 
on b. Note that  in this expression the fix variable is head needed if the then part of 
the conditional is head needed and so this is the head neededness of b. Also, the head 
neededness of a is - '1  V(-~ - '1)  B_A =V. This is the most information that We can expect 
from any static analysis. 

E x a m p l e  4 
h well-typing for napply - fix F.~nfx . i f  n = 0 then x else F (n - 1) f ( f x ) ,  is: 

0 ,  0 J- V..,, napply: in t  =~ (a -*2 a) (-~ -* l )a  (- '1 V - '2)  a. 

This type tells us that napply is strict on n~ strict on x if the then branch of the conditional 
is ever taken or if f is strict on its argument and that it is strict on f if the else branch 
of the conditional is ever taken. 

E x a m p l e  5 
Consider the function H -- fix F.Axyz.i f  z = 0 then x W y else F y x ( z  - 1), which also 
appears in Kuo and Mishra [15]. As explained by Kuo and Mishra, their technique is 
unable to detect all the strictness information in this example. Using the approach of 
this paper, the well-typing deducible for this example is the optimal one: ~t, O }- V..~, H:  
in t  ~ in t  ~ in t  ~ int.  

7 C o m p l e x i t y  

Recent results have shown that  the problem of determining whether or not an ML ex- 
pression is typable is DEXPTIME-complete (see Mairson [17] and Kfoury, Tiuryn and 
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Urzyczyn [13]). Furthermore, Wand and O'Keefe [26] have shown that  the general prob- 
lem of finding a typing in the presence of coercions between base types is NP-complete. 
However, in the case that the coercions form a tree they show that the problem is solv- 
able in "low-order" polynomial time. This is fortunate for the current approach since the 
constraints between arrow expressions are tree structured (when considered as a partial 
order). 

Another result of relevance is that of Martin and Nipkow [18] which shows that Boolean 
ring unification is exponential in the number of variables in the expressions to be unified. 
Since the number of constraints introduced in typing a function is proportional to the 
number of occurrences of term variables, and it is usual for this to be a small number, 
solving the constraints and performing the Boolean ring unifications should be efficient 
in most situations. 

Although further investigation is required, it is conjectured that in practice these 
results will not preclude the use of the current technique. (Type inference techniques 
have seen practical use for many years now as their exponential behaviour is in the 
length of individual function definitions and not in the number of function definitions, 
see Mairson [17] or Kfoury, Tiuryn and Urzyczyn [13]). Certainly the technique offers 
hope of greater efficiency than current abstract interpretations involving higher-order 
functions, since it is known that first-order strictness analysis by abstract interpretation 
is DEXPTIME-complete (also see the footnote on page 37 of Bloss [4], in which it is noted 
that an implementation of a restricted higher-order strictness analysis proved to have an 
impractical time complexity). 

8 C o n c l u s i o n  

In this paper the deduction of strictness information for functional programs has been 
examined and a formal system developed which determines such information from untyped 
terms. Connections between Unification Theory, type inference with coercions and the 
reduction behaviour of terms have been revealed. 

Although this paper has concentrated on the analysis of strictness information, there 
is no reason why the framework of type theory may not be used to describe and explore 
other properties of functional programs. A further open area is the general relationship 
between the frameworks of abstract interpretation and type theory. 

Wright [28] shows how the technique introduced in this paper may be split into two 
phases, the first being type inference resulting in explicitly typed terms in the style of 
Mitchell [20], and the second being the strictness analysis phase which annotates these 
explicitly typed terms with strictness information. 

Algorithms implementing the core of the deduction system were presented. These 
algorithms employ an algorithm for performing unification of Boolean rings of arrow ex- 
pressions (based on the work of Martin and Nipkow [18]). Significant extensions were 
given to the deduction system which allow the treatment of important features of a prac- 
tical functional language. An extension of the method to allow strictness analysis of 
arbitrary user-defined algebraic data types has also been developed, but space does not 
allow for its presentation. 

Strictness analysis via type inference has thus been shown to be possible (Kuo and 
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Mishra [15], Wright [27]) and moreover has proved to be an especially natural way of 
performing the analysis. The completely uniform treatment of higher-order functions is 
particularly pleasing, as well as the generality of the method. 
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Appendix 

The following theorems show the correctness of algorithm Type. Their structure is similar 
to the theorems appearing in the Appendix to Fuh and Mishra [9]. 

T h e o r e m  1 (Syntac t ic  Soundness)  
If C is a valid constraint set and (C', V, ~r, S) = Type(C, A, M) succeeds, then C', S(A) l- 
V, M: a is a well-typing. 

P roo f  
By induction on the structure of M. 

M =  x Since S = Id, A(x) < ~r is valid (using Lemmah), C '~_ CtA{A(x) < or} t>A(x) < a 
and C' is valid (since C and A(x) < cr are valid), the result follows immediately by 
use of rule VAR. 

M = )~x.N By the induction hypothesis, (C', V[x := b], T, S) = Type(C, A~ U {x : a}, N) 
succeeds and C', S(A~ U {x: c~}) t- V[x :=b], N:  ~- is a well-typing. Further, since 
(C', Y[x := -~], S(a) b r, S) = Type(C, A,,kx.N), the result follows directly from 
rule ABS. 

M_= N1N2 By the induction hypothesis C~,SI(A) f- V1,N1 : a~ and C2,$1;$2(A) t'- 
½, N2:(r2 are well-typings. Since 6'2 " 5'2(6'1) -- $1; $2(C) are valid (by the defini- 
tion of well-typing, Definition 13), $2 and $1; $2 respect C~ and C (respectively). 

Now, R~; R2(C2) "~ $2; R~; R2(C1) ~- $1; $2; R1; R2(C) ,.o C' are all valid constraint 
sets since R1; R2 respects C2 (using Lemma 6), so the instance lemma (Lemma 4) 
applies: 

• C', $1; $2; R1; R~(A) [- $2; R1; R2(V1), Nl: $2; .R1; R2(Ol) is a well-typing and 

• C',S~;S2;R~;R2(A) 1- RI;R2(V~),N2: R1;R2(a2) is a well-typing, such that 
nl; 

The result then follows by using these two well-typings as antecedants to an appro- 
priate instance of the APP rule. 

I"1 
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T h e o r e m  2 (Syntac t ic  Comple teness)  
If C", A" b- V", M:  a" is a well typing and is an instance of well-typing C, A ~- V, M:  a 
with instance substitution R, then ( C', V', a', S) = Type(C, A, M) succeeds and C", A" ~- 
V", M: a" is an instance of C', S(A) b V', M: a'. 

P r o o f  
By induction on M. 

M =  x Clearly (CU {A(x) < a '},V~[x:= =~],a',Id) = Type(C,A,x) succeeds. Let S 
be a substitution such that S(~') B~ ~r" and Vx ¢ Vars(o~).S(x) B~ R(x), then 
S(C U {A(x) < a'}) _ C" (since R(C) ~ C"), S(A(x)) B=A A"(x) and S re- 
spects C U {A(x) _< g'}. Therefore C", A" ~- V,[x := =~], x : ~r" is an instance 
of C U {cr _< A(x)} ,A F- Y.[x := =~],x: ~r', with instance substitution S. 

M = Ax.N By the induction hypothesis, (C', V', rl, S) = Type(C, A,  0 {x : a}, N) suc- 
ceeds and v~",--~tA-4" {x : r2} D- Y , g :  T3 is an instance of C',S(Ax tA {x: a}) ~- V' ,N:  
rl, where cr" s=h r2 V"(x) ra and a' BA S(a) V'(x) rl. The result then follows 
immediately by rule ABS and the definition of Type. 

M_= N1N2 Since we have a deduction of C", A" ~- V", N1N2: a", by rule APP we must 
also have deductions of C", A" ~- VI", N1 : r"  b" a" and C", A" k- ~", N~ : ~-", 
where V" = [Jxex{X := V~"(x) V (b" A V~'(x))}. By the induction hypotheses, both 
(C~, V~,a~,S1) = Type(C,A, N1) and (C2, V2,a2, S2) = Type(CI,S~(A),N2) suc- 
ceeds. Also by the induction hypothesis, there exists T1 and T2 such that 

// BA 1. A ]FV(N1N2) = $1; TI(A]FV(N1N2)) BA 81; $2; T2(A[rv(N:N2)), 

2. C" ~-- T~(C~) ~- T2(C2) ~- $2; T2(C,), 

3. r"  b" a" B=A T,(c~,) and cr" B=A T2(a2), and 

4. V~" B=h TI(V~) and V2" s h T2(½). 

Using (1), r" b" ~r" B_A $2; T2(O'l) BA Tl(O.1) and since R is the most general unifier 

of S2(ax) and cr2 --*i a, there exists a Ta such that T2 = R; Ta. Now, r" a~ R; T3(a2) 

and a" B=A R; Ta(a), so using Lemma 6 there exists T4 such that T3 = R'; T4 and 
thus 

ur B A  
• A [rv(N,N,) = S~; S~; R; R'; T4(AIrv(N,N,) ), 

• R; R'; T4(C2) ~- S,; R; R'; T4(C,) ~- C", 

• a" B=h R; R'; T4(a), and 

• V" B=h R; R'; T4(V'). 

[] 
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