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ABSTRACT 

In this paper, we extend dynamic logic with the concept of an actor in order to be 

able to specify who takes the initiative of an action, who makes a choice, or who con- 

trois a synchronization of actions. We give two examples of application of this idea. 

First, we show how to generalize an approach taken up by De Nicola and Hennessy, 

who eliminate '~ from CCS in favor of internal and external choice. We show that this 

generalization allows a more accurate specification of system behavior than is possi- 

ble without it. Second, deontic logic has been used by several researchers as a system 

specification language. In the course of this application, a number of paradoxes of 

classical deontic logic have been resolved, except the paradox of free choice permis- 

sion. We show that actors can be used to resolve this paradox as well. 

Subject area: Specification of  systems, combining different logics 

1. Introduction 

1.1. Internal choice and internal events 

Milner [26] sketches an intuitive picture of black box M equipped with buttons that may or may not be 

blocked by M, and if not blocked, can be pushed by an observer O. If M has two buttons, a and b, that 

are unblocked, then O is in a position to choose whether to push one or the other button. Using CSP- 

like notation, the process executed is then a + b, where + stands for external choice. If, on the other 

hand, M chooses to blocks one or the other button, then the process executed is a • b, where ~ stands 

for internal choice. 

This vivid example can be generalized to the case of n actors for any n > 1, by allowing any actor 
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to make a choice.. The distinction between internal and external then loses its meaning, for we will not 

identify with any actor in the system. We will write t:(x + y) for the process that actor t makes a choice 

between processes x and y. 

In CCS, internal choice between a and b is represented by "ca + xb, where "c is any action initiated 

by M. • is called the internal or invisible action. It is well-known that the axiomatization of x is not 

very intuitive, and De Nicola and Hennessy [27] show how to eliminate ~ from CCS in favor of  the 

intuitively more pleasing internal and external choice of CSP [15]. We think x contains two ideas that 

should be distinguished, connected to initiative and visibility. "c is any action that occurs on the initia- 

tive of M as well as any action that is invisible to O. Separating these two concepts and generalizing to 

the case of n actors, we will explicitly add initiative to any event and leave open the question to which 

actors an event occurrence is visible. Thus, M :a is event a initiated by M, and O :a is a initiated by O. 

For example, if a and b are the events of a light going on and off, respectively, then M :(M:a + M :b) is 

the process in which M chooses to switch the light on or off. If, on the other hand a and b are the 

events of pushing on or the other button, then M :(O :a + O :b) is the process in which M blocks a but- 

ton and O then pushes one. Events initiated by one actor may be visible by others. 

Note that xa + zb states that M makes a choice by performing an invisible action. Choice is itself 

not seen as an action, so that a property of + is expressed by a property of the first event of the 

branches. This makes it difficult to interpret terms like a + xb, where it is hard to say whether choice is 

internal or external [27]. 

1.2. The paradox of free choice permission 

Deontic logic is the logic of permissions, prohibitions, and obligations [1, 9, 18, 28]. Recently, deontic 

logic has been applied to the specification of software systems [8, 20, 21, 31,22, 30]. Traditionally, 

deontic logic has been plagued by numerous paradoxes. Castafieda and von Wright [5, 32] have pro- 

posed that a number of these paradoxes can be resolved by distinguishing actions from states. This 

approach has been formalized in [24, 25] using dynamic logic [13]. The basic idea is to label the set of 

possible states as either forbidden or permitted, and to define any action that leads to a forbidden state 

as forbidden. Permission and obligation can then be defined in a standard way in terms of prohibition. 

One paradox still remains, however, called the paradox of  free choice permission [14,19]. This is 

that the following formula is derivable (P (a) says that event a is permitted): 

(1) P(buy chewing gum) --> P(buy chewing gum + shoot the president). 

This paradox can be resolved using the distinction between internal and external choice [23]. Permis- 

sion to do a means that there is a way of doing a that leads to a permitted state of the world. One read- 

hag of (1) is therefore intuitively plausible, viz. if there is a way to chew gum that leads to a permitted 

state, then there is a way to perform the process (buy chewing gum + shoot the president) that leads to a 

permitted world (viz. by performing the permitted way to chew gum). On the other hand, it is counter- 

intuitive to conclude from P(chew gum) that I am permitted to choose between chewing gum and 

shooting the president. Thus, (2) is a formalization of our intuition and (3) is not: 

(2) P( t l : a t ) - - ->P( t2 : ( t l : a  + h : b ) )  

(3)* P ( t l : a l )  --> P ( t l : ( t l : a  + t l : b ) )  

(2) says that there is a possibility that t2 makes the choice in such a way that a permitted world will 
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ensue after performing the chosen action. (3) makes the incorrect statement 

that if I am permitted to do something, then I permitted to choose to do something else as well. The 
force o f  the permission P (t1:(tx :a + t l  :b) is stronger than that of  P (t2 :(1i :a + t l  :b), because in addi- 

tion to saying that there is a possibility that t l  chooses a permitted action, it says that 11 is permitted to 

choose between the actions. In our system, (2) is a theorem and (3) is not. In fact, we have the 

theorems 

(4) P (t2 :(tl :a -t- l 1 :b)) <---> P (tl :a) v e (tl :b) 

(5) P (tl :(tl :a + l l  :b)) ---> P (t 1 :a) ^ e (t 1 :b), 

which agrees with our intuitions. (5) blocks the paradox of free choice permission. 

2. Dynamic logic with equality and action negation 

We specify a system as a set of possible states which all contain an underlying abstract data type (ADT) 

as reduct. Events and processes will be specified as functions on the set of  possible states. Thus, the 

system is a Kripke structure with multiple accessibility relationships, one for each event and process. 

More in detail, we model any system as shown in figure 1. 

-~AOT 

PW~Process 
Figure 1. 

Each world in the set PW of possible worlds contains the underlying ADT, called dAOr, as reduct. In 

addition, there is an algebra dProces s of processes, together with a function p which, for each process, 

yields a function on PW that states the effect of the process on the possible worlds. The process algebra 

also contains the underlying ADT as reduct. To make this more precise, we first rehearse some of the 

definitions relevant to equational specification of ADT's.  

2.1. ADT specification 

An ADT signature Sig is a pair ((S, < ), F), where (S, -< ) a poset of  sort names and IF a set of function 

declarations over S. 

For each sort s ~ S of a signature we assume an infinite set X s of variables of sort s. All X s for all 

s ~ S are assumed to be mutually disjoint. So xs~ c'~s2 = O even if s 1 < s2- The set of all variables is 

X = u X s. The set Tslg s(X) of Sig-terms over X of sort s is defined in the usual way. The set of  
S E S  

closed Sig-terms of sort s is Tsig,s. We omit Sig is the signature is understood or irrelevant. 

A connected component of S is an equivalence class with respect to the transitive symmetric clo- 

sure of < .  Two sort names are compatible if they are in the same connected component . A 

Sig-equation t l= t  2 is a pair of terms over SigADT whose least sorts of t l  and t2 are compatible. 

Goguen & Meseguer [12] show that under certain weak conditions, the terms of an ADT signature 
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always have a least sort. 

Let SigADT be an ADT signature. A SigADT-Specificadon is a pair (SigADT, E),  where E is a set of 

equations over Sigm~r. .We assume the initial semantics of ADT specifications [7, 10,1 I, 12, 29]. 

2.2. Process specification with negation 

By a "specification" we mean a set of axioms in a language that is used to select an intended model. 

By a "definition" we mean a formula that must be solved in a given model. The solution set of the for- 

mula in the model is the set of all elements of the model that satisfy the formula. 

We extend the ADT specification SpeCADT tO a process specification Speceroces~ by adding 

declarations of sort- and function names, and equations, where one sort in the process specification will 

be called the process sort. Terms of that sort are called process terms. The extension must be conser- 

vative, i.e. Th (SpeCADT) = Th (Specerocess)C'£ (SigADT)~ where Th (Spec ) is the set of theorems den'vable 

from Spec using equational logic, and L (Sig) is the set of all possible equations over Sig. We do not 

require anything of the intended model of Specproces s except that it contains the initial algebra .dAD T of 

SpeCAOT as a SigAoT-reduct, i.e. we will have 

- ~S]]ADT = ~S]]erocess for s e SADT, and 

- ~]:'~ADT = ~Z'~erocess for f E IFAD z. 

We now give our example Specproces s. 

process spec LibraryActions 

import 
Persons, Books, Library, Money 

sorts 

PERSON_EVENT, LIBRARY_EVENT, ACTION 

~nctions 
borrow : BOOK -> PERSON EVENT 

return : BOOK -> PERSON EVENT 

reserve : BOOK -> PERSON EVENT 

notify : PERSON x BOOK -> LIBRARY_EVENT 

pay : MONEY -> PERSON_EVENT 

: : PERSON x PERSON EVENT -> ACTION 

: : LIBRARY x LIBRARY EVENT -> ACTION 

end spe¢ LibraryActions 

Person, Books, and Library are ADT spechHcations. Libary declares a son LIBRARY and 

a constant 1 of sort LIBRARY. (We consider a world with only one library.) The term 

l : n o t i f y  (p,  b) stands for the action of the library 1 notifying p that book b is overdue, a, b, 

and c are used as metavariables over closed terms of sort ACTION, t and K are metavariables over 

actors, and a, b, c are metavariables over events, We will often refer to a as an atomic event and to aas  

an atomic action. 
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By requiring the Specproces ~ to be a conservative extension of SpecADI', we know that pay ($2) 

= pay(S1 + $i). 

To be able to refer to persons and libraries as actors, we simply assume that the underlying ADT 

specification contains the specification 

datatype spec LibraryActors 
import 

Persons, Library 

sorts 

PERSON < ACTOR 

LIBRARY < ACTOR 

end spec LibraryActors 

By the hlitial semantics, actors are either persons or libraries, but they are never books. By the reduct 

requirement, we know that each closed term of sort ACTOR denotes the same actor in each possible 

world. Each t ~ TACTOR Can be used as an identifier of an object that rigidly designates the same object 

in all possible worlds. Assuming we have no equations for terms of sort PERSON or LIBRARY, it 

also uniquely denotes the same object in all possible worlds. The next specification specifies steps, 
processes that contain no sequence operator. 

LibraryActors 

SCHEDULING STEP 

SCHEDULING STEP 

STEP x STEP 

STEP x STEP 

ACTOR x SCHEDULING 

STEP 

proc~sspec StepAxioms 

import 

LibraryActions, 

sor~ 
SCHEDULING STEP 

ACTION < STEP 

functions 

any 

fail : 

+ 

& 

: 

-- w 

-- 

variables 

i, i0, ii, i2 : ACTOR 

S, sl, S2 : STEP 

el, e2 : SCHEDULING STEP 

equations 

[Sl] i: (sl + s2) = i: (s2 + s!) 

[$2] i: (sl & s2) = i: (s2 & sl) 

IS3] --S = s 

[$4] if not ((i0 eq il) and (i0 

then -(i0:(il:el + i2:e2)) 

-> SCHEDULING STEP 

-> SCHEDULING STEP 

STEP -> STEP 

-> STEP 

eq i2)) = true 

= i0:(-il:el & -i2:e2) 
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[S5] if not ((i0 eq il) and (i0 eq i2)) = true 

then -(i0:(il:el & i2:e2)) = i0:(-il:el + 

end spec StepAxioms 

-i2:e2) 

We use the convention that n-ary operators bind stronger than m-ary operators, n < m ,  but if we wish we 

can add brackets to emphasize operator binding, We use a as metavariable over terms of sort STEP 

and 11 as metavariable over SCHEDULING_STEP. It is easily shown that 11 either is a negated action 

or has the form t :a .  In general, t : a  says that actor t takes the initiative to the scheduling step a ,  or 

schedules a.  11 may be an atomic event a. In t:any, t executes any atomic event, and in t:fail, t 

deadlocks, u(111 + 112) denotes the choice of t between a l  and ct2, u(111 & 112) denotes the choice of t 

to let a l  and (X 2 OCCUr synchronously, and -11 denotes the non-occurrence of 11. 

In [ S 4 - 5 ] ,  we assume that a Boolean function e q  with infix notation is defined for each actor 

sort, which is true iff its arguments are equal. The axioms require multi-actor steps to be a Boolean 

algebra. The intuition behind this is that the effect of not making a choice between a l  and a2 is the 

same as the effect of not doing a l  and ~2. We call this the "extensional reading" of choice, by which 

we mean that they make De Morgan's laws valid in the semantics. In a single-actor step, we use what 

we will call an "intensional reading",  and look at the choice of the single actor as an event in itself. 

On that reading, choice and synchronization are simply different actions and the axioms [ s 4 - 5  ] do 

not hold. We come back to this in the discussion after theorem 8, where the difference between the two 

choices is made more precise. 

To make matters as simple as possible, we use the initial algebra of the process specification as 

intended semantics dtproces s All closed process terms (and in particular all step terms) are then inter- 

preted as their equivalence class with respect to the listed process and step axioms. This does not pro- 

vide any meaning as far as the effect of  a process on the set of possible worlds is concerned. The func- 

tion P on derocess will assign such a meaning, by defining P(13) to be a (non-deterministic) function on 

possible worlds. 

S t e p A x i o m s  is notable for the axioms that are absent. For example, associativity of choice is 

standard in all process algebras. With initiative we would get 

1:(1(:(0t 1 + Or2) + (13) = i(:(111 + t:(O~ 2 + IX3)) 

and this is not a priori true intuitively, even if t = ~. t and ~ make completely different choices at the 

left-hand side and at the right-hand side. Moreover, t and K make their choices in a different order at 

the left- and right-hand sides. By omitting this axiom, we only have binary choices. Given the current 

axioms, an actor can only make a choice between n alternatives n >2 by making a sequence of binary 

choices, and these sequences are not equivalent. 

Four other candidates for addition are 

tO:(t t : a  + ~.I : a n y )  = t I : a n y ,  

t0:(t I :c~ + t 1 :fail) = t 1:11, 

tO:(tl : a  & t l : any)  = t l  : a  and 

to: ( t l  : a  & h : fai l )  = t l  :fai l .  

There are no derivability relations between these axioms, because for that we need the extra axioms 
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(6) - t : any  = t:fail and 

(7) -u fa i l  = uany.  

These last axioms enforce the intuitive interpretation " t  does something other than ~, or deadlocks" to 

-t:ct. We will use the weaker interpretation '% does something other than tx, or deadlocks, or another 

actor does something", which is easier to formalize. A third, more stringent, interpretation would be 

'% does something other than ct, but does not deadlock", which is enforced by 

(8) t0:(-t:t~ + t:~) = t:any and 

(9) t0:(- t :~ & t:~) = t:fail. 

(6) and (7) are derivable from (8) and (9). We will keep our process specification simple by omitting 

all these axioms. 

The sort PROCESS below is the process sort of our process specification. 

process spec ProcessAxioms 

import 

St epAxioms 

sorts 

SCHEDULING STEP < SCHEDULING PROCESS 

STEP < PROCESS 

functions 

+ : PROCESS x PROCESS -> SCHEDULING PROCESS 

& : PROCESS x PROCESS -> SCHEDULING PROCESS 

: : ACTOR x SCHEDULING PROCESS -> PROCESS 

_;_ : PROCESS x PROCESS -> PROCESS 

variables 

i : ACTOR 

s : STEP 

p, pl, p2, p3 : PROCESS 

equations 

[PI] (pl ; p2) ; p3 = pl ; (p2 

[P2] i: (pl + p2) = i: (p2 + pl) 

[P3] i: (pl;p3 + p2;p3) = i: (pl 

[P4] i:fail ; i:s = i:fail 

[P5] i:fail ; p ; i:s = i:fail 

end spec ProcessAxioms 

; p3) 

+ p2) 

; P 

; p3 

To keep matters simple, we do not allow negation of processes, although this has been formalized in an 

earlier version o f  the language [6, 24] and can easily be added here. We use [~ as metavariable over 

terms of sort PROCESS. We use the convention that : binds stronger than ; .  Note that if i 

deadlocks, other actors can still display initiative as if nothing happened. 

We are able to express three different kinds of nondeterminism in this specification. Choice is 

"non-deterministic" in the sense that it is arbitrary; it i s  not specified which branch is taken. In a 
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two-actor environment with actors M and O, M : ( a l  + ~(2) is "non-determinis t ic"  in the sense that O 

has no control over the choice (this is CSP-like nondeterminism [15]). Finally, ~0:(l:a ; x +l . :a  ; y )  is 

the usual concept of  nondeterminism as formalized in process algebra [2, 3, 4], where there action ~:a 

can lead to one out of a set of possible states. 

2.3. Dynamic logic with equality 

Dynamic logic includes first-order predicate logic, which we define first. A static constraint signature 

Sig is a triple ((S, < ), IF, IP), where ((S, < ), IF) is an ADT signature and IP is a set of predicate sym- 

bols with their arity taken from S. 

An atomic Sig-formuIa over a static constraint signature is either a Sig-equation or a formula 

P ( t l  . . . . .  tn), where P is declared to have arity s i x  ... x sn and t i e Tsig ' s~(X), i = 1 . . . . .  n. We use P, 

Q as metavariables over the predicate symbols. An order-sorted static constraint language Lstat(Sig ) 

over a static constraint signature Sig is the set of formulas defined by the following BNF: 

~ : : = t  1 = t  2 I P( t  1 . . . . .  tn) I ~d? I @ ^ ~  I ~ v ~  I d?---> ~ I d? <---~ ~ I Vx(~) I Rr(~?), 

where the f'n'st two alternatives are atomic Sig-formulas. We drop the qualification Sig if it is clear 

from the context, or if  it irrelevant which static constraint signature is used. Punctuation symbols ( , )  

are used to disambiguate formulas. Equations are treated as universally quantified formulas in which 

the binary =-predicate appears in infix notation. This makes the standard rules for substitution and vari- 

able binding applicable to equations that appear in formulas. The set of all formulas o v e r  Sigstat is 

called L (Sigstat). A static constraint specification is a pair Sigstat , CStat), where Cstat is a set of  closed 

formulas over Sigstat. 

A dynamic constraint signature Sigoyn consists of  a triple of  signatures 

(SigADT, Sigstat, Sigprocess) such that Sigstat and Sigproces s are static IC and process signatures, respec- 

tively, that share SigADT as their underlying ADT specification. Other than that, Specstat and 

Specproces s have no sort - or operation names in common. 

The language Loyn(SigDyn) of dynamic constraints, with typical elements dp and W, is given by the 

BNF: 

@ ::= ~ I @I v@2 1 -~@ l @I ^ @2 1 @I --> @2 1 @I <-> @2 1 [13]@ 

where ~ is a formula of  Lsta~(Sigstca) and 13 is a process term over Sigprocess. We use 

as an abbreviation of ~[~]~@. 

The intuitive semantics of [[3]@ is "af ter  execution of [3, @ holds necessari ly",  and the intuitive 

semantics of (13}@ is "after  execution of [3, dp may hold" .  The language can thus be used to express 

pre- and postconditions of events. Note that by our definition of LDyn(Sigoyn)-formulas, process terms 

can only occur inside the modal operator. A dynamic logic formula containing no modal operators is a 

static constraint formula, which may be an equation over SigADT. 

SpeCDy n = (SigDyn, Coyn) is a dynamic constraint specification over the static constraint specifica- 

tion Specstat and the process specification Specerocess if it is an extension of  Specstar and Speceroces s 
such that 
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Th ( Spec stat) = Th ( SpeC Dyn)C'~ Stat( Si g stat ) arid 

Th (Specproces s) = Th (SpeeDy n)t'~LProces s (Sigproces s ). 

A dynamic constraint specification thus conservatively extends both the static constraint specification 

and the process specification. An example dynamic constraint specification is 

dynamic constraint spec DynamicLibrary 

import 
St at icLibraryConst raint s, ProcessAxioms 

variables 
p : PERSON 

b : BOOK 

q : QUEUE 

dynamic constraints 
[DO] [p:borrow(b)] Borrowed(b, p) and not Present(b) 

[DI] if Reserved(b) then 

(if p = head(q) and q = reservations(b) 

then [p:borrow(b)] reservations (b) = tail(q) 

end spee DynamicLibrary 

[ 13 0 ] says that the effect of borrowing a book is that it is not present and is borrowed. [ I3 3. ] says 

that in the case of reserved books, we remove the borrower from the queue of reservations if he is the 

first in the queue, otherwise the event is blocked. 

2.4. Inference rules and semantics 

Let SpeCDy n = (SigDyn, Coyn) be a dynamic constraint specification over Specstat and Specproces ~. A 
model of SpeeDy, is a four-tuple 

~Dyn = (d~ADT, PW, a~Proces s, p) 

such that 

MADT is a model of Specaor, 

P W  is a model of Specstat, 

- dProces s is a model of  Specprocess, 

- P: Tprocess(X) ~ (Z ~ (PW -'--> P(PW))) ,  where X is the set of  all variables defined in section 

2.1, Terocess(X ) is the set of  process terms of Sigprocess, and Z is the set of all sort-preserving 

assignments ff to variables, 

- p satisfies the requirement that for [3 l, 13 z e Tprocess(X), 

[[~1 ]]6,,~e ..... = [[~2]]o,~e ....... implies p(~l)(~) = p([~2)(~). 

All sort names have a fixed interpretation in all possible worlds, and if x:  s and 0 is a sort-preserving 

assignment, then cr(x) is an element of l[s]]a, where d is either ~ADT or Aerocess, The denotation func- 

tion II.]] does double duty as semantics of sort and function nmnes, as well as of terms. So we have 
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[[.~o, .~ : Ts(X) ~ [[s]]~ for a sort s. 

p is called the behavioral semantics of  process terms, the denotation [[~]]Ae . . . .  is called the equa- 

tional semantics of process tenn. The requirement on p is called the congruence requirement on the 

behavioral semantics. It guarantees that processes that are equal in the process algebra, have equal 

effects on the world. 

Ifd~Dyn = (a~AOr, PW, ~Process, P) is a model of  SigDy n and ~: X - - ~  ,JOLDy n ia an assignment to all 

variables, then truth in w e PW under assignment ~ of a dynamic logic formula is defined by: 

- for each [3e ZProcess(X), we have w, c5 ~oy,, [~]¢  iff for all w ' E  p(l~)(o)(w), we have 

wt, (Y ~ Dyn d~. 

- Truth of the other dynamic logic formulas is defined as usual. 

For each c,  we define d~Oyn, ~ ~ Oyn d~ iff w, (~ ~ Oyn ~b for all w ~ PW. 

Truth of a formula in a world (w ~ Oyn 0) ,  in a model (AtOy n ~ Dyn O), and of a specification in a 

model (~Oyn ~ Dyn SpeCDyn) are defined as usual. 

This truth definition coincides with the standard truth definition for ~ in L (Sigstat), which we 

denote ~ Star, and with the standard truth definitions for equations in L(SigADT), which we denote 

ADT" We have for all w E PW that 

w ~Stat~ iff w ~Oy,,~and 

w ~ A D T t l = t 2  iff W ~Stat t l  =t2 . 

We will therefore omit the subscript from ~ from now on. 

The inference rules of  dynamic logic are given in table 1. 

O , O ~ h  u • • 
[MP] [G] - -  [N] - -  

vx(o) [13]o 

[Ref] t = t [Sym] tl  =t2 ~ t2 = t l  [Tran] ( t l  = t2 ^ t2 = t3) --~ t l  = t3 

t l= t  2 t l= t  2 
[Conl] [Subl] 

t{x  ~->t 1 } = t {x  ~'-)t 2 } t l  {x ~---)t } = t2{x ~--)t} 

t l =t2 ~1 = ~2 
[Con2] [Sub2] 

P ( t l )  ~-~ P( t2)  ([~{xh--~l}]~f- '~ [~{xh-)[~2}]qb) 

All axioms and theorems of first-order logic. 

[DL1] [131(O1 -~ 02)  -~ ([I]101 -~ [15102) 

Table 1. Inference rules for dynamic logic with equality 

The equality axioms [Ref], [Sym] and [Tran] hold for all terms, including process terms. If qb is deriv- 

able from a set H of Layn formulas, we write H ~- Dyn dp. 
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It must be noted which axioms from standard dynamic logic are absent, viz. 

[DL2] [131 ;[32]0 ~ [[31 ]([13210) 

[DL3] [t:(131 q- 132)]O ~ [1311OA[132](I~, 

[OI.,4] [t:(O~l &IX2)]O ¢¢--- [~110 v [0~210 , 

[DL5] [t:fail]O, 

It is again easy to see that these inference rules monotonically extend the corresponding rules 

and ~- ADT for L(Sigstat ) and L (SigADT). We have 

SpeCDyn ~ Stat~ iff  SpeCDyn F" Dyn~ and 

SpeCDyn k" AOT t l =t2 i f f  SpeCDy n ~ Dyn t l =t2. 

We drop the subscript from t-- from now on. 

]-Stat 

Theorem 1. 

SpeCDy n ~- ¢P iff SpecDyn ~ 0 .  

Sketch of proof. 

Soundness is easy to prove. As a sketch of completeness, first note that [N] and [DL1] characterize 

Kripke models, with accesibility relations R[~ for each 13 e Tprocess(X ). Moreover, the derived infer- 

131 =" 132 
ence rule [131 ]alp <--> [13210 corresponds to the property RI~ ~ = Rt3 z for 131 = 132 on Kripke models of this 

kind. By standard modal techniques [17], this implies that every consistent formula can be satisfied by 

a Kripke model with this property. By contraposition, we obtain completeness under the assumption 

that we can always prove 131 = 132 whenever this holds. But the truth of that assumption follows from 
the completeness of equational logic. • 

Theorem 2. 

The following theorems hold in SpecDyn. 

[Dynl] [13]true 

[Dyn2] (13)false 

[Dyn3] [13]((1) 1 ̂  02) ~ ([13]ePl ^ [1310 2) 

[Dyn4] [13](@ 1 v 4)2) +-- ([13101 v [13102) 

[Oyn5] (13)(01 v ~2) <-> ((~)~1 v (13)(b2) 

[0yn6] [ - t : (oq + (x2)]0 ~ [t :(-al  & - a 2 ) ] ~  

[0yn7] [ - t : (a l&(xz)]O ~ [t:(-a~ + - a 2 ) ] O  

[0yn8] [-  ( -a)]q~ ~ [¢x]~ 

Proof. 

For [Dynl-5], see [24]. [Dyn6-8] follow from [$2] and the step axioms for our process theory, • 

These theorems do not relate the internal structure of • to the internal structure of 13 in [1510. The truth 

of formulas that express such a relation depends upon the behavioral semantics of process terms, to 
which we now turn. 
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2.5. A model for free choice 

Assuming the initial semantics for SpeCADT and Specprocess, all the models of a dynamic specification 

differ only in their behavioral semantics, i.e. in the function p. We therefore select a particular intended 

model by defining the function p. First, we assume a function 

effect: T~.VENT(X) - -~  (Z ~ (PW ~ PW)).  

effect (a)(c) defines the effect of an atomic event on the state of the world. In general, a dynamic logic 

specification does not determine the effect of events exhaustively. Several effect functions remain pos- 

sible with respect to a given specification, and we need a kind of frame assumption to choose between 

these possibilities. For example, one can stipulate that whatever is not specified to change does not 

change when an atomic event is applied. We  leave open how effect is chosen, and require only that the 

function satisfies 

(E) i f  [a]]a = [[b]]~ then effect (a)(c) = effect(b)(c),  

where the model .~Oyn is left understood. To define 

p: TSTEF(X) ~ (Z----> (PW ----o 5D(PW))), 

we define a set of functions PW ---o PW to each Ix e TsTE~(X). We do this inductively. First, we need 

the domain of synchronization sets 

Definition 3. 

1. An element of 5~+(TEvENT(X)u{t:fail}~e fACTO,) is called a synchronization set. (t7 ;+ is the finite 

non-empty subset operator.) Synchronization sets are written 

2. A synchronization set 

. 

and all ~ e Z 

alJ all 
not containing failure events is called compatible if for all w e P W  

effect (a 1 )(~r) . . . . .  effect (a n)(cD(w)=effect (ail) . . . . .  effect (a&)(w) 

for all permutations <i 1 . . . . .  in) of <1 . . . .  , n). A synchronization set SlWS 2 where s 1 contains no 

failure events and s 2 contains only failure events is compatible if s I is compatible and there is no 

actor ~ such that u a  ~ s 1 and t:fail e s2 for an a. 

The set of all (compatible and incompatible) synchronization sets is called SYN and has metavari- 

able s. The set oft-synchronization events is SYN ~ = {s e SYN I t:a e s for an a}. 1 
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Definition 4. 

I f s  e SYN is compatible, then we define effect(s) e (E ----} (PW - -~  Y)(PW))) by 

effect ( s )( (~) = effect ( a 1 )( (y) . . . . .  effect (a n)((y) 

w i  u s  y, where S f contains only elements of the form ufail  and none of the ai has this form. 

STEP is built from terms of the 

form t:~,  where ~ is a scheduling step, i.e. a term containing a n y ,  f a i l ,  - ,  +, or ; .  

Definition 5. 

The set of steps is defined as 

STEP = ~+ (~(SYN)). 

The function 

step: TsTEp(X)k.){uany, t:fail I t e TACTOR} ----> STEP 

is defined inductively as follows. 

1. For TAcTioN(X)-terms, we define s t e p ( a ) = { s e S Y N l a e s  and s compatible} for 

a 6 TACTIoN(X ). 

2. step (t:faii) = {s e SYN I t:fail c s and s is compatible}. 

3. step (t:any) = {s e SYN ~ I s is compatible}. • 

A step is !hus a set of the form 

{ . . . . .  }. 

step (a) is the step consisting of all synchronization sets in which a participates. It is an element of 

~'(SgN), so the codomain of step is ~(~(SYN)). Because step never maps a step term to the empty set, 

we can eliminate this from the codomain. 

The behavioral interpretation of a thus involves nondeterminism of the underspecification variety, 

because it is interpreted as " a  occurs, together with a finite set of other events, bat I don ' t  know 

(specify, care) which other events".  This interpretation is crucial for the possibility to give a 

behavioral interpretation to action negation. We first give a behavioral semantics for step terms only, 

and then make a minor modification, which gives us the intended behavioral semantics for all process 

terms. 

In our step specification, we have 

ACTION < STEP, 

where ACTION is the sort of  terms l:a, for a an elementary event. 
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Definition 6. 

We define the free choice model At /as  follows. Define 

p: TSTEP (X) -----> (Y~ ~ (PW ~ 9~(PW))) 

inductively by 

1. p(a)(a)(w) = {effect(s)(o)(w) I for all s E step (a)}. 

2. p(t:fail)(~)(w) = as in 1, with a replaced by t:fail. 

3. p(t:any)(ts)(w) = as in 1, with a replaced by t:any. 

4. p(-a)(~)(w) = {effect(s)(Ci)(w) I s ~ SYNkstep(a)}.  

5. p( to:( t l :a  I +~2:a2))(~)(w)=p(tl:al)(~)(w)up(t2:t~2)(ci)(w),  where t 0, t 1, and ~2 are not all 

equal. 

6. p(t:(t :at  + l:a2))(o)(w) = p(t':t~l)(O)(w)np(t:t~2)(O)(w). 

7. P(t0:(tl:C q & t2:tX2))(a)iw)=p(tl:al)(G)(w)np(12:tx2)(G)(w). • 

Remarks: 

1. step (a)(G) is the set of all compatible synchronization sets in which a participates, so the order of 

applying the effect function in 1 is immaterial. 

2. p(t:fail)(t~)(w) is the set of all compatible synchronization sets containing t:faii. By the definition 

of compatibility, it will not contain any l:a. 

3. p(t:any)(G)(w) contains all compatible synchronization sets in which t participates, but not with a 

l:fail. 

4. Actions are negated with respect to all possible steps. Thus, - t : a  is the set of all possible syn- 

chronization sets in which t does not participate with a: These are the synchronization sets in 

which 1. participates with another event, or with fail, or in which l does not participate at all. 

5. Choice makes p deliver a function P W  ~ ~ ( P W )  rather than P W  ----> PW. In general, each set 

• has a set of possible next worlds, one of which will be actually reached when executing the step. 

The intuitive notion captured by this semantic definition is that if t o chooses between two steps, 

the set of possible next world that may result from his choice is the union of the sets of possible 

next worlds reachable by the branches. Note that, if p(tXl)(G)(w) for i = 1, 2 consists of compati- 

ble synchronization sets, then so does p(t:(lxl + tt2))(cr)(w). 

6. If the three actors involved are the same, then we capture a quite different intuition with the 

semantics, viz. what the effect of t ' s  choice itself is, rather than what the effect of the chosen 

branches is. It says that the effect of the making the choice itself is the intersection of the effects 

of the branches. This agrees with our stronger interpretation of P (t:(l:a + t:b)), which says that t 

is permitted to do a and b (just as in the multi-actor case), and in addition that t is permitted to 

make the choice. 

7. There are no special considerations for synchronization that distinguish the single-actor from the 

multi-actor case. tz I & ~x 2 is the synchronous execution of two steps, and the effect wilt be brought 

about by those functions on P W  that bring about the effect of ot 1 and et 2. Hence, we intersect the 

steps. Note that the effect of this synchronous execution is the same as the effect of the choice 

event in a single-actor choice between t:Ctl and t:o~ 2. This is compatible with the process terms 
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whose effect this is, being unequal. Note that Ix, and a2  may be incompatible, so that there is no 

synchronization set in which both participate. For incompatible steps ~t 1 and a 2, we have 

p(t:(tx l & Ix2))(t~)(w)= O. This has an important consequence for the logic, which we will see 

below. 

We call this model a free choice model because it allows us to differentiate a choice imposed on an 

actor by another actor from a choice made freely by the actor himself, 

Theorem 7. 

• / / f  is a model of  Specoyn. 

Sketch of proof. 

We simply prove that p applied to both sides of each axiom in StepAxioms yields the same result. 

This equality will then be maintained in any equation derivable from the axioms. The proof  is simple 

and is omitted. • 

Theorem 8. 

/ / tO, t l  and t 2 are not all equal, then the following formulas are true in~tf .  

~11 [F2] 

[to:(tl:(~ 1 +t2:tx2)ldP e9 [tl:(Xl]47 ^ [t2:~21(I ) ( to : ( t l :~  1 +t2:(X2))O <--'-> ( t l :a l )47 v <t2:(X2)(I ) 

[F3] [ t : ( t :a l  + ua2 ) ]O  ~ [ t :a l  ]47 v [ t : a2 ]~  [F4] ( t : (ua l  + 1,:0%))0 --, ( t : oq )0  ^ ( l : ~ ) 0  

[F51 [F61 

[1.0;(l 1 '0~ 1 (~ t2:0~2)]0 ¢:"- [t I : a  I ](I) v [tZ:(X2]q~ (to'(t l  :(~1 C~ tz:(X2))¢I) --) (to:~1>47 ^ (t1:0~2)47 

Remarks: 

2. 

IF2] represents our "extensional"  reading of  a multi-actor choice. ~ may be true after t 0 's  choice 

iff  it may be true as an effect of cq or a2.  By the duality [a]47 -=-, (a)-~ O, we have IF1], saying 

that • will be true after t0 ' s  choice iff  it will be true after ~1 and o;2. 

In a single-actor choice, [F4] reflects our " intensional"  reading that if O may be the effect of  t ' s  

choice, then it may be the effect of each of  the branches. The arrow goes only one way, because 

there may not be any joint  effect of a I and ct 2 at all, viz. when they are incompatible. However, if  

there is an effect, i.e. if  there is a • with (t:(t:ct 1 +t : tx2))~  , then we can conclude that 

( t : a l ) ~  ^ (t:tx2)q~. To understand the dual formula in [F3], we must realize that choice is an event 

that occurs before the branches are executed. Choice does not bring us to a next possible world, 

but it does occur at a point in time preceding the execution of  a 1 and tx 2. The left-hand side of  
IF4] then says 

"af ter  l ' s  choice, the system is in a state where 47 can be brought about" ,  

which implies the right-hand side, both branches can bring about 47. Applying the duality, the 

left-hand side becomes 

" i t  is not the case that after t ' s  choice, the system is in a state where --, 47 can be brought 
about" ,  
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which is equivalent to 

"after t ' s  choice, tile system can be in a state where dp will be brought about". 

This is the correct reading of the left-hand side of [F3], and it is implied by the right-hand side, 

which says that one of the branches will bring about cI,. 

3. Synchronous execution is impossible if the synchronized steps are incompatible, so there is a one- 

way arrow here as well. The logic is not able to express necessary conditions for two steps to be 

compatible. This is a general problem with the intersection of accessibility relations in a Kripke 

model with multiple accessibility relations, that can only be solved by strengthening the language. 

Meyer [25] did this by adding DONE :¢x predicates to the language, but Van der Hoek and Meyer 

[16] show how to do this in general. 

To give a behavioral semantics of process terms, we must extend the definition of p to T~Roczss(X). 

The basic idea is simply that the effect of the sequence operator ; on the world is simply a composi- 

tion of the effect functions of its arguments. The only complication is that deadlock should remain 

local, so that, for example (see [ P 4 - 5 ]  in P r o c e s s A x i o m s )  

p(ufail ; 131 ; t:(x ; 132) = p(ufail ; 131 ; 132). 

Other actors can continue even when t gets stuck. The easiest way is to define p for terms in which all 

occurrences of t after it has failed are removed, and then extend the definition to other process terms 

that are in its congruence class. 

Definition 10. 

Let ~ e TpRoc~ss(X). 

1. Every nested application of the ; operator in ~ is called a sequence. 

2. A sequence is called redundant if it contains a pattern ufail ; [] ; t:0 ; [], where 0 is either cx or fail, 

and I:1 is a (possibly empty) context. 

3. A sequence is called non-redundant if it is not redundant. 

4. 13 is called non-redundant if it does not contain redundant sequences. • 

The following is easy to prove. 

Lemma 11. 

In the specification ProcessAxioms, For any [~ e TvRocEss(X) there is a unique non-redundant 

PROCESS-term equal to it. • 

Definition 12. 

Extend the definition of p as follows. 

P: TpRocEss(X) ---> (Z - -~  (PW --~ ~(PW))) 

is defined inductively by 

1. If ~ e TSTEp(X), then use the definition for STEP-terms. 

2. If [3 is of the form u(131 + 132) or t:(131 & [~2), then use the corresponding definition for STEP- 

terms. 
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3. Otherwise, let ~ be the unique non-redundant process term equal to 13, and let ~ = 131 ; l~ (anY 

arbitrary decomposition will do). Then by the inductive build-up, p([3i)(t~) is a function 

PW ~ 5D(PW), for i = 1, 2. Then define p(13)(o)(w) = {f2ofl  I J~ e p(~i)(t~), i = 1, 2}, where o 

is the usual function composition lifted to sets. • 

Theorem 13. 

d~f is a model of SpecDyn. • 

Theorem 14. 

The following two process logic axioms are true in d~f. 

IF7] [[~1 ;~2] qb ¢:'-) [~1 ]([[~2] O) 

IF8] ([31 ;~2~) <'-> (131)((132)O) m 

3. Deontic logic 

L(Sigoyn) can be used as a language for deonfic constraints by introducing violation states Vi: u a ,  one 

for each of  the reasons why t would be forbidden to perform a .  Then deontic modalities are introduced 

as follows. 

Definition 15. 

The following abbreviations are used for deontic modalities: 
A 

P (a )  ¢:~ ~[a]Vi:a for an i, C a is permitted"), 
A 

O(a) ¢~ [-a]Vi:a for an i (" a is obligatory"), 
A 

F ( a )  ¢~ -~ P (a )  ( " a  is forbidden"). • 

This formalization of deontic logic has been studied in dynamic logic without actors in [24, 25] and has 

been applied to system specification in [31,30]. With actors, the modatities express more. For exam- 

ple, P( t :a)  says that t is permitted do to a, and P(u( t :a  + t:b)) says that t is permitted to choose between 

doing a or b (i.e. choosing brings him into a state where he can do a permitted action). 

Theorem 16. 

If t0, t l  and t2 are not all equal, then the following formulas are true in JAr. 

[Pl] 
F(to:(t l  : a l  + t2:~2)) ¢-¢ F(t l  :txl) ^ F(t2:lx2 

[1)3] F(t:(t:Oq + t:Cz2)) <-- F(t:tXl) v F(t:ct2) 

[PS] 

F(IO:(tl:0~I ~ t2:(X2) ) (-- F ( t t : a l )  v F(t2:(x2) 

[P2] 
P(to:(tl  :cq + t2 :a2)) 60 P(t l  :oq) v P(t2:a2) 

[P4] P (u ( t : a l  + t :a2))  --> P ( l : a l )  ^ P(t :a2)  

[P6t 
P(t,O:(tl:ff~l & t2:Ct2)) --> P(IO:CX|) ^'P(tl:ff,  2) 
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Remarks: 

1. [P2] says that t0 is permitted to give two actors a choice iff at least one of the actors can do some- 

thing permitted, to is permitted to choose, because his choice may lead to a permitted state of the 

world. By duality, he is forbidden to do so iff both actors are given forbidden things to do ([P1]). 

2. [P4] says that if t is permitted to make a choice between cq and aZ, then he is permitted to per- 

form either branch. By duality, if he is forbidden to do either branch, then he is forbidden to make 

the choice ([P3]). This resolves the paradox if free choice permission. 

If any actor is permitted to synchronize two steps, then both steps are permitted([P6]). If at least 

one step is forbidden, then any actor is forbidden to synchronize them ([P5]). 

3. 

4. Discussion 

De Nicola and Hennessy [27] give a translation function tr  from CCS to TCCS which deletes all 

occurrences of ~ and replaces choice by internal or external choice, depending upon the first event of 

the chosen branches. This translation makes sense if we restrict ourselves to a two-actor system, where 

one actor (the observer o) initiates all atomic events and either actor (o or the machine m) can initiate a 

choice. Example translations (in our actor formalism) are 

1. tr(a + b) = o :(o :a + o :b) 

2. tr(xa + b) = m :(o :(o :a + o :b) + o :a) 

3. t r ( x a + ~ b ) = m : ( o : ( o : a + o : b ) + o : a + o : b ) .  

The last translation assumes choice is associative, which is not obvious in an actor-oriented specifica- 

tion. Making actors explicit shows that there are more ways to interpret '~. For example, the translation 

in 2 says that m chooses between letting o do a or giving o the choice to do a or b. A translation that 

stays closer to the original would be 

2'. t r ( 'ca+b)=o:((m:c ;o :a )+o:b )  

for an event c, and assuming CCS choice is external. One can argue that o is not able to make the 

choice in the right-hand side of 2' because o doesn't know what m will do, but then neither is m in the 

fight-hand side of 2 able to make a choice. Perhaps the problem in 2 is that the initiative of the choice 

lies partly with m and partly with o (if o is fast enough, he can press the button before m does x). 

This problem is also present in 3, where the intention is that the choice is made by m. A simpler 

translation would therefore be 

3'. tr(za + "¢b) = m :(o :a + o :b). 

This is certainly not the same thing as 

3". tr(xa +'~b) =o:(m:c 1 ; o:a +m:c2  ; o:b), 

which is another reading of xa + ~b. We do not argue for either of these translations in favor of the 

other, but want to point out that using actors, one is forced to make explicit which choice one makes. 

The problem that an actor cannot choose if he has not enough information is illustrated neatly by a 

number of CSP laws [15, pages 103-107]. Translated into process terms with actors, these are: 

1. r a : ( o : a ; x + o : a ; y ) = o : a ; m : ( x + y )  

2. o : ( o : a ; x + o : a ; y ) = o : a ; m : ( x + y )  
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3. m:(x+o:(y+z))=o:(m:(x+y)+m:(x+z)) ,  

and another one like 3, with the roles of o and m reversed. In 1, m cannot make the choice on the left- 

hand side and the initiative to do something lies with o. However, m retains initiative as far as the 

choice is concerned. In 2, o does not choose at all, but simply does a and passes control over the choice 

to m. It is not obvious why control should be passed to m in 2. Together, 1 and 2 imply that the initia- 

tive for a "truly" nondeterministic choice always lies with m. Thus, two forms of nondeterminism are 

identified: "true" nondeterminism of the ax + ay kind, in which an event leads to an element of a set of 

possible next states, and lack of control over a choice, as in t0:(t:~ 1 + l:~2), where t has no control over 

the choice. We see nothing wrong in identifying these two forms of nondeterminism, but see no partiC- 

ular reason for making this identification either. 

3 says that 

Mary chooses between x and giving Otto the choice between y and z 

iff 

Otto offers Mary the choice between choosing x or y or choosing x or z. 

The problem with this is that the order of choices as well as what the actors choose from is different. 

Hoare [15, pages 107-108] argues for this equation on the grounds that the effect of both sides is the 

same. We think these conflicting intuitions can be harmonized by simply dropping axiom 3 from the 

process theory. In our system, we could add 

3' [m:(x +o:(y +z))]d~--~ [o:(m:(x + y)+m:(x +z))]d~, 

as an axiom, expressing Hoare's intuition that the two processes have the same effect, while allowing at 

the same time for the intuition that the processes themselves are not equal. 

5. Conclusion 

We gave a semantics and a sound and complete inference system for dynamic logic with equality. To 

this we added the concept of an actor, which allowed us to express accurately different kinds of non- 

determinism, and to distinguish control over and action (including choice) from the visibility of an 

action. This was compared with several treatments of these concepts in CCS and CSP. 

In addition, we included the concept of negated action in dynamic logic, which allowed us to 

introduce deontic operators in the language. Together with the actor concept, this allows a solution of 

the long-standing paradox of free choice permission. 

The process theory used in this paper is rudimentary and contains no recursive processes or com- 

munication. In the futm'e, we wil extend the theory to these processes, and also start work on an opera- 

tional aspects of the specification language. 
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