
Actor-Oriented System Specification with Dynamic Logic

J.-J.Ch. Meyer
R~I. Wieringa

Department of Mathematics and Computer Science

Free University

De Boelelaan 1981a

1081 HV Amsterdam

uucp: jules@cs.vu.nl, roelw@cs.vu.nl

ABSTRACT

In this paper, we extend dynamic logic with the concept of an actor in order to be

able to specify who takes the initiative of an action, who makes a choice, or who con-

trois a synchronization of actions. We give two examples of application of this idea.

First, we show how to generalize an approach taken up by De Nicola and Hennessy,

who eliminate '~ from CCS in favor of internal and external choice. We show that this

generalization allows a more accurate specification of system behavior than is possi-

ble without it. Second, deontic logic has been used by several researchers as a system

specification language. In the course of this application, a number of paradoxes of

classical deontic logic have been resolved, except the paradox of free choice permis-

sion. We show that actors can be used to resolve this paradox as well.

Subject area: Specification of systems, combining different logics

1. Introduction

1.1. Internal choice and internal events

Milner [26] sketches an intuitive picture of black box M equipped with buttons that may or may not be

blocked by M, and if not blocked, can be pushed by an observer O. If M has two buttons, a and b, that

are unblocked, then O is in a position to choose whether to push one or the other button. Using CSP-

like notation, the process executed is then a + b, where + stands for external choice. If, on the other

hand, M chooses to blocks one or the other button, then the process executed is a • b, where ~ stands

for internal choice.

This vivid example can be generalized to the case of n actors for any n > 1, by allowing any actor

338

to make a choice.. The distinction between internal and external then loses its meaning, for we will not

identify with any actor in the system. We will write t:(x + y) for the process that actor t makes a choice

between processes x and y.

In CCS, internal choice between a and b is represented by "ca + xb, where "c is any action initiated

by M. • is called the internal or invisible action. It is well-known that the axiomatization of x is not

very intuitive, and De Nicola and Hennessy [27] show how to eliminate ~ from CCS in favor of the

intuitively more pleasing internal and external choice of CSP [15]. We think x contains two ideas that

should be distinguished, connected to initiative and visibility. "c is any action that occurs on the initia-

tive of M as well as any action that is invisible to O. Separating these two concepts and generalizing to

the case of n actors, we will explicitly add initiative to any event and leave open the question to which

actors an event occurrence is visible. Thus, M :a is event a initiated by M, and O :a is a initiated by O.

For example, if a and b are the events of a light going on and off, respectively, then M :(M:a + M :b) is

the process in which M chooses to switch the light on or off. If, on the other hand a and b are the

events of pushing on or the other button, then M :(O :a + O :b) is the process in which M blocks a but-

ton and O then pushes one. Events initiated by one actor may be visible by others.

Note that xa + zb states that M makes a choice by performing an invisible action. Choice is itself

not seen as an action, so that a property of + is expressed by a property of the first event of the

branches. This makes it difficult to interpret terms like a + xb, where it is hard to say whether choice is

internal or external [27].

1.2. The paradox of free choice permission

Deontic logic is the logic of permissions, prohibitions, and obligations [1, 9, 18, 28]. Recently, deontic

logic has been applied to the specification of software systems [8, 20, 21, 31,22, 30]. Traditionally,

deontic logic has been plagued by numerous paradoxes. Castafieda and von Wright [5, 32] have pro-

posed that a number of these paradoxes can be resolved by distinguishing actions from states. This

approach has been formalized in [24, 25] using dynamic logic [13]. The basic idea is to label the set of

possible states as either forbidden or permitted, and to define any action that leads to a forbidden state

as forbidden. Permission and obligation can then be defined in a standard way in terms of prohibition.

One paradox still remains, however, called the paradox of free choice permission [14,19]. This is

that the following formula is derivable (P (a) says that event a is permitted):

(1) P(buy chewing gum) --> P(buy chewing gum + shoot the president).

This paradox can be resolved using the distinction between internal and external choice [23]. Permis-

sion to do a means that there is a way of doing a that leads to a permitted state of the world. One read-

hag of (1) is therefore intuitively plausible, viz. if there is a way to chew gum that leads to a permitted

state, then there is a way to perform the process (buy chewing gum + shoot the president) that leads to a

permitted world (viz. by performing the permitted way to chew gum). On the other hand, it is counter-

intuitive to conclude from P(chew gum) that I am permitted to choose between chewing gum and

shooting the president. Thus, (2) is a formalization of our intuition and (3) is not:

(2) P(t l : a t) - - ->P(t2 : (t l : a + h : b))

(3)* P (t l : a l) --> P (t l : (t l : a + t l : b))

(2) says that there is a possibility that t2 makes the choice in such a way that a permitted world will

339

ensue after performing the chosen action. (3) makes the incorrect statement

that if I am permitted to do something, then I permitted to choose to do something else as well. The
force o f the permission P (t1:(tx :a + t l :b) is stronger than that of P (t2 :(1i :a + t l :b), because in addi-

tion to saying that there is a possibility that t l chooses a permitted action, it says that 11 is permitted to

choose between the actions. In our system, (2) is a theorem and (3) is not. In fact, we have the

theorems

(4) P (t2 :(tl :a -t- l 1 :b)) <---> P (tl :a) v e (tl :b)

(5) P (tl :(tl :a + l l :b)) ---> P (t 1 :a) ^ e (t 1 :b),

which agrees with our intuitions. (5) blocks the paradox of free choice permission.

2. Dynamic logic with equality and action negation

We specify a system as a set of possible states which all contain an underlying abstract data type (ADT)

as reduct. Events and processes will be specified as functions on the set of possible states. Thus, the

system is a Kripke structure with multiple accessibility relationships, one for each event and process.

More in detail, we model any system as shown in figure 1.

-~AOT

PW~Process
Figure 1.

Each world in the set PW of possible worlds contains the underlying ADT, called dAOr, as reduct. In

addition, there is an algebra dProces s of processes, together with a function p which, for each process,

yields a function on PW that states the effect of the process on the possible worlds. The process algebra

also contains the underlying ADT as reduct. To make this more precise, we first rehearse some of the

definitions relevant to equational specification of ADT's.

2.1. ADT specification

An ADT signature Sig is a pair ((S, <), F), where (S, -<) a poset of sort names and IF a set of function

declarations over S.

For each sort s ~ S of a signature we assume an infinite set X s of variables of sort s. All X s for all

s ~ S are assumed to be mutually disjoint. So xs~ c'~s2 = O even if s 1 < s2- The set of all variables is

X = u X s. The set Tslg s(X) of Sig-terms over X of sort s is defined in the usual way. The set of
S E S

closed Sig-terms of sort s is Tsig,s. We omit Sig is the signature is understood or irrelevant.

A connected component of S is an equivalence class with respect to the transitive symmetric clo-

sure of < . Two sort names are compatible if they are in the same connected component . A

Sig-equation t l= t 2 is a pair of terms over SigADT whose least sorts of t l and t2 are compatible.

Goguen & Meseguer [12] show that under certain weak conditions, the terms of an ADT signature

340

always have a least sort.

Let SigADT be an ADT signature. A SigADT-Specificadon is a pair (SigADT, E), where E is a set of

equations over Sigm~r. .We assume the initial semantics of ADT specifications [7, 10,1 I, 12, 29].

2.2. Process specification with negation

By a "specification" we mean a set of axioms in a language that is used to select an intended model.

By a "definition" we mean a formula that must be solved in a given model. The solution set of the for-

mula in the model is the set of all elements of the model that satisfy the formula.

We extend the ADT specification SpeCADT tO a process specification Speceroces~ by adding

declarations of sort- and function names, and equations, where one sort in the process specification will

be called the process sort. Terms of that sort are called process terms. The extension must be conser-

vative, i.e. Th (SpeCADT) = Th (Specerocess)C'£ (SigADT)~ where Th (Spec) is the set of theorems den'vable

from Spec using equational logic, and L (Sig) is the set of all possible equations over Sig. We do not

require anything of the intended model of Specproces s except that it contains the initial algebra .dAD T of

SpeCAOT as a SigAoT-reduct, i.e. we will have

- ~S]]ADT = ~S]]erocess for s e SADT, and

- ~]:'~ADT = ~Z'~erocess for f E IFAD z.

We now give our example Specproces s.

process spec LibraryActions

import
Persons, Books, Library, Money

sorts

PERSON_EVENT, LIBRARY_EVENT, ACTION

~nctions
borrow : BOOK -> PERSON EVENT

return : BOOK -> PERSON EVENT

reserve : BOOK -> PERSON EVENT

notify : PERSON x BOOK -> LIBRARY_EVENT

pay : MONEY -> PERSON_EVENT

: : PERSON x PERSON EVENT -> ACTION

: : LIBRARY x LIBRARY EVENT -> ACTION

end spe¢ LibraryActions

Person, Books, and Library are ADT spechHcations. Libary declares a son LIBRARY and

a constant 1 of sort LIBRARY. (We consider a world with only one library.) The term

l : n o t i f y (p, b) stands for the action of the library 1 notifying p that book b is overdue, a, b,

and c are used as metavariables over closed terms of sort ACTION, t and K are metavariables over

actors, and a, b, c are metavariables over events, We will often refer to a as an atomic event and to aas

an atomic action.

341

By requiring the Specproces ~ to be a conservative extension of SpecADI', we know that pay ($2)

= pay(S1 + $i).

To be able to refer to persons and libraries as actors, we simply assume that the underlying ADT

specification contains the specification

datatype spec LibraryActors
import

Persons, Library

sorts

PERSON < ACTOR

LIBRARY < ACTOR

end spec LibraryActors

By the hlitial semantics, actors are either persons or libraries, but they are never books. By the reduct

requirement, we know that each closed term of sort ACTOR denotes the same actor in each possible

world. Each t ~ TACTOR Can be used as an identifier of an object that rigidly designates the same object

in all possible worlds. Assuming we have no equations for terms of sort PERSON or LIBRARY, it

also uniquely denotes the same object in all possible worlds. The next specification specifies steps,
processes that contain no sequence operator.

LibraryActors

SCHEDULING STEP

SCHEDULING STEP

STEP x STEP

STEP x STEP

ACTOR x SCHEDULING

STEP

proc~sspec StepAxioms

import

LibraryActions,

sor~
SCHEDULING STEP

ACTION < STEP

functions

any

fail :

+

&

:

-- w

--

variables

i, i0, ii, i2 : ACTOR

S, sl, S2 : STEP

el, e2 : SCHEDULING STEP

equations

[Sl] i: (sl + s2) = i: (s2 + s!)

[$2] i: (sl & s2) = i: (s2 & sl)

IS3] --S = s

[$4] if not ((i0 eq il) and (i0

then -(i0:(il:el + i2:e2))

-> SCHEDULING STEP

-> SCHEDULING STEP

STEP -> STEP

-> STEP

eq i2)) = true

= i0:(-il:el & -i2:e2)

342

[S5] if not ((i0 eq il) and (i0 eq i2)) = true

then -(i0:(il:el & i2:e2)) = i0:(-il:el +

end spec StepAxioms

-i2:e2)

We use the convention that n-ary operators bind stronger than m-ary operators, n < m , but if we wish we

can add brackets to emphasize operator binding, We use a as metavariable over terms of sort STEP

and 11 as metavariable over SCHEDULING_STEP. It is easily shown that 11 either is a negated action

or has the form t :a . In general, t : a says that actor t takes the initiative to the scheduling step a , or

schedules a. 11 may be an atomic event a. In t:any, t executes any atomic event, and in t:fail, t

deadlocks, u(111 + 112) denotes the choice of t between a l and ct2, u(111 & 112) denotes the choice of t

to let a l and (X 2 OCCUr synchronously, and -11 denotes the non-occurrence of 11.

In [S 4 - 5] , we assume that a Boolean function e q with infix notation is defined for each actor

sort, which is true iff its arguments are equal. The axioms require multi-actor steps to be a Boolean

algebra. The intuition behind this is that the effect of not making a choice between a l and a2 is the

same as the effect of not doing a l and ~2. We call this the "extensional reading" of choice, by which

we mean that they make De Morgan's laws valid in the semantics. In a single-actor step, we use what

we will call an "intensional reading", and look at the choice of the single actor as an event in itself.

On that reading, choice and synchronization are simply different actions and the axioms [s 4 - 5] do

not hold. We come back to this in the discussion after theorem 8, where the difference between the two

choices is made more precise.

To make matters as simple as possible, we use the initial algebra of the process specification as

intended semantics dtproces s All closed process terms (and in particular all step terms) are then inter-

preted as their equivalence class with respect to the listed process and step axioms. This does not pro-

vide any meaning as far as the effect of a process on the set of possible worlds is concerned. The func-

tion P on derocess will assign such a meaning, by defining P(13) to be a (non-deterministic) function on

possible worlds.

S t e p A x i o m s is notable for the axioms that are absent. For example, associativity of choice is

standard in all process algebras. With initiative we would get

1:(1(:(0t 1 + Or2) + (13) = i(:(111 + t:(O~ 2 + IX3))

and this is not a priori true intuitively, even if t = ~. t and ~ make completely different choices at the

left-hand side and at the right-hand side. Moreover, t and K make their choices in a different order at

the left- and right-hand sides. By omitting this axiom, we only have binary choices. Given the current

axioms, an actor can only make a choice between n alternatives n >2 by making a sequence of binary

choices, and these sequences are not equivalent.

Four other candidates for addition are

tO:(t t : a + ~.I : a n y) = t I : a n y ,

t0:(t I :c~ + t 1 :fail) = t 1:11,

tO:(tl : a & t l : any) = t l : a and

to: (t l : a & h : fai l) = t l :fai l .

There are no derivability relations between these axioms, because for that we need the extra axioms

343

(6) - t : any = t:fail and

(7) -u fa i l = uany.

These last axioms enforce the intuitive interpretation " t does something other than ~, or deadlocks" to

-t:ct. We will use the weaker interpretation '% does something other than tx, or deadlocks, or another

actor does something", which is easier to formalize. A third, more stringent, interpretation would be

'% does something other than ct, but does not deadlock", which is enforced by

(8) t0:(-t:t~ + t:~) = t:any and

(9) t0:(- t :~ & t:~) = t:fail.

(6) and (7) are derivable from (8) and (9). We will keep our process specification simple by omitting

all these axioms.

The sort PROCESS below is the process sort of our process specification.

process spec ProcessAxioms

import

St epAxioms

sorts

SCHEDULING STEP < SCHEDULING PROCESS

STEP < PROCESS

functions

+ : PROCESS x PROCESS -> SCHEDULING PROCESS

& : PROCESS x PROCESS -> SCHEDULING PROCESS

: : ACTOR x SCHEDULING PROCESS -> PROCESS

; : PROCESS x PROCESS -> PROCESS

variables

i : ACTOR

s : STEP

p, pl, p2, p3 : PROCESS

equations

[PI] (pl ; p2) ; p3 = pl ; (p2

[P2] i: (pl + p2) = i: (p2 + pl)

[P3] i: (pl;p3 + p2;p3) = i: (pl

[P4] i:fail ; i:s = i:fail

[P5] i:fail ; p ; i:s = i:fail

end spec ProcessAxioms

; p3)

+ p2)

; P

; p3

To keep matters simple, we do not allow negation of processes, although this has been formalized in an

earlier version o f the language [6, 24] and can easily be added here. We use [~ as metavariable over

terms of sort PROCESS. We use the convention that : binds stronger than ; . Note that if i

deadlocks, other actors can still display initiative as if nothing happened.

We are able to express three different kinds of nondeterminism in this specification. Choice is

"non-deterministic" in the sense that it is arbitrary; it i s not specified which branch is taken. In a

344

two-actor environment with actors M and O, M : (a l + ~(2) is "non-determinis t ic" in the sense that O

has no control over the choice (this is CSP-like nondeterminism [15]). Finally, ~0:(l:a ; x +l . :a ; y) is

the usual concept of nondeterminism as formalized in process algebra [2, 3, 4], where there action ~:a

can lead to one out of a set of possible states.

2.3. Dynamic logic with equality

Dynamic logic includes first-order predicate logic, which we define first. A static constraint signature

Sig is a triple ((S, <), IF, IP), where ((S, <), IF) is an ADT signature and IP is a set of predicate sym-

bols with their arity taken from S.

An atomic Sig-formuIa over a static constraint signature is either a Sig-equation or a formula

P (t l tn), where P is declared to have arity s i x ... x sn and t i e Tsig ' s~(X), i = 1 n. We use P,

Q as metavariables over the predicate symbols. An order-sorted static constraint language Lstat(Sig)

over a static constraint signature Sig is the set of formulas defined by the following BNF:

~ : : = t 1 = t 2 I P(t 1 tn) I ~d? I @ ^ ~ I ~ v ~ I d?---> ~ I d? <---~ ~ I Vx(~) I Rr(~?),

where the f'n'st two alternatives are atomic Sig-formulas. We drop the qualification Sig if it is clear

from the context, or if it irrelevant which static constraint signature is used. Punctuation symbols (,)

are used to disambiguate formulas. Equations are treated as universally quantified formulas in which

the binary =-predicate appears in infix notation. This makes the standard rules for substitution and vari-

able binding applicable to equations that appear in formulas. The set of all formulas o v e r Sigstat is

called L (Sigstat). A static constraint specification is a pair Sigstat , CStat), where Cstat is a set of closed

formulas over Sigstat.

A dynamic constraint signature Sigoyn consists of a triple of signatures

(SigADT, Sigstat, Sigprocess) such that Sigstat and Sigproces s are static IC and process signatures, respec-

tively, that share SigADT as their underlying ADT specification. Other than that, Specstat and

Specproces s have no sort - or operation names in common.

The language Loyn(SigDyn) of dynamic constraints, with typical elements dp and W, is given by the

BNF:

@ ::= ~ I @I v@2 1 -~@ l @I ^ @2 1 @I --> @2 1 @I <-> @2 1 [13]@

where ~ is a formula of Lsta~(Sigstca) and 13 is a process term over Sigprocess. We use

as an abbreviation of ~[~]~@.

The intuitive semantics of [[3]@ is "af ter execution of [3, @ holds necessari ly", and the intuitive

semantics of (13}@ is "after execution of [3, dp may hold" . The language can thus be used to express

pre- and postconditions of events. Note that by our definition of LDyn(Sigoyn)-formulas, process terms

can only occur inside the modal operator. A dynamic logic formula containing no modal operators is a

static constraint formula, which may be an equation over SigADT.

SpeCDy n = (SigDyn, Coyn) is a dynamic constraint specification over the static constraint specifica-

tion Specstat and the process specification Specerocess if it is an extension of Specstar and Speceroces s
such that

345

Th (Spec stat) = Th (SpeC Dyn)C'~ Stat(Si g stat) arid

Th (Specproces s) = Th (SpeeDy n)t'~LProces s (Sigproces s).

A dynamic constraint specification thus conservatively extends both the static constraint specification

and the process specification. An example dynamic constraint specification is

dynamic constraint spec DynamicLibrary

import
St at icLibraryConst raint s, ProcessAxioms

variables
p : PERSON

b : BOOK

q : QUEUE

dynamic constraints
[DO] [p:borrow(b)] Borrowed(b, p) and not Present(b)

[DI] if Reserved(b) then

(if p = head(q) and q = reservations(b)

then [p:borrow(b)] reservations (b) = tail(q)

end spee DynamicLibrary

[13 0] says that the effect of borrowing a book is that it is not present and is borrowed. [I3 3.] says

that in the case of reserved books, we remove the borrower from the queue of reservations if he is the

first in the queue, otherwise the event is blocked.

2.4. Inference rules and semantics

Let SpeCDy n = (SigDyn, Coyn) be a dynamic constraint specification over Specstat and Specproces ~. A
model of SpeeDy, is a four-tuple

~Dyn = (d~ADT, PW, a~Proces s, p)

such that

MADT is a model of Specaor,

P W is a model of Specstat,

- dProces s is a model of Specprocess,

- P: Tprocess(X) ~ (Z ~ (PW -'--> P(PW))) , where X is the set of all variables defined in section

2.1, Terocess(X) is the set of process terms of Sigprocess, and Z is the set of all sort-preserving

assignments ff to variables,

- p satisfies the requirement that for [3 l, 13 z e Tprocess(X),

[[~1]]6,,~e = [[~2]]o,~e implies p(~l)(~) = p([~2)(~).

All sort names have a fixed interpretation in all possible worlds, and if x: s and 0 is a sort-preserving

assignment, then cr(x) is an element of l[s]]a, where d is either ~ADT or Aerocess, The denotation func-

tion II.]] does double duty as semantics of sort and function nmnes, as well as of terms. So we have

346

[[.~o, .~ : Ts(X) ~ [[s]]~ for a sort s.

p is called the behavioral semantics of process terms, the denotation [[~]]Ae is called the equa-

tional semantics of process tenn. The requirement on p is called the congruence requirement on the

behavioral semantics. It guarantees that processes that are equal in the process algebra, have equal

effects on the world.

Ifd~Dyn = (a~AOr, PW, ~Process, P) is a model of SigDy n and ~: X - - ~ ,JOLDy n ia an assignment to all

variables, then truth in w e PW under assignment ~ of a dynamic logic formula is defined by:

- for each [3e ZProcess(X), we have w, c5 ~oy,, [~]¢ iff for all w ' E p(l~)(o)(w), we have

wt, (Y ~ Dyn d~.

- Truth of the other dynamic logic formulas is defined as usual.

For each c, we define d~Oyn, ~ ~ Oyn d~ iff w, (~ ~ Oyn ~b for all w ~ PW.

Truth of a formula in a world (w ~ Oyn 0) , in a model (AtOy n ~ Dyn O), and of a specification in a

model (~Oyn ~ Dyn SpeCDyn) are defined as usual.

This truth definition coincides with the standard truth definition for ~ in L (Sigstat), which we

denote ~ Star, and with the standard truth definitions for equations in L(SigADT), which we denote

ADT" We have for all w E PW that

w ~Stat~ iff w ~Oy,,~and

w ~ A D T t l = t 2 iff W ~Stat t l =t2 .

We will therefore omit the subscript from ~ from now on.

The inference rules of dynamic logic are given in table 1.

O , O ~ h u • •
[MP] [G] - - [N] - -

vx(o) [13]o

[Ref] t = t [Sym] tl =t2 ~ t2 = t l [Tran] (t l = t2 ^ t2 = t3) --~ t l = t3

t l= t 2 t l= t 2
[Conl] [Subl]

t{x ~->t 1 } = t {x ~'-)t 2 } t l {x ~---)t } = t2{x ~--)t}

t l =t2 ~1 = ~2
[Con2] [Sub2]

P (t l) ~-~ P(t2) ([~{xh--~l}]~f- '~ [~{xh-)[~2}]qb)

All axioms and theorems of first-order logic.

[DL1] [131(O1 -~ 02) -~ ([I]101 -~ [15102)

Table 1. Inference rules for dynamic logic with equality

The equality axioms [Ref], [Sym] and [Tran] hold for all terms, including process terms. If qb is deriv-

able from a set H of Layn formulas, we write H ~- Dyn dp.

347

It must be noted which axioms from standard dynamic logic are absent, viz.

[DL2] [131 ;[32]0 ~ [[31]([13210)

[DL3] [t:(131 q- 132)]O ~ [1311OA[132](I~,

[OI.,4] [t:(O~l &IX2)]O ¢¢--- [~110 v [0~210 ,

[DL5] [t:fail]O,

It is again easy to see that these inference rules monotonically extend the corresponding rules

and ~- ADT for L(Sigstat) and L (SigADT). We have

SpeCDyn ~ Stat~ iff SpeCDyn F" Dyn~ and

SpeCDyn k" AOT t l =t2 i f f SpeCDy n ~ Dyn t l =t2.

We drop the subscript from t-- from now on.

]-Stat

Theorem 1.

SpeCDy n ~- ¢P iff SpecDyn ~ 0 .

Sketch of proof.

Soundness is easy to prove. As a sketch of completeness, first note that [N] and [DL1] characterize

Kripke models, with accesibility relations R[~ for each 13 e Tprocess(X). Moreover, the derived infer-

131 =" 132
ence rule [131]alp <--> [13210 corresponds to the property RI~ ~ = Rt3 z for 131 = 132 on Kripke models of this

kind. By standard modal techniques [17], this implies that every consistent formula can be satisfied by

a Kripke model with this property. By contraposition, we obtain completeness under the assumption

that we can always prove 131 = 132 whenever this holds. But the truth of that assumption follows from
the completeness of equational logic. •

Theorem 2.

The following theorems hold in SpecDyn.

[Dynl] [13]true

[Dyn2] (13)false

[Dyn3] [13]((1) 1 ̂ 02) ~ ([13]ePl ^ [1310 2)

[Dyn4] [13](@ 1 v 4)2) +-- ([13101 v [13102)

[Oyn5] (13)(01 v ~2) <-> ((~)~1 v (13)(b2)

[0yn6] [- t : (oq + (x2)]0 ~ [t :(-al & - a 2)] ~

[0yn7] [- t : (a l&(xz)]O ~ [t:(-a~ + - a 2)] O

[0yn8] [- (-a)]q~ ~ [¢x]~

Proof.

For [Dynl-5], see [24]. [Dyn6-8] follow from [$2] and the step axioms for our process theory, •

These theorems do not relate the internal structure of • to the internal structure of 13 in [1510. The truth

of formulas that express such a relation depends upon the behavioral semantics of process terms, to
which we now turn.

348

2.5. A model for free choice

Assuming the initial semantics for SpeCADT and Specprocess, all the models of a dynamic specification

differ only in their behavioral semantics, i.e. in the function p. We therefore select a particular intended

model by defining the function p. First, we assume a function

effect: T~.VENT(X) - -~ (Z ~ (PW ~ PW)).

effect (a)(c) defines the effect of an atomic event on the state of the world. In general, a dynamic logic

specification does not determine the effect of events exhaustively. Several effect functions remain pos-

sible with respect to a given specification, and we need a kind of frame assumption to choose between

these possibilities. For example, one can stipulate that whatever is not specified to change does not

change when an atomic event is applied. We leave open how effect is chosen, and require only that the

function satisfies

(E) i f [a]]a = [[b]]~ then effect (a)(c) = effect(b)(c),

where the model .~Oyn is left understood. To define

p: TSTEF(X) ~ (Z----> (PW ----o 5D(PW))),

we define a set of functions PW ---o PW to each Ix e TsTE~(X). We do this inductively. First, we need

the domain of synchronization sets

Definition 3.

1. An element of 5~+(TEvENT(X)u{t:fail}~e fACTO,) is called a synchronization set. (t7 ;+ is the finite

non-empty subset operator.) Synchronization sets are written

2. A synchronization set

.

and all ~ e Z

alJ all
not containing failure events is called compatible if for all w e P W

effect (a 1)(~r) effect (a n)(cD(w)=effect (ail) effect (a&)(w)

for all permutations <i 1 in) of <1 , n). A synchronization set SlWS 2 where s 1 contains no

failure events and s 2 contains only failure events is compatible if s I is compatible and there is no

actor ~ such that u a ~ s 1 and t:fail e s2 for an a.

The set of all (compatible and incompatible) synchronization sets is called SYN and has metavari-

able s. The set oft-synchronization events is SYN ~ = {s e SYN I t:a e s for an a}. 1

349

Definition 4.

I f s e SYN is compatible, then we define effect(s) e (E ----} (PW - -~ Y)(PW))) by

effect (s)((~) = effect (a 1)((y) effect (a n)((y)

w i u s y, where S f contains only elements of the form ufail and none of the ai has this form.

STEP is built from terms of the

form t:~, where ~ is a scheduling step, i.e. a term containing a n y , f a i l , - , +, or ; .

Definition 5.

The set of steps is defined as

STEP = ~+ (~(SYN)).

The function

step: TsTEp(X)k.){uany, t:fail I t e TACTOR} ----> STEP

is defined inductively as follows.

1. For TAcTioN(X)-terms, we define s t e p (a) = { s e S Y N l a e s and s compatible} for

a 6 TACTIoN(X).

2. step (t:faii) = {s e SYN I t:fail c s and s is compatible}.

3. step (t:any) = {s e SYN ~ I s is compatible}. •

A step is !hus a set of the form

{ }.

step (a) is the step consisting of all synchronization sets in which a participates. It is an element of

~'(SgN), so the codomain of step is ~(~(SYN)). Because step never maps a step term to the empty set,

we can eliminate this from the codomain.

The behavioral interpretation of a thus involves nondeterminism of the underspecification variety,

because it is interpreted as " a occurs, together with a finite set of other events, bat I don ' t know

(specify, care) which other events". This interpretation is crucial for the possibility to give a

behavioral interpretation to action negation. We first give a behavioral semantics for step terms only,

and then make a minor modification, which gives us the intended behavioral semantics for all process

terms.

In our step specification, we have

ACTION < STEP,

where ACTION is the sort of terms l:a, for a an elementary event.

350

Definition 6.

We define the free choice model At /as follows. Define

p: TSTEP (X) -----> (Y~ ~ (PW ~ 9~(PW)))

inductively by

1. p(a)(a)(w) = {effect(s)(o)(w) I for all s E step (a)}.

2. p(t:fail)(~)(w) = as in 1, with a replaced by t:fail.

3. p(t:any)(ts)(w) = as in 1, with a replaced by t:any.

4. p(-a)(~)(w) = {effect(s)(Ci)(w) I s ~ SYNkstep(a)}.

5. p(to:(t l :a I +~2:a2))(~)(w)=p(tl:al)(~)(w)up(t2:t~2)(ci)(w), where t 0, t 1, and ~2 are not all

equal.

6. p(t:(t :at + l:a2))(o)(w) = p(t':t~l)(O)(w)np(t:t~2)(O)(w).

7. P(t0:(tl:C q & t2:tX2))(a)iw)=p(tl:al)(G)(w)np(12:tx2)(G)(w). •

Remarks:

1. step (a)(G) is the set of all compatible synchronization sets in which a participates, so the order of

applying the effect function in 1 is immaterial.

2. p(t:fail)(t~)(w) is the set of all compatible synchronization sets containing t:faii. By the definition

of compatibility, it will not contain any l:a.

3. p(t:any)(G)(w) contains all compatible synchronization sets in which t participates, but not with a

l:fail.

4. Actions are negated with respect to all possible steps. Thus, - t : a is the set of all possible syn-

chronization sets in which t does not participate with a: These are the synchronization sets in

which 1. participates with another event, or with fail, or in which l does not participate at all.

5. Choice makes p deliver a function P W ~ ~ (P W) rather than P W ----> PW. In general, each set

• has a set of possible next worlds, one of which will be actually reached when executing the step.

The intuitive notion captured by this semantic definition is that if t o chooses between two steps,

the set of possible next world that may result from his choice is the union of the sets of possible

next worlds reachable by the branches. Note that, if p(tXl)(G)(w) for i = 1, 2 consists of compati-

ble synchronization sets, then so does p(t:(lxl + tt2))(cr)(w).

6. If the three actors involved are the same, then we capture a quite different intuition with the

semantics, viz. what the effect of t ' s choice itself is, rather than what the effect of the chosen

branches is. It says that the effect of the making the choice itself is the intersection of the effects

of the branches. This agrees with our stronger interpretation of P (t:(l:a + t:b)), which says that t

is permitted to do a and b (just as in the multi-actor case), and in addition that t is permitted to

make the choice.

7. There are no special considerations for synchronization that distinguish the single-actor from the

multi-actor case. tz I & ~x 2 is the synchronous execution of two steps, and the effect wilt be brought

about by those functions on P W that bring about the effect of ot 1 and et 2. Hence, we intersect the

steps. Note that the effect of this synchronous execution is the same as the effect of the choice

event in a single-actor choice between t:Ctl and t:o~ 2. This is compatible with the process terms

351

whose effect this is, being unequal. Note that Ix, and a2 may be incompatible, so that there is no

synchronization set in which both participate. For incompatible steps ~t 1 and a 2, we have

p(t:(tx l & Ix2))(t~)(w)= O. This has an important consequence for the logic, which we will see

below.

We call this model a free choice model because it allows us to differentiate a choice imposed on an

actor by another actor from a choice made freely by the actor himself,

Theorem 7.

• / / f is a model of Specoyn.

Sketch of proof.

We simply prove that p applied to both sides of each axiom in StepAxioms yields the same result.

This equality will then be maintained in any equation derivable from the axioms. The proof is simple

and is omitted. •

Theorem 8.

/ / tO, t l and t 2 are not all equal, then the following formulas are true in~tf .

~11 [F2]

[to:(tl:(~ 1 +t2:tx2)ldP e9 [tl:(Xl]47 ^ [t2:~21(I) (to : (t l :~ 1 +t2:(X2))O <--'-> (t l :a l)47 v <t2:(X2)(I)

[F3] [t : (t :a l + ua2)]O ~ [t :a l]47 v [t : a2]~ [F4] (t : (ua l + 1,:0%))0 --, (t : oq)0 ^ (l : ~) 0

[F51 [F61

[1.0;(l 1 '0~ 1 (~ t2:0~2)]0 ¢:"- [t I : a I](I) v [tZ:(X2]q~ (to'(t l :(~1 C~ tz:(X2))¢I) --) (to:~1>47 ^ (t1:0~2)47

Remarks:

2.

IF2] represents our "extensional" reading of a multi-actor choice. ~ may be true after t 0 's choice

iff it may be true as an effect of cq or a2. By the duality [a]47 -=-, (a)-~ O, we have IF1], saying

that • will be true after t0 ' s choice iff it will be true after ~1 and o;2.

In a single-actor choice, [F4] reflects our " intensional" reading that if O may be the effect of t ' s

choice, then it may be the effect of each of the branches. The arrow goes only one way, because

there may not be any joint effect of a I and ct 2 at all, viz. when they are incompatible. However, if

there is an effect, i.e. if there is a • with (t:(t:ct 1 +t : tx2))~ , then we can conclude that

(t : a l) ~ ^ (t:tx2)q~. To understand the dual formula in [F3], we must realize that choice is an event

that occurs before the branches are executed. Choice does not bring us to a next possible world,

but it does occur at a point in time preceding the execution of a 1 and tx 2. The left-hand side of
IF4] then says

"af ter l ' s choice, the system is in a state where 47 can be brought about" ,

which implies the right-hand side, both branches can bring about 47. Applying the duality, the

left-hand side becomes

" i t is not the case that after t ' s choice, the system is in a state where --, 47 can be brought
about" ,

352

which is equivalent to

"after t ' s choice, tile system can be in a state where dp will be brought about".

This is the correct reading of the left-hand side of [F3], and it is implied by the right-hand side,

which says that one of the branches will bring about cI,.

3. Synchronous execution is impossible if the synchronized steps are incompatible, so there is a one-

way arrow here as well. The logic is not able to express necessary conditions for two steps to be

compatible. This is a general problem with the intersection of accessibility relations in a Kripke

model with multiple accessibility relations, that can only be solved by strengthening the language.

Meyer [25] did this by adding DONE :¢x predicates to the language, but Van der Hoek and Meyer

[16] show how to do this in general.

To give a behavioral semantics of process terms, we must extend the definition of p to T~Roczss(X).

The basic idea is simply that the effect of the sequence operator ; on the world is simply a composi-

tion of the effect functions of its arguments. The only complication is that deadlock should remain

local, so that, for example (see [P 4 - 5] in P r o c e s s A x i o m s)

p(ufail ; 131 ; t:(x ; 132) = p(ufail ; 131 ; 132).

Other actors can continue even when t gets stuck. The easiest way is to define p for terms in which all

occurrences of t after it has failed are removed, and then extend the definition to other process terms

that are in its congruence class.

Definition 10.

Let ~ e TpRoc~ss(X).

1. Every nested application of the ; operator in ~ is called a sequence.

2. A sequence is called redundant if it contains a pattern ufail ; [] ; t:0 ; [], where 0 is either cx or fail,

and I:1 is a (possibly empty) context.

3. A sequence is called non-redundant if it is not redundant.

4. 13 is called non-redundant if it does not contain redundant sequences. •

The following is easy to prove.

Lemma 11.

In the specification ProcessAxioms, For any [~ e TvRocEss(X) there is a unique non-redundant

PROCESS-term equal to it. •

Definition 12.

Extend the definition of p as follows.

P: TpRocEss(X) ---> (Z - -~ (PW --~ ~(PW)))

is defined inductively by

1. If ~ e TSTEp(X), then use the definition for STEP-terms.

2. If [3 is of the form u(131 + 132) or t:(131 & [~2), then use the corresponding definition for STEP-

terms.

353

3. Otherwise, let ~ be the unique non-redundant process term equal to 13, and let ~ = 131 ; l~ (anY

arbitrary decomposition will do). Then by the inductive build-up, p([3i)(t~) is a function

PW ~ 5D(PW), for i = 1, 2. Then define p(13)(o)(w) = {f2ofl I J~ e p(~i)(t~), i = 1, 2}, where o

is the usual function composition lifted to sets. •

Theorem 13.

d~f is a model of SpecDyn. •

Theorem 14.

The following two process logic axioms are true in d~f.

IF7] [[~1 ;~2] qb ¢:'-) [~1]([[~2] O)

IF8] ([31 ;~2~) <'-> (131)((132)O) m

3. Deontic logic

L(Sigoyn) can be used as a language for deonfic constraints by introducing violation states Vi: u a , one

for each of the reasons why t would be forbidden to perform a . Then deontic modalities are introduced

as follows.

Definition 15.

The following abbreviations are used for deontic modalities:
A

P (a) ¢:~ ~[a]Vi:a for an i, C a is permitted"),
A

O(a) ¢~ [-a]Vi:a for an i (" a is obligatory"),
A

F (a) ¢~ -~ P (a) (" a is forbidden"). •

This formalization of deontic logic has been studied in dynamic logic without actors in [24, 25] and has

been applied to system specification in [31,30]. With actors, the modatities express more. For exam-

ple, P(t :a) says that t is permitted do to a, and P(u(t :a + t:b)) says that t is permitted to choose between

doing a or b (i.e. choosing brings him into a state where he can do a permitted action).

Theorem 16.

If t0, t l and t2 are not all equal, then the following formulas are true in JAr.

[Pl]
F(to:(t l : a l + t2:~2)) ¢-¢ F(t l :txl) ^ F(t2:lx2

[1)3] F(t:(t:Oq + t:Cz2)) <-- F(t:tXl) v F(t:ct2)

[PS]

F(IO:(tl:0~I ~ t2:(X2)) (-- F (t t : a l) v F(t2:(x2)

[P2]
P(to:(tl :cq + t2 :a2)) 60 P(t l :oq) v P(t2:a2)

[P4] P (u (t : a l + t :a2)) --> P (l : a l) ^ P(t :a2)

[P6t
P(t,O:(tl:ff~l & t2:Ct2)) --> P(IO:CX|) ^'P(tl:ff, 2)

354

Remarks:

1. [P2] says that t0 is permitted to give two actors a choice iff at least one of the actors can do some-

thing permitted, to is permitted to choose, because his choice may lead to a permitted state of the

world. By duality, he is forbidden to do so iff both actors are given forbidden things to do ([P1]).

2. [P4] says that if t is permitted to make a choice between cq and aZ, then he is permitted to per-

form either branch. By duality, if he is forbidden to do either branch, then he is forbidden to make

the choice ([P3]). This resolves the paradox if free choice permission.

If any actor is permitted to synchronize two steps, then both steps are permitted([P6]). If at least

one step is forbidden, then any actor is forbidden to synchronize them ([P5]).

3.

4. Discussion

De Nicola and Hennessy [27] give a translation function tr from CCS to TCCS which deletes all

occurrences of ~ and replaces choice by internal or external choice, depending upon the first event of

the chosen branches. This translation makes sense if we restrict ourselves to a two-actor system, where

one actor (the observer o) initiates all atomic events and either actor (o or the machine m) can initiate a

choice. Example translations (in our actor formalism) are

1. tr(a + b) = o :(o :a + o :b)

2. tr(xa + b) = m :(o :(o :a + o :b) + o :a)

3. t r (x a + ~ b) = m : (o : (o : a + o : b) + o : a + o : b) .

The last translation assumes choice is associative, which is not obvious in an actor-oriented specifica-

tion. Making actors explicit shows that there are more ways to interpret '~. For example, the translation

in 2 says that m chooses between letting o do a or giving o the choice to do a or b. A translation that

stays closer to the original would be

2'. t r ('ca+b)=o:((m:c ;o :a)+o:b)

for an event c, and assuming CCS choice is external. One can argue that o is not able to make the

choice in the right-hand side of 2' because o doesn't know what m will do, but then neither is m in the

fight-hand side of 2 able to make a choice. Perhaps the problem in 2 is that the initiative of the choice

lies partly with m and partly with o (if o is fast enough, he can press the button before m does x).

This problem is also present in 3, where the intention is that the choice is made by m. A simpler

translation would therefore be

3'. tr(za + "¢b) = m :(o :a + o :b).

This is certainly not the same thing as

3". tr(xa +'~b) =o:(m:c 1 ; o:a +m:c2 ; o:b),

which is another reading of xa + ~b. We do not argue for either of these translations in favor of the

other, but want to point out that using actors, one is forced to make explicit which choice one makes.

The problem that an actor cannot choose if he has not enough information is illustrated neatly by a

number of CSP laws [15, pages 103-107]. Translated into process terms with actors, these are:

1. r a : (o : a ; x + o : a ; y) = o : a ; m : (x + y)

2. o : (o : a ; x + o : a ; y) = o : a ; m : (x + y)

355

3. m:(x+o:(y+z))=o:(m:(x+y)+m:(x+z)) ,

and another one like 3, with the roles of o and m reversed. In 1, m cannot make the choice on the left-

hand side and the initiative to do something lies with o. However, m retains initiative as far as the

choice is concerned. In 2, o does not choose at all, but simply does a and passes control over the choice

to m. It is not obvious why control should be passed to m in 2. Together, 1 and 2 imply that the initia-

tive for a "truly" nondeterministic choice always lies with m. Thus, two forms of nondeterminism are

identified: "true" nondeterminism of the ax + ay kind, in which an event leads to an element of a set of

possible next states, and lack of control over a choice, as in t0:(t:~ 1 + l:~2), where t has no control over

the choice. We see nothing wrong in identifying these two forms of nondeterminism, but see no partiC-

ular reason for making this identification either.

3 says that

Mary chooses between x and giving Otto the choice between y and z

iff

Otto offers Mary the choice between choosing x or y or choosing x or z.

The problem with this is that the order of choices as well as what the actors choose from is different.

Hoare [15, pages 107-108] argues for this equation on the grounds that the effect of both sides is the

same. We think these conflicting intuitions can be harmonized by simply dropping axiom 3 from the

process theory. In our system, we could add

3' [m:(x +o:(y +z))]d~--~ [o:(m:(x + y)+m:(x +z))]d~,

as an axiom, expressing Hoare's intuition that the two processes have the same effect, while allowing at

the same time for the intuition that the processes themselves are not equal.

5. Conclusion

We gave a semantics and a sound and complete inference system for dynamic logic with equality. To

this we added the concept of an actor, which allowed us to express accurately different kinds of non-

determinism, and to distinguish control over and action (including choice) from the visibility of an

action. This was compared with several treatments of these concepts in CCS and CSP.

In addition, we included the concept of negated action in dynamic logic, which allowed us to

introduce deontic operators in the language. Together with the actor concept, this allows a solution of

the long-standing paradox of free choice permission.

The process theory used in this paper is rudimentary and contains no recursive processes or com-

munication. In the futm'e, we wil extend the theory to these processes, and also start work on an opera-

tional aspects of the specification language.

6. References

1. al-Hibri, A., Deontic Logic, University Press of America (1978).

2. Bergstra, J.A. and Klop, J.W., "Process Algebra for Synchronous Communication," Information
and Control 60, pp. 109-137 (1984).

3. Bergstra, J.A. and Klop, J.W., "Algebra of Communicating Processes with Abstraction,"

356

Theoretical Computer Science 37, pp. 77-121 (1985).

4. Bergstra, J.A. and Klop, J.W., "Algebra of Communicating Processes," pp. 89-138 in Mathemat-
ics and Computer Science (CWI Monographs 1), ed. J.W. de Bakker, M. Hazewinkel & J.K.
Lenslxa, North-Holland (1986).

5. Castafieda, H.-N., "The Paradoxes of Deontic Logic," in New Studies in Deontic Logic, ed. R.
Hilpinen, Reidel (1981).

6. Dignum, F.P.M. and Meyer, J.-J.Ch., "Negations of Transactions and Their Use in the Specifica-

tion of Dynamic and Deontic Integrity Constraints," pp. 61-80 in Semantics for Concurrency, ed.

M,Z. Kwiatkowska, M,W. Shields, and R.M. Thomas, Springer (1990).

7. Ehrig, H. and Mahr, B., Fundamentals of Algebraic Specification 1. Equations and Initial Seman-
tics, Springer (1985). EATCS Monographs on Theoretical Computer Science, Vol. 6.

8. Fiadeiro, J. and Maibaum, T., "Temporal Reasoning over Deontic Specifications," Technical
Report, Department of Computing, Imperial College (1989).

9. F~llesdal, D. and Hilpinen, R., "Deontic Logic: An Introduction," pp. 1-35 in Deontic Logic:
Introductory and Systematic Readings, ed. R. Hilpinen, Reidel (1981).

10. Goguen, J.A., Jouannaud, J.-P., and Meseguer, J., "Operational Semantics for Order-Sorted Alge-

bra," pp. 221-231 in 12th International Coloquium on Automata, Languages and Programming,
ed. W. Brauer, Springer Lecture Notes in Computer Science 194 (1985).

11. Goguen, J.A. and Meseguer, J., "An Order-Sorted Algebra Approach to the Constructors and
Selectors Problem," in Logic in Computer Science (1987).

12. Goguen, J.A. and Meseguer, L, Order-Sorted Algebra I: Equational Deduction for Multiple Inher-
itance, Overloading, Exceptions and Partial Operations, Programming Research Group, Oxford,
and SRI International, Menlo Park (June 19, 1989).

13. Harel, D., "Dynamic Logic," pp. 497-604 in Handbook of Philosophical Logic H, ed. D.M. Gab-
bay and F. Guenthner, Reidel (1984).

14. Hilpinen, R., "Conditionals in Possible Worlds," pp. 299-335 in Contemporary Philosophy, a
New Survey, ed. G. FlCstad, Reidel.

15. Hoare, C.A.R., Communicating Sequential Processes, Prentice-Hall (1985).

16. Hoek, W. van der and Meyer, J.J.Ch., "Explicating Some Issues in Implicit Knowledge," Techni-
cal Report IR-222, Department of Mathematics and Computer science, Vrije Universiteit,
Amsterdam (September 1990).

17. Hughes, G.E. and Cresswell, M.J., A Companion to Modal Logic, Methuen (1984).

18. Kalinowski, G., Einfiihrung in die Normenlogik, Athenaum Press (1972).

19. Kamp, H., "Free Choice Permission," Aristotelian Society Proceedings N.S. 74, pp. 57-74
(1973-1974).

20. Khosla, S. and Maibaum, T.S.E., "The Prescription and Description of State Based Systems,"

pp. 243-294 in Temporal Logic in Specification, ed. B. Banieqbal, H. Barringer, A. Pnueli,

Springer (1987). Lecture Notes in Computer Science 398.

21. Khosla, S., "System Specification: A Deontic Approach," PhD Thesis, Department of

357

Computing, Imperial College, London (1988).

22. Meyden, R. van der, "The Dynamic Logic of Permission," pp. 72-78 in Proceedings, 5th IEEE

Conference on Logic in Computer Science, Philadelphia (1990).

23. Meyer, J.-J.Ch,, "Free Choice Permissions and Ross's Paradox: Internal vs External Nondeter-

minism," Report IR-130, Department of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam (august 1987).

24. Meyer, J.-J.Ch., "A Different Approach to Deontic Logic: Deontic Logic Viewed as a Variant of
Dynamic Logic," Notre Dame Journal of Formal Logic 29, pp. 109-136 (winter 1988).

25. Meyer, J.-J.Ch., "Using Programming Concepts in Deontic Reasoning," pp. 117-145 in Seman-
tics and Contextual Expression, ed. R. Bartsch, J.F.A.K. van Benthem, and P. van Emde Boas,
FORIS publications, Dordrecht~iverton (1989).

26° Milner, R., A Calculus of Communicating Systems, Springer (1980). Lecture Notes in Computer
Science 92.

27. Nicola, R. de and Hennessy, M., "CCS without "~'s," pp. 138-152 in Proceedings of the Interna-
tional Joint Conference on Theory and Pract&e of Software Development (TAPSOFT), ed. H.
Ehrig, R. Kowalski, G. Levi and U. Montanari, Springer Lecture Notes in Computer Science 249
(march 1987).

28. /~qvist, L., "Deontic Logic," pp. 605-714 in Handbook of Philosophical Logic H, ed. D.M. Gab-
bay and F. Guenthner, Reidel (1984).

29. Smolka, G., Nutt, W., Goguen, J.A., and Meseguer, J., "Order-Sorted Equational Computation,"
SEKI Report SR-87-14, Universit~it Kaiserslautern (December 1987).

30. Wieringa, R.J., Weigand, H., Meyer, J.-J. Ch., and Dignum, F., "The Inheritance of Dynamic and
Deontic Integrity Constraints," Annals of Mathematics and Artificial Intelligence, To be pub-
lished.

31. Wieringa, R.J., Meyer, J.-J. Ch., and Weigand, H., "Specifying Dynamic and Deontic Integrity
Constraints," Data and Knowledge Engineering 4, pp. 157-189 (1989).

32. Wright, G.H. yon, An Essay in Deontic Logic and the General Theory of Action, North-Holland
(1968).

