
On Narrowing Strategies
for Partial Non-Strict Functions*

David de Frutos-Escrig
Marla-Infis FernAndez-Camacho

Departamento de Inform£tica y Autom£tica
Facultad de Ciencias Matem£ticas

Universidad Complutense
28040 Madrid, Spain

Abst rac t

We study completeness of narrowing strategies for a class of programs defining
(possibly partial and non-strict) functions by means of equations, with a lazy seman-
tics, so that infinite values are also admissible. We consider a syntactical restriction
introduced by Echashed, under which he proved that any narrowing strategy is com-
plete for specifications defining total functions with finite values. Unfortunately
things are not so pretty for the larger class of programs that we consider. So we
see that laziness of strategies is necessary in order to cope with non-strictness, fair-
ness if we want to compute infinite values, and syntactically complete specifications
(those including rules covering all possible patterns for each function) if we are also
interested in the computation of partial values.

1 I n t r o d u c t i o n

Equational Unification [2,5] has been the base to unify relational and functional paradigms
in programing. Narrowing [16,7,11] is probably the most natural extension of both rewrit-
ing and SLD-resolution in order to obtain an operational view of E-unification. In order
to have completeness of narrowing without syntactical restrictions we need very strong
semantical restrictions like canonicity [2]; but if we adopt the so called constructor disci-
pline we can relax in several ways the restrictions of confluence and termination. BABEL
[8,9,10] is a new language following these ideas, in which two apparently opposed proper-
ties like the existence of a clear mathematical semantics and an efficient implementation,

*This work has been partially supported by Aeei6n Integrada Hispano-Alemana 35B, granted by
Direeei6n General de Investigaei6n Cientffiea y T~eniea (Spain) and Deutseher Akademiseher Austauseh-
dienst (F.R.G.)

417

have been carefully taken into account along its development in order to obtain a "prac-
tical" language in the sense suggested by modern programming metodologies. It has an
strong similarity with the language K-LEAF developed by Levy et al. [6].

Unfortunately general narrowing is rather inefficient due to the necessity of doing
backtracking along a computation not only on the rule applied, but also on the reduced
redex. This problem is well known just for functional programming where it has been
proved that some fixed strategies on the selection of the redex to reduce, like innermost,
outermost, or some others, are complete under some adequate technical restrictions. In
fact, in PROLOG it is exploited the fact that any (particularly fifo) strategy on the
selection of the next goal to reduce is complete. So Fribourg has proved in [3] that
innermost narrowing is complete under some syntactical conditions. On the other hand
in [10] it is proved that lazy narrowing, that was introduced in [14], is complete for
BABEL, but this lazy narrowing is not a strategy in the sense considered here, but just
a relatively small restriction on the set of redices that should be considered at each step
of the computation in order to guarantee completeness.

We are interested in a more strong result, concerning any strategy, or if this is not
possible a class of strategies as broad az possible. Padawitz in [12] gave the first step
in this direction, obtaining a positive result, under some "uniformity" conditions on the
considered programs, that we could classify as semantical, and then difficult to decide.
Echahed in [1] has presented a general result valid for any strategy, with just a simple
syntactical restriction, the so called principle of free narrowing strategies, on the pro-
grams that can be considered. But he also gives a transformer by means of which any
program can be set, preserving its semaatics, in the adequate form in order to apply the
completeness result. The real limitation of this result is that it can only be applied to
canonical programs, what in fact is a semantical restriction in the general case. In [13]
you can find some other properties of the class of programs fulfilling the principle of free
narrowing strategies.

We have generalized Echahed's result to non-canonical programs, covering in fact
partial functions, partial values, non-strict functions and infinite objects like in MIRANDA
[17], what is done in a functional-logic environment, in BABEL. It is very important to
note that narrowing is used in this language in a way that we could say to be "much more
functional than logic". In general we will consider the evaluation of arbitrary terms, and
not just the solution of equations. In that last case it is well known that the consideration
of partial functions, infinite structures and terms with partial values is not justified, as E-
unification is non-computable under non-termination. But in a more functional framework
like ours, it has perfect sense to consider all these generalizations. Of course this must
be done in a non-naive way; for instance, we cannot compute an infinite value, but we
can compute all (this means as many as we want) its finite approximations. The same
is true for partial values: in general we cannot say "this (partial) value is the value of
something", as non-termination makes this undecidable, but we can compute all their
finite approximations, including, of course, the value itself if it is finite, of such a partial
value.

We have seen that in fact we do not need the large and complex syntax of BABEL,
including predicates and functions, conditional equations, the use of new variables in
conditions, an equality test, and some other facilities, in order to show the difficulties
induced by the semantical generalizations listed above. So we have introduced simple-

418

BABEL programs that are in fact the same specifications considered by Echahed, but
eliminating the canonicity restriction and giving a semantics that covers all those new
interesting semantical characteristics. On the other hand, although we have extended
Echahed's results, this has not been at all by means of a generalization of his proofs,
because they are strongly based on the canonicity of the rewriting system associated to
the considered program, property that has been avoided in our work (mainly in that
concerning termination.)

We assert, without proof, that all the results in the paper could be extended without
any added technical difficulty to whole BABEL, but with awfully long proofs due to the
necessity of considering all the syntactical facilities in the language.

The paper is structured as follows : in the next section we give a series of technical
definitions, and present the language simple-BABEL including formal definitions of its
semantics, both operational and denotational. The third section is the main of the paper,
and presents narrowing strategies discussing their completeness. So, we see that we have
to impose laziness to cope with non-strictness, fairness if we want to compute (arbitrarily
accurate approximations of) infinite values, and the restriction either to syntactically total
programs or to the so called goal oriented strategies, if we want to compute (improve)
partial values. Finally, in the fourth section, we study a couple of transformers by means
of which, from an arbitray program we can obtain another more or less equivalent in the
syntactical class of programs for which we have our completeness results of narrowing
strategies.

2 D e f i n i t i o n s a n d b a s i c r e s u l t s

We suppose that the reader is familiar with the usual terminology and notation in the
logic and functional programming environment. In any case, one can use [4,1,11,9] in
order to remind them. We have prefered to omit the basic definitions included there, in
order to fix the reader's attention in the less standard ones that we present below.

We will consider along this paper s imple-BABEL programs or "general specifica-
tions" that are defined as follows:

Defini t ion 1 Let C and F be a pair of sets of operation symbols, over which an arity
a : C U F --* ~q is defined. Let X be a set of variable symbols.

We define:
Data terms t E D T

t := X % variables
c % = 0
c (t , , . . . , t ,) % = > 0

Expressions E E E X P

E := t % data terms
c(E1, . . . , / in) % a(c) = n > 0
f (E ~ , . . . , E ,) % a (f) = n > O
f % defined constants

El

419

Def in i t i on 2

t. Simple-BABEL rules are pairs f (t t , . . . , to) := E verifying the following restrictions

(a) Left linearitT, no variable has multiple occurrences along the left hand side.

(b) Local determinism: vars(lhs) vats(E).

2. Simple-BABEL programs are (recursively enumerable) sets of simple-BABEL rules
verifying the weak nonambiguity restriction: If L1 := El, L2 := E2 are in a simple-
BABEL program II and L1 and L2 are unifiable via m.g.u, a, then E~(a) = E2(a).
(Here = means semantic equality.)

[]

Remarks:
1. We say that the rules are fiat, as the arguments in lhs's must be data terms, that

can not contain defined functions in F.

2. We have imposed just this weak nonambiguity restriction based on semantical in-
stead of syntactical equality, because only the first is necessary in order to have de-
terministic definitions. Obviously, this semantical equality is undecidable in generM,
and this is why the syntactical, stronger but trivially checkable is usually imposed;
but at the theoretical level it does not matter how the necessary semantical equality
is guaranteed.

Declarative or denotational semantics is based on the Herbrand domain for C, Ha,
that is obtained adding .L, whose arity is 0, to this set, and considering the set of finite
and infinite terms over such extended domain. An ordering based on refining is introduced
in Ha reflecting the interpretation of .L as "undefined": so t E_ t ~ iff t ~ can be obtained
from t substituting some expressions for occurrences of .1_. So we obtain a domain in the
s e n s e of Scott [15], whose finite elements are just the finite terms.

Def in i t i on 3 A Herbrand interpretation for ~ = (C, F) is any algebra I = (He, (fI) lef)
where fx is a continuous function f t : H~ ; He, with n = a(f) . []

R e m a r k : We do not impose strictness to the interpretations of defined functions.

Any expression can be evaluated under an interpretation, given an environment p defin-
ing the value of its (free) variables. So we obtain the evaluation function
[.]i : EXP ~ He, whose rather straightforward definition can be found for instance
(for the full BABEL language) in [8,9].

De f in i t i on 4

1. We say that I is a model of H (I ~ H) iff it is a model of any rule in II.

2. We say that I is a model of L := E (I ~ L := E) iff [L]I(p) = JEll(p) for any
environment p over I.

[]

420

Herbrand interpretations can be ordered by means of the usual ordering between
products of function spaces: I = (He, (f z)) E_ I' = (He, (f'l)) iff

V f E F Vh, , . . . ,h , , E He f (h , , . . . , h ,) E_ f ' (h , , . . . ,h , ,) .

This leads us to a domain of Herbrand interpretations, HINT, which allows us to prove
the existence of minimal models for simple-BABEL programs.

Definit ion 5 The interpretation transformer associated to II is the mapping
rn: HINT ~ HINT defined as follows (Tn(I) = J)

fj(t,,... ,to)= {
[E]t i f f f (t l , . . . , t ,) := E is a ground instance

of some rule in H
_L otherwise.

[]

T h e o r e m 1 rn is a continuous function. []

Corol la ry 1 II has a minimal model (the minimal fixed point of rn.) []

Defini t ion 6 Declarative semantics of simple-BABEL programs is given by the valuation
of ground expressions under any model, and sp.ecially by their valuation under its minimal
model. D

Due to the existence of infinite objects in the semantic domain, and to the fact that
there are expressions with such a value, it is obvious that we can not expect that a
(finite) operational semantics will compute those values. Nevertheless we should be able
to compute any finite approximation to them. This kind of facts leads us to the definition
of a function extracting all definitive information in an expression.

Defini t ion 7 The shell [M [of any expression is defined, by structural induction, as
follows:

lel=c v c e c ~(c)=0

I c (M, , . . . , M,,) I = c(I M, I,---, I M , I) Vc e C ,:,(~) > 0

] N [= _1_ for any other expression.

[]

Operational semantics of simple-BABEL is based on lazy narrowing. This is defined
by restricting the narrowing steps to those corresponding to lazy redices.

First we have to introduce an extended unification algorithm that includes the defini-
tion of pending argument, in which lazy narrowing is based.

421

Defini t ion 8 (Extended Linear Unif icat ion Algor i thm)

INPUT : c (M1, . . . , M,~), c (t l , . . . , tn)
(This is the only case in which we are interested due to flatness and left linearity of
rules.)

STEP 1 (INITIALIZATION): Set U0 = {M1 J,1 t l , . . . , M~ ~ t~}, a0 = e

($~'s are just syntactical marks in order to note that the corresponding unification
problem corresponds to the i-th argument of the input.)

STEP 2 (REDUCTION): Don't care nondetcrministically rewrite the configuration (Ui, a~)
using the rules that follow until a nonreducible configuration (U~, an) is reached.

U R 1 : ({c(N1,... ,N~)J, ic(N~, . . . ,N~)}UU, a) ,
({N1 ~i N i , - . - , Nm ,[, N~} U U, a) a(c) _> 0

U R 2 : ({ X $, t} u U, ~) , (U[t/X], ~,[tlX])
U R 3 : ({M ~i X} U U, ~) , (U[M/X], a[M/X])

U R 4 : ({c(N1,.. . ,Nm) ~ d(Ni,... ,N/,)} u U,a) - - . ({FAILURE},a)
c # c' (In fact, left linearity and the fact that c(M~,..., i ~) and c(t~,..., t,) do
not share variables will lead us when we apply this algorithm to U[M/X] = U
in case 3.)

STEP 3 (OUTPUT): If U,~ = 0 report SUCCESS and output a,~ as m.g.u.

If U,, = {FAILURE} report FAILURE.

Otherwise let I = {i I 3f(N1, . . . , Nk) ~ c(N~,..., N[) E U~} and report PENDING
with such a set as set of pending arguments.

[]

Def in i t ion 9 A rule L := R standing apart from N applies to, fails for or is pending
for N iff the unification of N, L yields a SUCCESS, FAILURE or PENDING outcome,
respectively. If the unification succeeds with m.g.u, a, we say that L := R is applicable
to N via or. If it yields a pending outcome with I as set of demanding arguments indices,
we say that L := R is pending at i for any i in I . []

Redex occurrences are the occurrences of an expression where some rule is applicable.
But in order to bind the set of possible computations, and also to avoid incomplete
strategies that would be obtained, as we will show below, if too inner redices would be
selected, we introduce lazy redices that are defined as follows:

Defini t ion 10 For any expression M the set LR(M) of lazy rcdices for M is defined, by
structural induction, by the following clauses

• LR(f(M1,..., Mo)) = {e I some rule in II applies to f(M1,..., ME)} U Uiex i. LR(Mi) where I
is the set of argument indexes at which some rule in II is pending for f (M1, . . . , M~)

• LR(c(M1,.. . , M~)) = Ui~=~ i. LR(Mi).

422

[]

De f in i t i on 11

1. If u E L R (M) and L := R is a rule that applies to M / u via a we say that M narrows
in one step to M[ue--R]a, and write MN ~M M[u*-R]a, where a M ----- a I ~ a r s (M) •

2. We say that M reduces to N via lazy narrowing and O'M, iff there is some narrowing
sequence M = Mo N-'-~ a~ M M1 r; " " Mi N 'a~l Mi+x ~'. :; "" M,, = N with a M =

o . . . o

This fact will be indicated by the notation M r: * ;aM N.

[]

Operational and denotational semantics of simple-BABEL are related by means of the
following soundness and completeness theorems.

T h e o r e m 2 Any reduction MN * '~M N is sound in the sense that [MaM]Z(p) = [NaM]I(p)
for any model I of II, and any environment p over I.

P r o o f : See [9] . 13

C o r o l l a r y 2 Any reduction M N * ~,MN is sound in the sense that [MaM]z(p) ~_
I Np I for any model I of II, and any environment p over I . []

T h e o r e m 3 Let M be any expression, ~ a partial term, and 0 a data-substitution with
dom(0) C vat(M) such that [MO]1(p) ~ 8 holds for any I model of II and any environment
over I; then, there exists a (lazy) narrowing sequence M N * ~aM N and a substitution A
such that 0 = aM o A and [NA t--1 s.

P r o o f : See [lS] or [10]. []

De f in i t i on 12 Two terms t and t ~ are said to be sub-unifiable iff there exists an occurrence
u in O(t) N O(t') such that

1. t /u and t ' /u are unifiable (via cry),

2. for all occurrences w with w < u, t /w and t~/w have the same root symbol.

[]

D e f i n i t i o n 13 Two terms t and t ' are said to be strictly sub-unifiable iff there exists an
occurrence u where they are sub-unifiable, and the corresponding m.g.u, a= is neither a
variable renaming nor the empty substitution. []

Finally we introduce the elements to define the syntactical restriction under which
Echahed has proved in [1] that any narrowing strategy is complete, for the restricted class
of programs that he considered.

D e f i n i t i o n 14 We say that II verifies the principle of free narrowing strategies (pfns) iff
for any pair of rules in II their lhs's are not strictly subunifiable. []

423

Remark : H we forbid the appearance in a program of two rules having the same or
equivalent (the names of the variables does not matter) lhs, this condition is stronger
than our weak nonambiguity restriction. But we have included this one and not the
former in the definition of simple-BABEL programs, because we obtain in this way a
broader class of programs, and although we will need the stronger restriction in order to
obtain the results about completeness of narrowing strategies, in Section 4 we will prove
that this results can be extended in some way to our broader class of programs, in the
sense that any of these can be transformed into another equivalent, fulfilling the pfns.

3 C o m p l e t e n e s s o f n a r r o w i n g s t r a t e g i e s

As we said in the introduction, R. Echahed [1] has proved that, under the hypothesis of free
narrowing strategies, any narrowing strategy is complete for a kind of specifications rather
simpler than ours. One can also find there some simple counterexamples showing that
the restriction to this class of programs is necessary in order to guarantee completeness of
arbitrary narrowing strategies. The main differences between both classes of specifications
are termination, that we do not impose at all, and the use of just totally defined functions:
we allow partial defined functions and we admit also infinite values; in addition, strictness
is not imposed. Let us first refresh the notion of narrowing strategy.

Defini t ion 15 A narrowing strategy is a partial function from expressions to their occur-
rences NST : EXP ~ IN* such that it is defined iff the argument is narrowable, choosing
a narrowing point in it. []

Defini t ion 16 A narrowing sequence is admissible under a narrowing strategy NST iff
any of its narrowing steps Mi N ~ 1 M i + l is made on the redex NST~MI). []

For the class of specifications considered by Echahed any strategy is complete. This is
no more true for simple-BABEL programs verifying pfns. It is due to non-strictness and
partial defined functions in one hand, and to the admission of infinite and partial defined
functions on the other hand. Let us see three different examples illustrating the different
kinds of patological situations that can be presented.

The first example shows the kind of problems that we can find, even if we are only
interested on the computation of finite and total values of expressions.

Example 1 Let 111 be the program defined in Table 1, and take as E1 the expression
f(g(y)). We have two possible narrowing points ¢ and 1. If our strategy chooses the

c = {0, s}
F = { f , g }
/(x) := 0
g(0) := ,(0)

% Natural numbers
a(f) = 1 a (g) = 1
% Non-strict
% Partially defined

Table h Definition of II1

424

second, then we should unify y and 0 : we would get the value 0 for the evaluated expres-
sion, corresponding to the case y = 0, but all the remaining zero values corresponding to
any y > 0 would be lost. As we said, non-strictness of f in association with a partially
(syntactically) defined function g has caused the problem. The solution in this case will
be to allow just strategies choosing lazy redices. Check that we have LR(E1) = c. rn

The second example presents the new difficulties that we find, if we also want to
compute (arbitrary accurate approximations of) infinite but total values.

E x a m p l e 2 Let 1-[2 be the program defined in Table 2, and take as E2 the expression
p(i, i). We have [E2]I = p(oo, oo) under any Herbrand interpretation that was a model

c = {0, u {p}
F = { q

% Natural numbers and the pairing constructor
a(i) = 0 % "Infinite" defined constant
% Infinite value

Table 2: Definition of H2

of II2. Finite approximations of this value are the pseudo-expressions p(~ , ~) where m
and n are natural numbers and ~ denotes the m-th successor of I formally defined by

= 2., s(rn) = s (~) . Then if we want completeness in the sense of Theorem 3, we would
need narrowing sequences E2N * *E L with] EL 1--- P(m,~), for any m ,n C IN. But, if we
work under a strategy NST such that NST(p(s,(i) , i)) = 1. ln, where s,~(i) is defined
by so(i) = i, s,(~)(i) = s(s~(i)), and 1~ by 10 = E, 1~(~) = 1 . 1 , , then any narrowing
sequence under such a strategy would lead us to some E~ = p(s,~(i),i), with n E lN and
obviously for none of them we have, for instance, [E L I~ p(_L, s(_L)). Now the problem
has been caused by infinite values, and the solution will be to impose in some way that
the strategy only will lead us to fair narrowing sequences. []

Finally the third example shows a new kind of problem, that could appear if we desired
to compute approximations of any kind, including partial ones, of values, covering so the
full completeness result presented in our Theorem 2.

E x a m p l e 3 Let II3 be the program defined in Table 3, and take as E3 the expression
p(f(x) ,g(x)); for x = 1 its value is p(±, 1), but it could not be computed by narrowing

c = {0,1} u {p}
F = {f, g)
f(0) := 0
g (=) = 1

% Two constants and the pairing constructor

a (f) = l a (g) = l
% Partially defined

Table 3: Definition of Ha

under a strategy NST such that NST(Ea) = 1, because this would lead us to the substi-
tution x = 0. In this case the problem comes from the partial definedness of f ; but as p

425

is a constructor we can not solve it just by restricting narrowing to lazy redices: in fact
1 is such a redex.

Two solutions are possible: the first consists on a syntactical completion of syntacti-
cally partially defined functions, f , by means of the rule f (x) := f (x) , or more exactly
of a development of it in order to maintain pfns. In our example we would add rules
f (1) := f (1) , f (p(x,y)) := f(p(z,y)). The second possibility is more pragmatic but less
elegant; it consists in a generalization of the strategy notion, under which a strategy could
select a set of redices (in practice we would take sets as small as possible) that should
be complete what roughly means that the set of substitutions covered by m.g.u.'s corre-
sponding to the application of applicable rules under those redices should be maximal.
[]

Next we will formally present the three completeness theorems covering the three cases
presented above, and illustrated by our examples.

We begin with the case in which we only are interested in the computation of finite
and total values.

D e f i n i t i o n 17 We say that a strategy is lazy if it always selects lazy redices. []

T h e o r e m 4 Let II be a simple-BABEL program verifying pfns, E an expression and O
a data-substitution with dora(O) = vat(E) such that [EO]I = t with t a (total, finite
and ground) term, under any Herbrand interpretation (specially under the minimal one);

* !
then, for any lazy strategy LNST there exists a narrowing sequence under it EN------~Mt,
and a substitution $ such that 0 = o" M o .~ and tt~ = t.

The proof is based on the following lemma that states the main property of lazy
redices, and more generally of applicable and pending rules, for programs verifying pfns.

L e m m a 1 Let II be a simple-BABEL program verifying pfns and E = f (E 1 , . . . , En) an
expression. Then if r = L := R is pending for E on I for some r E I I , any other r ' E 1I is
either pending for E on I , or fails for it.

P r o o f : If r ' = L' := R' is applicable to E , or is pending for I ' with I ~ I ' then for
i E I , in the first case, and i E I - I ' in the second, we will have, as r is pending on
i, some occurrence u such that root(E/iu) E F and Vv < u root(E/iv) E C. But as r '
is applicable or not pending for E on i, we must have some v < u such that L~/iv is a
variable, and then L and L' would be strictly subunifiable, against the fact that II verifies
pfns. D

C o r o l l a r y 3 Let H be a simple-BABEL program verifying pfns and u E LR(E); if E =
M0N * ; ~ M n is a lazy narrowing sequence such that in none of its steps we have applied
a rule on the redex u, then we have

I. Vv < u Vm < n root(Mm/v) = root(Ely)

2. We have neither applied any rule on any redex v > u.

426

Proof:

1. As u E LR(E) we have that Vv < u such that root(Ely) E F if i is such that
v / < u then we have some rule in II pending for E/v on I . Then Lemma 1 tells us
that Vv < u root(E/v) E F we do not have applicable rules. So the first rule that
we will apply along our narrowing sequence will leave root(E/v) unchanged for any
v < u. After the application of the corresponding narrowing step, for any v < u
with root(E/v) none formerly pending rule for it can become applicable as M1 and
E are equal along the pa th given by u. Then either u remains in LR(M1) or there
is some v < u such that any rule fails for 311/v. In the first case we will follow the
same reasoning to the remaining steps of the sequence; in the second the laziness
of the computat ion assures us that we will not apply any rule on any w > u, and
Lemma I tells us that we will not do it on any w < u.

2. As u E LR(E) we have some rule that applies to E/u , and then we can not have
pending rules, so that LR(E/u) = {c}.

El

Let us go now to the proof of Theorem 4:

Proof: As we know that lazy narrowing is complete (Theorem 3) we must have a
narrowing sequence E N ;~Et', and a substitution)` such that 0 = (rE o)` and t')` = t.
But we have to prove that we can get such a sequence under the s t rategy LNST; this will
be obtained from the former by a sequence of careful modifications. We will construct it
by induction on the length l of the given narrowing sequence.

If t = 0 we have an empty sequence that of course is allowable under LNST.
Otherwise, we consider u = LNST(E) and we have two possibilities: we make nar-

rowing on u on the first step of the given sequence, or not.
In the first case the same step is allowable by LNST and then the result follows by

induction hypothesis.
Otherwise, by Corollary 3 we know that either we have applied a rule on u along

the sequence or root(t'/u) = root(E/u) but this second case is impossible because u E
LNST(E) , and then root(E/u) E F, so that for any substitution)` we would have that

I t')` 1 is not total; and then I t')` l# t. So let E = Mo N * ,~.

N a~lvli+l,)~,bMt = t', where i is the first step in which we have applied a rule on
u, and aE = a~ o al o ab. We have the following facts :

1. Mi/u = (Z/u)a~, as an immediate consequence of Corollary 3.

' and ' 2. Let r = L := R, then L, E /u are unifiable via m.g.u, a i a i < a~ o cri. This
follows from 1 and definition of m.g.u.

3. E = MeN) ~ v , 1 is an admissible narrowing step under LNST.

4. The steps before the i-th on the given computat ion work on occurrences that are
not modified, but perhaps by some substitution, by the application of r to E.
Note particularly, because it is very important in order to maintain the length of
the sequence, the use of part ii. in Corollary 3 in order to obtain this fact, and
consequently the use of the fact that the given sequence is lazy.

427

.

.

.

Those steps can be given after M; obtaining a sequence (of the same length!) M~
N * ,~,.M[+ 1 where ~ o d a ~. era o ai SO that M[+ 1 is a variant of M~+I.

We can extend the sequence by means of the corresponding variant of the sequence
-Mi+l N * ~ M t = t I, to reach M[by cd b variant of or, so that we have some ~l such
that 1 M y t = t.

I * I I I Finally we can apply the induction hypothesis to the sequence M~ N ~=,=bM~,
whose length is 1 - 1 and is lazy as the original sequence was, and as we saw in
the proof of Corollary 3, the data-substitutions induced by narrowing steps just can
slightly change the set of lazy narrowing points: If we narrow E at u getting E '
through the substitution a, then Yv ~ u we have v E LR(E') ~ u E LR(E) , and
as LR(E') is prefix-free we have that if some v ~ u belongs to LR(E) - LR(E')
then we would have [E'/v~(p) = _L under any substitution, and as in order to apply
any rule at any w < v in E we need a defined value of E / v , we have the same for
E'a, getting that [Ea] (p) would be a partial value for any substitution p. So if this
would be the case for our sequence we would have some a < ere such that for any
p [Ea](p) is partial, contradicting the fact that [EO~ is total for some 0 > =E.

1:3

In order to extend our results to the computations of (any finite approximation) of
infinite values, we introduce a dynamic notion of strategy generalizing the static notion
introduced in Definition 15.

D e f i n i t i o n 18 A dynamic strategy DS is a function from narrowing sequences to occur-
rences, such that if q = M r~ * ~ N , DS(q) is defined iff N is narrowable, and gives in
that case a lazy redex in N. []

R e m a r k s :

1. We include the restriction to lazy redices in the definition of dynamic strategies,
because we want to generalize Theorem 3 to infinite values, and the restriction of
lazy strategies has been necessary even to cover the finite case considered there.

2. It is easy to check that any of Echahed's results on completeness of strategies and also
our Theorem 3, are also valid for dynamic strategies, because the static character
of strategies is never used along their proofs.

D e f i n i t i o n 19 A dynamic strategy is fair iff if q = M N * ~ N , u E LR(N) , we cannot
have a sequence of computations q,~ = MN * *~N,, with n E IN, such that qo = q, and for
all i E IN qi+x strictly extends qi, DS(qi) ~ u and u E LR(Ni). []

Intuitively a dynamic strategy is fair iff it cannot infinitely postpone the choice of a lazy
redes that remains like that forever, from some point, along an admissible computation
under the considered strategy.

N o t e : The reason to introduce dynamic strategies is mainly pragmatic. We could develop
this part of our theory just for static strategies, but in practice we will have different kinds

4 2 8

of problems : on one hand it would be difficult (probably undecidable) to decide if an
arbitrary (computable) strategy would be fair; on the other hand many simple strategies
will be unfair : take for instance outermost or innermost ones; we would have in fact
some lazy and fair strategies, like the corresponding version of breadth narrowing, but
they should be, in our opinion, too restrictive. We have prefered to introduce dynamic
strategies that are thought to be really devised in a dynamic way, getting the fairness
constraint in different ways according to the particular taste of the user.

T h e o r e m 5 Let H be a simple-BABEL program verifying pfns, E an expression and 9
a data substitution with dora(8) = va t (E) such that [E0]~ = t with t a total, ground
but (possibly) infinite term, under any Herbrand interpretation. Then for any lazy fair
dynamic strategy FDS there exists an infinite narrowing sequence under it E = M0
N ;a0M1 N *", Mi N ~ M i + l oo such that Vi 3Ai ~ro o .-. o o'i-1 o Ai = 0 and
([MiAi [)iel~ is a monotonic sequence of finite elements whose limit is [E~]z.

P r o o f : As Hv is a domain and the tree of narrowing sequences from E is finitary, we
know from Theorem 3 that we have a lazy narrowing infinite sequence q as that looked
for. As in the proof of our previous theorem we will convert this sequence in other "more
or less" equivalent to it. For we consider first U = FDS(e), and, as in that proof, we
will check that there must be some i such that in the i-th step of q we have narrowed on
u. Then we will rearrange the first i steps of the sequence getting an equivalent one E1
whose first step is allowable under FDS. We will repeat this process for the infinitely many
steps of the sequences, obtaining a succession of equivalent sequences (q~)~e~ whose first
n steps, for each q~, are permissible under FDS.

Then it is clear that if we consider the sequence limit of this succession qoo defined in
a natural way, we have an infinite sequence allowed by FDS. What it is not trivial is that
qoo will compute the same value as q; in fact it can be false for arbitrary strategies and
this is the reason why we said "more or less" equivalent. Take for instance our Example 2.
We can take as q the sequence
E2 = MoN ,,Mx N * ,~. . . Mj N------+¢Mj+I N * ~ . . . where Mj = p (s ~ (i) , s ~ (i)) i f j is

odd and M i = p(sj/2(i), si/2(i)) if j is even, and each narrowing step has been given over
1 ~ and 2 • li=~ respectively. Then, it is easy to check that if we would take as strategy

2 2
the N S T described there, cr~ would be the (only) sequence making narrowing in j - th step
on 1 i and obtaining after j steps M? ~sT = p(s j (i) , i) , so that [-Jie~] Mf f sT l = p(oo,_l_) ~.
p(oo, oo).

So what happens in the general case is that qoo is less or equivalent to q, but not
necessarily equivMent, because some step of q could have been infinitely delayed and so
avoided by qoo. But that is exactly what our notion of fair strategy avoids, at least for
programs satisfying pfns. Indeed, if we consider the redex ul corresponding to the first
step of q, we have that ul E LR(E) , and if II verifies pfns we have that it will remain
in the set of lazy redices until a narrowing step will be done on it; otherwise, as we saw
in our previous proof, the value of the corresponding subexpression E / u l would be _l_,
and that of E partial against the hypothesis. But then our fairness restriction assures us
that sooner or later this redex will be selected by the strategy, so let us say that in the
n-th step of q~ we would apply on u the same rule that was applied in the first step of q.
But along q all the constructors in t wilt be computed, so that for any depth h, all the

429

constructors in t up to this depth will be calculated after some (finite) number of steps
Sh. Then, after iterating the reasoning presented upwards for the first step of q, we would
get some nh such that if E = M0N * *~hM, h is the subsequence of q~h constituted by its
nh first steps, we have that there is some ~h such that I M-h)~h I is equal to t up to depth
h . []

Let us finish with our third case. Again we obtain a broader generalization, but for it
we have to restrict more the class of admissible strategies. As we said, there are several
ways to do it, that we present in the following.

D e f i n i t i o n 20 Let II be a simple-BABEL program over ~ = (C, F) . We say that

1. f is syntactically totally defined by II iff for each tuple of data terms (t l , . . . ,t,,)
with a (f) = n, we have some r = L := R E I I applicable to f (t l , . . . , t=).

2. II is syntactically complete iff for all f in F, f is syntactically totally defined by II.

[]

T h e o r e m 6 Let H be a simple-BABEL program syntactically complete and verifying
pfns, E an expression, O a data substitution with dora(O) = vat(E), and s a finite, ground
and (possibly) partial term, such that [EO~x ~ s under any Herbrand interpretation; then
for any lazy fair dynamic strategy FDS there exists a narrowing sequence under it q : E
N * , ~ N and a substitution A such that 0 = aE" A and [NA I-7 s.

Let us begin noting why fairness is needed even if we would know that [EO]]I is finite.
For let us modify our program in Example 3, taking f (x) = f (x) as the definition of this
function. Then II verifies all the hypothesis of the theorem, and [p(f(1), g(1))]t = p(± , 1).
But if we consider the static strategy selecting (always) 1 as redex, we would obtain a
unique narrowing sequence that does not make any progress at all so that any reachable
expression would be the initial one, whose shell is p (± , L) ~ p(± , 1).

Now we introduce a formal concept that will be used to express the fact we are only
interested in obtaining a value greater than s but not more.

D e f i n i t i o n 21 Let E be an expression and s a partial value such that we are interested on
the evaluation of the partial substitutions 0 such that [EO]x(p) ~_ s under any Herbrand
interpretation I, and for any environment p. Let u ~ LR(E) , we say that u is unnecessary
for computing s iff if w is the greatest prefix of u contained in the defined (labelled by
some constructor) occurrences of s, then for all w' < w we have root(E/w') E C (in fact
we will have root(E/w') = root(z/w').) []

We can proceed now with the proof of the theorem.

P r o o f : We consider, as in the proof of Theorem 4, a lazy narrowing sequence q : E = M0
N * ~os ~ and a substitution A such that 0 = aoA and [dA 1_~ ~. It must exist by Theorem 3.
It is easy to check that we can suppose that it does not contain unnecessary steps (those
applied on unnecessary redices on each intermediate expression Mi, in order to compute
s.) Indeed, if we have not yet computed s by Mi, and then we make narrowing on an
unnecessary redex u, we can just eliminate this and all the following steps on redices

430

u I > u, and changing the substitutions accordingly we would obtain a (shorter) sequence
with the same properties as the original. We have just to i terate the argument in order
to remove all the unnecessary steps.

Then we t ry to convert it in an admissible sequence under the given strategy. For let
u be the redex selected by it in the beginning; there are two possibilities: either u is a
necessary redex on E to compute z or it is unnecessary. In the first case reasoning as in
the proof of Theorem 3 we have that u must be the selected redex in one of the steps of
q; otherwise the path along q will remain unchanged at 8 f, and as u is necessary on E to
compute s we would have] s'A I~- s for any substitution ~. Then we can proceed as in
that proof getting a sequence ql equivalent to q, but whose first step is Mlowed by our
strategy.

On the other hand, if u is unnecessary to compute 8, and there is not any step of q
narrowing on u, we know by Corollary 3 that there will be neither any step narrowing in
any occurrence comparable with u. Then we would take the (or any in general) rule in
II that is applicable to (E/u)O. If a ' is the substitution used to narrow E / u by this rule
on its root, we have that # < 8 so that cr and a I are compatible. Then we can execute
q after this first step, by means of the corresponding substitutions getting a sequence
ql : E N ;~ls t. Note that as q contains no unnecessary steps, the new sequence remains
lazy : if a necessary redex would become no more lazy redex after a narrowing step, this
would mean than the value of some subexpression containing this redex would become
undefined, but as the redex is necessary in order to compute s we could not do it any
more, contradicting our hypothesis. Oppositely if we would have unnecessary steps in q
some of them could have become non lazy without contradiction as it would just imply
that the value of some subexpression that is no needed in order to compute s is undefined.
So we can get in both cases some ql equivalent to q, but whose first step is allowed by
our strategy.

We then have just to iterate the construction, but how long? Obviously until exhaust-
ing q, in which moment the constructed sequence q' will be allowable under the current
strategy and will verify the thesis of the theorem. When we are in the first of the two
former cases we indeed use one step of q in order to compute the following narrowing
sequence; this is not true in the other case, but it cannot be repeated infinitely often,
because some (at least the first) of the remaining steps will correspond to lazy redices
that will remain like that after any narrowing step on an unnecessary redex, and then
sooner or later some of them must be selected by our fair strategy. []

Remarks:
1. In this case we can not extend the completeness result, without changing the notion

of admissible strategy, to the case in which dora(O) C var(E). For let us consider a
new modification of Example 3 : take now f(0) = 0; f (1) = 1; f (p (x , y)) = 0 as the
definition of this function. Then if we take E = p(f (x) ,g (x)) and as 0 the empty
substitution, we have that for any data substitution p [E]I(p) _~ p (l , 1). But if our
strategy would choose 1 as first redex we would have to bound x to 0, 1 or p(x I, y), so
that any substitution ~ corresponding to an extension of any of these computations
would be not a < 8, and the completeness thesis would not be fulfilled.

2. We could syntactically complete any partial definition by adding the clause f (x) :=
f (x) . Clearly this would not modify the meaning of the program, but, of course s if

431

f was not totally syntactically undefined, we would obtain after this modification
a program not verifying the pfns. In the next section we will prove that we can
transform each program in an equivalent one verifying pfns. Besides, if the original
program is syntactically complete the transformed one also has this property, and
so we would be in the hypothesis of applying Theorem 6.

You can see that the necessity of fairness, the problem reported in part 1 of the previous
remark, and the necessity to restrict ourselves to syntactically complete programs are all
of them due to the admission by the strategy of narrowing steps on occurrences that are
unnecessary for the searched result.

In order to avoid these restrictions, we could introduce the notion of goal oriented
strategy. This would be defined given a goal term s that must be (it or any other term
improving it) obtained by the evaluation of the considered expression E (see Theorem 6
for the corresponding technical details.) We say that a narrowing strategy GST is goal
oriented to s if it never selects unnecessary redices in order to compute s; then, we have
the following

T h e o r e m 7 Let II be a simple-BABEL program verifying pfns, E an expression, 0 a
data substitution with dom(O) C_ vat(E), and s a finite, ground and (possibly) partial
term, such that [EO]x(p) ~_ s under any Herbrand interpretation and for any environment
p over I; then for any goal oriented to s strategy GST there exists a narrowing sequence
under it q : EN * , ~ N and a substitution A such that 0 = ere o ~ and l NA I-1 s.

P roof : : Similar to that of previous theorem; just note that syntactical completeness
of the program, fairness of the strategy and the restriction to ground expressions EO
were all just necessary in order to cope with the selection of an unnecessary redex along
the narrowing process, so we can leave them out once only goal oriented strategies are
admissible, o

We even announced in the introduction a third possibility in order to treat the problem
caused by the computation of partial values. Again we have to generalize the notion of
strategy in order to describe it.

Def in i t ion 22 A sufficiently general strategy SGS is a function associating to any ex-
pression E a set of its lazy redices SGS(E) such that if E is narrowable on some u under
a, there is some u' E SGS(E) such that E is narrowable on u' under some o ~ with a < a'.
D

Intuitively a general strategy would be the straight generalization of strategies that is
obtained by considering functions that select a set of redices instead of a single one. This,
of course, would introduce some backtracking on redices, increasing the probability to
maintain completeness under some adverse hypothesis as those introduced in the case that
we are now studying. On the other hand sufficient generality is captured by the condition
on substitutions related with possible narrowing steps, that means that the narrowing
steps corresponding to the redices selected by the strategy are sufficiently general, so that
no substitution corresponding to other redex will be lost, although just redices in the
selected s e t , will be considered.

432

Def in i t ion 23 A narrowing sequence is admissible under a sufficiently general strategy
SGS iff any of its narrowing steps Mi N , ~ , 3//+1 is made on some redex in SGS(Mi). D

Of course one could argue that these general strategies are not real ones, because in
fact the universal one associating to each expression the set of all its redices would be
indeed one of them, but it is clear that it does not make any selection at all, what is
just the objective of strategies. That is true; we introduced complete strategies, that is
to say, strategies preserving completeness of narrowing, in order to reduce backtracking
along computations. This is so because we do not need to consider all the narrowing steps
from the reducing expression, but just the corresponding to one redex: this selected by
the adopted strategy. Then, what we are now proposing is the consideration of strategies
selecting sets of redices, that of course will be only used in practice when we do not know
any complete ordinary strategy. And obviously in these cases we will look for strategies
selecting sets as small as possible (although this is not at all a theoretical imperative.)

We should extent the notion of dynamic strategy to general ones in order to introduce
fairness, what can be done in a rather straightforward way. Then we have

T h e o r e m 8 Let II be a simple-BABEL program verifying pfns, E an expression, 0 a
data substitution with dora(O) C vat(E), and s a finite, ground and (possibly) partial
term, such that [EO]1(p) ~_ s under any Herbrand interpretation and for any environment
p over I; then for any sufficiently general strategy SGS there exists a narrowing sequence
under it q : E N * ; , ~ N and a substitution A such that 0 = aE o A and] NA]-7 s. []

4 Transforming specif icat ions

Echahed has made in [1] a detailed presentation of an algorithm that transforms a spec-
ification into an "equivalent" one fulfilling the pfns. We will present a simple example
in order to illustrate the algorithm, and mainly to explain why we have quoted the word
equivalent in our previous sentence.

E x a m p l e 4 Let us consider the following simple-BABEL program (and also specification
in Echahed's sense):

f(0, 0) := 0
f(s(x),O) := 1
f (x , s (y)) : = 2

Echahed's transformer would transform it, into the following specification:

f (0 , 0) : = 0
:= 1

f (o , : = 2
f(s(x),s(y)) := 2

n

We need this transformation because in the original specification we had a situation
of strictly subunification on the first argument of the function, between the third and
the two first equations. In order to eliminate this problem we unfold the x in this third

433

equation, introducing a new equation for each constructor in the signature over which we
are working. Note that in the general case we have to consider all the constructors in
that signature, and not just those included in the patterns of the conflicting equations;
this has been just a coincidence in our example. Also, in the general case we would
have to iterate the algorithm in order to avoid conflicts between a variable and a pattern
containing nested constructors: for instance if we had two patterns x and 8(s(y)) it would
not be sufficient to unfold x into 0 and s(x'), we would have to iterate the process because
a conflict between x' and s(y) remains. In any case, we think that once the idea of the
algorithm is understood, it is more or less easy to guess how it would work in the general
case, so that we will not include here a more detailed presentation of the algorithm; this
should be just a copy of that in [1] .

Once we have understood the transformation, we will probably assert without any
doubt that the original and the obtained specifications are equivalent. But this immediate
assertion needs a more accurate statement: in the general case S and TR(S) will be
equivalent for ground expressions, but not for arbitrary ones. This is exactly the same
problem that we reported in part 1 of our last remark. It was not a problem for Echa.hed
because he was only interested in the evaluation of ground terms.

For instance, we had for the original specification in our example If(x, s(y))]1(p) = 2
under any Herbra~ld interpretation, and for any environment p. Nevertheless, this ex-
pression is undefined under TR(S). This is completely reasonable under our semantics of
simple-BABEL programs, because we admit partial values, and of course they can appear
not only as results but also as arguments. So we have as possible environment one verify-
ing p(z) = _1_, and clearly f(_l_, s(y)) is undefined for any value of y. Of course, this would
only be a problem for us if we are interested on general completeness results covering also
non-ground cases.

Fortunately, we have got a new transformer, pointed to us by J.J.Moreno-Navarro,
fully preserving the semantics of programs. Again we will begin by showing how it works
by means of an example, the same that was used before.

If we denote by TR' this new transformer, TR'(S) would be the following "simple-
BABEL" program:

f(x,O) := f'(x,O)
f(y,O) : = f"(y,O)
f(x,s(y)) : = 2

f ' (0 , 0) : = 0
. = 1

You can see that the philosophy of the transformer is just the opposite of that of the
former one. Instead of particularizing variables, we generalize non-variable patterns.

We had also to quote a word in the sentence before the description of the transformed
program. This is because, unfortunately, it is not a real simple-BABEL program, because
for instance f(3, 0) matches both f(x, O) and f(y, 0), but If '(3, 0)] = _k ~ 1 = If"(3, 0)].

Nevertheless, we can generalize the class of simple-BABEL programs, relaxing the
non-ambiguity restriction, by putting instead the following generalized non-ambiguity
restriction: If L1 :-- E1 and L~ := E~ are in II and L1 and L2 are unifiable via m.g.u. ~r,
then either IEl(a)] -- [E~(a)l or one of them is undefined.

434

Of course, we need slight modifications in our definitions in order to cope with this
generalization. For instance, in Definition 5 we have to add the condition [E]I ~ 3_ to
the description of the first ease. Also the strong soundness result presented in Theorem 2
is lost, but we have yet its weak version saying [MaM],(p) ~_ [NaM],(p), what is enough
taking into account the fact that usually we are only interested in the computations of total
values, and the completeness result whose validity remains and says us that selecting the
appropiate branch we can ever compute by narrowing the (total) value of an expression.

Let us go now with the formal definition of the new transformer.

Def in i t ion 24 Let f be a function defined in a simple-BABEL program II. We say

. For each argument i the pattern defining it in a rule L := R corresponding to f is
too particular iff there exists some other rule defining f , L' := R', with the pattern
defining that argument strictly more general than the former; that is to say, if t and
t ~ are those patterns, there exists a non-trivial substitution a with t = t~a.

. If the pattern t defining the i-th argument of f in a rule L := R is too particular,
we call the most general covering (mgc) of it in H any renaming of the pattern t' of
that argument on any other rule for f in 1-I that was not too particular, and verifies
t = t'a for some substitution cr.

13

Def in i t ion 25 We obtain the transformed version TR'(H) of a simple-BABEL program
II in the following way:

- If none of the patterns in L := R E I] is too particular we include L := R in TR '(H).

- If tpp(L := R) # ~, where tpp(r) denotes the set of arguments with too particular
patterns of a rule, we include in TR'(II) a couple of rules

I ! f(t ' l , . . . , t~) := f'~(tl,...,t~)
f ' (t l , . . . , tn) := R

where L = f (t l , . . . , t,,); t~ = ti if this argument is not too particular, and t~ =
mgc(tl) if it is too particular; and f ' is a new defined function for each so developed
rule r. Of course, the sets of variables in each t~ will be taken disjoint, which is
possible by the linearity of the rules in II.

O

T h e o r e m 9 If I I is a simple-BABEL program, its transformed version TR'(II) is a general
simple-BABEL program, verifying the pfns, and such that any (possibly non-ground)
expression has the same semantics under both programs. D

435

Remarks:

1. The size of TR'(H) is always linear in the size of II; in fact this size can only be
increased by a factor of 2 when the new transformer is applied. Oppositely, even if
II has no nested constructors in the patterns of its rules, the size of the definition
of a function in a program can increase by a factor of c n where n is its arity, and
c the number of constructors in the signature. One can check that things will be
even worse if the patterns include nested constructors, Mthough this is not, indeed,
a very usual case in practice.

2. From the pragmatic point of view, general simple-BABEL programs could not be
very interesting if traversing of many failing branches in a computation tree implied
too many wasted time in useless unifications. But this is not a real problem for
the programs obtained by means of our transformer, because the only useless uni-
fications for them will be those leading us to sorne of the introduced functions f~,
and immediately the computation would fail if this was indeed a useless path. For
instance, if in our example we compute f(3, 0), the first new rule will lead us to
f '(3, 0), and immediately this branch will fail; then we will apply the other possi-
ble rule, obtaining fI~(3, 0), and then 1. Moreover, although this new transformer
introduces many new functions, they could be implemented more efficiently than
ordinary ones, because they are always just defined by a single rule.

On the other hand, if we computed the possible values of f (x , 1) we would imme-
diately obtain the answer 2, without any binding for x; instead, if we computed it
using TR(II) we would obtain a couple of answers 2, with x = 0 and x = s(x') as
bindings. We have not only lost the most general answer, covering also the case
x = _1_, but also we have introduced an unnecessary duplication of answers, what
could be dramatic if this situation presented repeatedly in a nested way.

5 A c k n o w l e d g e m e n t s

We are very grateful to M. Rodriguez Artalejo that proposed us to work on the subject
after reading Echahed's paper along a visit to his institution. Also to J. J. Moreno Navarro
that gave us the idea for the new transformer. And to the referees of a previous version
of this paper for their encouragement and clever suggestions, after a very careful reading.
And finally to K. Indermark and M1 the members of his group in Aachen, speciMly to R.
Loogen and H. Kuchen, whom we presented the results of this research that was developed
during an stay of the authors in their University.

References

[1]

[2]

R. Echahed On completeness of narrowing strategies in CAAP 88, LNCS 299,
Springer Verlag (1988)

M. J. Fay First Order Unification in an Equational Theory Proc. 4th Workshop on
Automated Deduction, Austin, Texas (1979)

436

[3] L. Fribourg SLOG: A Logic Programming Language [nteTTreter Based on Clausal
Superposition and Rewriting SLP 85, Boston,1985

[4] G. Huet, D. C. Open Equations and Rewrite Rules: A Survey in Formal Language
Theory: Perspectives and Open Problems, Academic Press (1980)

[5] J. M. Hullot Canonical Forms and Unification 5th CADE, LNCS 87, Springer Verlag
(1980)

[6] G. Levi, P.G. Bosco, E. Giovannetti, C. Moiso, C. Palamidesi A Complete Semantic
Characterization of K- LEAF, a Logic Language with Partial Functions Proc. 4th
Symposium on Logic Programming, IEEE Computer Society Press (1987)

[7] G. Lindstrom Functional Programming and the Logical Variable 12th ACM POPL,
1985

[8] J. J. Moreno-Navarro, M. Rodrlguez-Artalejo BABEL: A Functional and Logic Pro-
gramming Language based on Constructor Discipline and Narrowing in Algebraic and
Logic Programming, LNCS 343, Springer Verlag (1989)

[9] J. J. Moreno-Navarro, M. Rodrlguez-Artalejo Logic Programming with Functions
and Predicates: The language BABEL Informe T~cnico DIA/89/3, Departamento de
Inform£tica y Aut0m£tica, Universidad Complutense Madrid (1989) (Also to appear
in Journal of Logic Programming)

[10] J. J. Moreno-Navarro Dise~o, Semdntica e Implementaci6n de BABEL: Un lenguaje
que integra la programacidn funcional y Idgica Ph.D.Thesis, Facultad de Inform£tica,
Universidad Polit~cnica Madrid (1989)

[11] W. Nutt, P. Rety, G. Smolka Basic Narrowing Revisited SEKI Report SR 87/07,
1987

[12] P. Padawitz Strategy Controlled Reduction and Narrowing RTA 87, LNCS 256,
Springer Verlag (1987)

[13] P.Padawitz Computing in Horn Clause Theories EATCS Monographs on Theoretical
Computer Science, Vol. 16, Springer Verlag (1988)

[14] U.S. Reddy Narrowing as the Operational Semantics of Functional Languages, Proc.
IEEE International Symposium on Logic Programming, IEEE Computer Society
Press (1985)

[15] D. S. Scott Domains for Denotational Semantics ICALP 82, LNCS 140, Springer
Verlag (1982)

[16] J. R. Slagle Automated Theorem Proving with Theories with Simplifiers, Conmuta-
tivity and Assoeiativity JACM 21, 1974

[17] D. A. Turner MIRANDA: A non-strict functional language with polymorphic types
Proc. ACM Conf. on Functional Languages and Computer Architecture 1985, LNCS
201, Springer Verlag (1985)

437

[18] J. You Enumerating Outer Narrowing Derivations for Constructor-Based Term
Rewriting Systems, J. Symbolic Computation 7:319-341 (1989)

