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Abst rac t  

We study completeness of narrowing strategies for a class of programs defining 
(possibly partial and non-strict) functions by means of equations, with a lazy seman- 
tics, so that infinite values are also admissible. We consider a syntactical restriction 
introduced by Echashed, under which he proved that any narrowing strategy is com- 
plete for specifications defining total functions with finite values. Unfortunately 
things are not so pretty for the larger class of programs that we consider. So we 
see that laziness of strategies is necessary in order to cope with non-strictness, fair- 
ness if we want to compute infinite values, and syntactically complete specifications 
(those including rules covering all possible patterns for each function) if we are also 
interested in the computation of partial values. 

1 I n t r o d u c t i o n  

Equational Unification [2,5] has been the base to unify relational and functional paradigms 
in programing. Narrowing [16,7,11] is probably the most natural extension of both rewrit- 
ing and SLD-resolution in order to obtain an operational view of E-unification. In order 
to have completeness of narrowing without syntactical restrictions we need very strong 
semantical restrictions like canonicity [2]; but  if we adopt the so called constructor disci- 
pline we can relax in several ways the restrictions of confluence and termination. BABEL 
[8,9,10] is a new language following these ideas, in which two apparently opposed proper- 
ties like the existence of a clear mathematical semantics and an efficient implementation, 

*This work has been partially supported by Aeei6n Integrada Hispano-Alemana 35B, granted by 
Direeei6n General de Investigaei6n Cientffiea y T~eniea (Spain) and Deutseher Akademiseher Austauseh- 
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have been carefully taken into account along its development in order to obtain a "prac- 
tical" language in the sense suggested by modern programming metodologies. It has an 
strong similarity with the language K-LEAF developed by Levy et al. [6]. 

Unfortunately general narrowing is rather inefficient due to the necessity of doing 
backtracking along a computation not only on the rule applied, but also on the reduced 
redex. This problem is well known just for functional programming where it has been 
proved that some fixed strategies on the selection of the redex to reduce, like innermost, 
outermost, or some others, are complete under some adequate technical restrictions. In 
fact, in PROLOG it is exploited the fact that any (particularly fifo) strategy on the 
selection of the next goal to reduce is complete. So Fribourg has proved in [3] that 
innermost narrowing is complete under some syntactical conditions. On the other hand 
in [10] it is proved that lazy narrowing, that was introduced in [14], is complete for 
BABEL, but this lazy narrowing is not a strategy in the sense considered here, but just 
a relatively small restriction on the set of redices that should be considered at each step 
of the computation in order to guarantee completeness. 

We are interested in a more strong result, concerning any strategy, or if this is not 
possible a class of strategies as broad az possible. Padawitz in [12] gave the first step 
in this direction, obtaining a positive result, under some "uniformity" conditions on the 
considered programs, that we could classify as semantical, and then difficult to decide. 
Echahed in [1] has presented a general result valid for any strategy, with just a simple 
syntactical restriction, the so called principle of free narrowing strategies, on the pro- 
grams that can be considered. But he also gives a transformer by means of which any 
program can be set, preserving its semaatics, in the adequate form in order to apply the 
completeness result. The real limitation of this result is that it can only be applied to 
canonical programs, what in fact is a semantical restriction in the general case. In [13] 
you can find some other properties of the class of programs fulfilling the principle of free 
narrowing strategies. 

We have generalized Echahed's result to non-canonical programs, covering in fact 
partial functions, partial values, non-strict functions and infinite objects like in MIRANDA 
[17], what is done in a functional-logic environment, in BABEL. It is very important to 
note that narrowing is used in this language in a way that we could say to be "much more 
functional than logic". In general we will consider the evaluation of arbitrary terms, and 
not just the solution of equations. In that last case it is well known that the consideration 
of partial functions, infinite structures and terms with partial values is not justified, as E- 
unification is non-computable under non-termination. But in a more functional framework 
like ours, it has perfect sense to consider all these generalizations. Of course this must 
be done in a non-naive way; for instance, we cannot compute an infinite value, but we 
can compute all (this means as many as we want) its finite approximations. The same 
is true for partial values: in general we cannot say "this (partial) value is the value of 
something", as non-termination makes this undecidable, but we can compute all their 
finite approximations, including, of course, the value itself if it is finite, of such a partial 
value. 

We have seen that in fact we do not need the large and complex syntax of BABEL, 
including predicates and functions, conditional equations, the use of new variables in 
conditions, an equality test, and some other facilities, in order to show the difficulties 
induced by the semantical generalizations listed above. So we have introduced simple- 
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BABEL programs that are in fact the same specifications considered by Echahed, but 
eliminating the canonicity restriction and giving a semantics that covers all those new 
interesting semantical characteristics. On the other hand, although we have extended 
Echahed's results, this has not been at all by means of a generalization of his proofs, 
because they are strongly based on the canonicity of the rewriting system associated to 
the considered program, property that has been avoided in our work (mainly in that 
concerning termination.) 

We assert, without proof, that all the results in the paper could be extended without 
any added technical difficulty to whole BABEL, but with awfully long proofs due to the 
necessity of considering all the syntactical facilities in the language. 

The paper is structured as follows : in the next section we give a series of technical 
definitions, and present the language simple-BABEL including formal definitions of its 
semantics, both operational and denotational. The third section is the main of the paper, 
and presents narrowing strategies discussing their completeness. So, we see that we have 
to impose laziness to cope with non-strictness, fairness if we want to compute (arbitrarily 
accurate approximations of) infinite values, and the restriction either to syntactically total 
programs or to the so called goal oriented strategies, if we want to compute (improve) 
partial values. Finally, in the fourth section, we study a couple of transformers by means 
of which, from an arbitray program we can obtain another more or less equivalent in the 
syntactical class of programs for which we have our completeness results of narrowing 
strategies. 

2 D e f i n i t i o n s  a n d  b a s i c  r e s u l t s  

We suppose that the reader is familiar with the usual terminology and notation in the 
logic and functional programming environment. In any case, one can use [4,1,11,9] in 
order to remind them. We have prefered to omit the basic definitions included there, in 
order to fix the reader's attention in the less standard ones that we present below. 

We will consider along this paper s imple-BABEL programs or "general specifica- 
tions" that are defined as follows: 

Defini t ion 1 Let C and F be a pair of sets of operation symbols, over which an arity 
a : C U F --* ~q is defined. Let X be a set of variable symbols. 

We define: 
Data terms t E D T  

t := X % variables 
c % = 0 
c ( t , , . . . , t , )  % = > 0 

Expressions E E E X P  

E := t % data terms 
c(E1, . . . , / in)  % a(c) = n > 0 
f ( E ~ , . . . , E , )  % a ( f )  = n > O 
f % defined constants 

El 
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Def in i t i on  2 

t. Simple-BABEL rules are pairs f ( t t , . . . ,  to) := E verifying the following restrictions 

(a) Left linearitT, no variable has multiple occurrences along the left hand side. 

(b) Local determinism: vars(lhs) vats(E). 

2. Simple-BABEL programs are (recursively enumerable) sets of simple-BABEL rules 
verifying the weak nonambiguity restriction: If L1 := El, L2 := E2 are in a simple- 
BABEL program II and L1 and L2 are unifiable via m.g.u, a, then E~(a) = E2(a). 
(Here = means semantic equality.) 

[] 

Remarks: 
1. We say that the rules are fiat, as the arguments in lhs's must be data terms, that 

can not contain defined functions in F.  

2. We have imposed just this weak nonambiguity restriction based on semantical in- 
stead of syntactical equality, because only the first is necessary in order to have de- 
terministic definitions. Obviously, this semantical equality is undecidable in generM, 
and this is why the syntactical, stronger but trivially checkable is usually imposed; 
but  at the theoretical level it does not matter  how the necessary semantical equality 
is guaranteed. 

Declarative or denotational semantics is based on the Herbrand domain for C, Ha, 
that is obtained adding .L, whose arity is 0, to this set, and considering the set of finite 
and infinite terms over such extended domain. An ordering based on refining is introduced 
in Ha  reflecting the interpretation of .L as "undefined": so t E_ t ~ iff t ~ can be obtained 
from t substituting some expressions for occurrences of .1_. So we obtain a domain in the 
s e n s e  of Scott [15], whose finite elements are just  the finite terms. 

Def in i t i on  3 A Herbrand interpretation for ~ = (C, F )  is any algebra I = (He, ( fI) lef)  
where fx is a continuous function f t  : H~ ...... ; He,  with n = a(f) .  [] 

R e m a r k :  We do not impose strictness to the interpretations of defined functions. 

Any expression can be evaluated under an interpretation, given an environment p defin- 
ing the value of its (free) variables. So we obtain the evaluation function 
[.]i : EXP ~ He, whose rather straightforward definition can be found for instance 
(for the full BABEL language) in [8,9]. 

De f in i t i on  4 

1. We say that  I is a model of H (I  ~ H) iff it is a model of any rule in II. 

2. We say that  I is a model of L := E (I  ~ L := E)  iff [L]I(p) = JEll(p) for any 
environment p over I. 

[] 
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Herbrand interpretations can be ordered by means of the usual ordering between 
products of function spaces: I = (He, ( f  z ) ) E_ I' = (He, (f'l) ) iff 

V f  E F Vh, , . . . ,h , ,  E He f ( h , , . . . , h , )  E_ f ' (h , , . . . ,h , , ) .  

This leads us to a domain of Herbrand interpretations, HINT, which allows us to prove 
the existence of minimal models for simple-BABEL programs. 

Definit ion 5 The interpretation transformer associated to II is the mapping 
rn: HINT ~ HINT defined as follows (Tn(I) = J)  

fj(t,,... ,to)= { 
[E]t i f f f ( t l , . . . , t , )  := E is a ground instance 

of some rule in H 
_L otherwise. 

[] 

T h e o r e m  1 rn is a continuous function. [] 

Corol la ry  1 II has a minimal model (the minimal fixed point of rn.) [] 

Defini t ion 6 Declarative semantics of simple-BABEL programs is given by the valuation 
of ground expressions under any model, and sp.ecially by their valuation under its minimal 
model. D 

Due to the existence of infinite objects in the semantic domain, and to the fact that 
there are expressions with such a value, it is obvious that we can not expect that a 
(finite) operational semantics will compute those values. Nevertheless we should be able 
to compute any finite approximation to them. This kind of facts leads us to the definition 
of a function extracting all definitive information in an expression. 

Defini t ion 7 The shell [ M [ of any expression is defined, by structural induction, as 
follows: 

lel=c v c e c  ~(c)=0 

I c (M, , . . . ,  M,,) I = c(I M, I,---,  I M ,  I) Vc e C ,:,(~) > 0 

] N [= _1_ for any other expression. 

[] 

Operational semantics of simple-BABEL is based on lazy narrowing. This is defined 
by restricting the narrowing steps to those corresponding to lazy redices. 

First we have to introduce an extended unification algorithm that includes the defini- 
tion of pending argument, in which lazy narrowing is based. 
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Defini t ion  8 (Extended  Linear Unif icat ion Algor i thm)  

INPUT : c (M1, . . . ,  M,~), c ( t l , . . . ,  tn) 
(This is the only case in which we are interested due to flatness and left linearity of 
rules.) 

STEP 1 (INITIALIZATION): Set U0 = {M1 J,1 t l , . . . ,  M~ ~ t~}, a0 = e 

($~'s are just syntactical marks in order to note that the corresponding unification 
problem corresponds to the i-th argument of the input.) 

STEP 2 (REDUCTION): Don't care nondetcrministically rewrite the configuration (Ui, a~) 
using the rules that follow until a nonreducible configuration (U~, an) is reached. 

U R 1  : ({c(N1,... ,N~)J, ic(N~, . . . ,N~)}UU, a) , 
({N1 ~i N i , - . - ,  Nm ,[, N~} U U, a) a(c) _> 0 

U R 2  : ( { X  $, t} u U, ~) , (U[t/X], ~,[tlX]) 
U R 3  : ({M ~i X}  U U, ~) , (U[M/X], a[M/X]) 

U R 4  : ({c(N1,.. .  ,Nm) ~ d(Ni,... ,N/,)} u U,a) - - .  ({FAILURE},a) 
c # c' (In fact, left linearity and the fact that c(M~,..., i ~ )  and c(t~,..., t,) do 
not share variables will lead us when we apply this algorithm to U[M/X] = U 
in case 3.) 

STEP 3 (OUTPUT): If U,~ = 0 report SUCCESS and output a,~ as m.g.u. 

If U,, = {FAILURE} report FAILURE. 

Otherwise let I = {i I 3f(N1, . . . ,  Nk) ~ c(N~,..., N[) E U~} and report PENDING 
with such a set as set of pending arguments. 

[] 

Def in i t ion  9 A rule L := R standing apart from N applies to, fails for or is pending 
for N iff the unification of N, L yields a SUCCESS, FAILURE or PENDING outcome, 
respectively. If the unification succeeds with m.g.u, a, we say that  L := R is applicable 
to N via or. If it yields a pending outcome with I as set of demanding arguments indices, 
we say that L := R is pending at i for any i in I .  [] 

Redex occurrences are the occurrences of an expression where some rule is applicable. 
But in order to bind the set of possible computations, and also to avoid incomplete 
strategies that would be obtained, as we will show below, if too inner redices would be 
selected, we introduce lazy redices that are defined as follows: 

Defini t ion 10 For any expression M the set LR(M) of lazy rcdices for M is defined, by 
structural induction, by the following clauses 

• LR(f(M1,..., Mo)) = {e I some rule in II applies to f(M1,..., ME)} U Uiex i. LR(Mi) where I 
is the set of argument indexes at which some rule in II is pending for f (M1, . . . ,  M~) 

• LR(c(M1,.. . ,  M~)) = Ui~=~ i. LR(Mi). 
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[] 

De f in i t i on  11 

1. If u E L R ( M )  and L := R is a rule that applies to M / u  via a we say that  M narrows 
in one step to M[ue--R]a, and write MN ~M M[u*-R]a,  where a M ----- a I ~ a r s ( M )  • 

2. We say that  M reduces to N via lazy narrowing and O'M, iff there is some narrowing 
sequence M = Mo N-'-~ a~ M M1 r; " " Mi N 'a~l Mi+x ~'. :; "" M,, = N with a M = 

o . . .  o 

This fact will be indicated by the notation M r: * ;aM N. 

[] 

Operational and denotational semantics of simple-BABEL are related by means of the 
following soundness and completeness theorems. 

T h e o r e m  2 Any reduction MN * '~M N is sound in the sense that  [MaM]Z(p) = [NaM]I(p) 
for any model I of II, and any environment p over I.  

P r o o f :  See [9] . 13 

C o r o l l a r y  2 Any reduction M N * ~,MN is sound in the sense that  [MaM]z(p) ~_ 
I Np  I for any model I of II, and any environment p over I .  [] 

T h e o r e m  3 Let M be any expression, ~ a partial term, and 0 a data-substitution with 
dom(0) C vat(M) such that  [MO]1(p) ~ 8 holds for any I model of II and any environment 
over I; then, there exists a (lazy) narrowing sequence M N * ~aM N and a substitution A 
such that  0 = aM o A and [ NA t--1 s. 

P r o o f :  See [lS] or [10]. [] 

De f in i t i on  12 Two terms t and t ~ are said to be sub-unifiable iff there exists an occurrence 
u in O(t) N O(t') such that 

1. t /u  and t ' /u  are unifiable (via cry), 

2. for all occurrences w with w < u, t /w  and t~/w have the same root symbol. 

[] 

D e f i n i t i o n  13 Two terms t and t '  are said to be strictly sub-unifiable iff there exists an 
occurrence u where they are sub-unifiable, and the corresponding m.g.u, a= is neither a 
variable renaming nor the empty substitution. [] 

Finally we introduce the elements to define the syntactical restriction under which 
Echahed has proved in [1] that any narrowing strategy is complete, for the restricted class 
of programs that  he considered. 

D e f i n i t i o n  14 We say that  II verifies the principle of free narrowing strategies (pfns) iff 
for any pair of rules in II their lhs's are not strictly subunifiable. [] 
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Remark :  H we forbid the appearance in a program of two rules having the same or 
equivalent (the names of the variables does not matter) lhs, this condition is stronger 
than our weak nonambiguity restriction. But we have included this one and not the 
former in the definition of simple-BABEL programs, because we obtain in this way a 
broader class of  programs, and although we will need the stronger restriction in order to 
obtain the results about completeness of narrowing strategies, in Section 4 we will prove 
that this results can be extended in some way to our broader class of programs, in the 
sense that any of these can be transformed into another equivalent, fulfilling the pfns. 

3 C o m p l e t e n e s s  o f  n a r r o w i n g  s t r a t e g i e s  

As we said in the introduction, R. Echahed [1] has proved that, under the hypothesis of free 
narrowing strategies, any narrowing strategy is complete for a kind of specifications rather 
simpler than ours. One can also find there some simple counterexamples showing that 
the restriction to this class of programs is necessary in order to guarantee completeness of 
arbitrary narrowing strategies. The main differences between both classes of specifications 
are termination, that we do not impose at all, and the use of just totally defined functions: 
we allow partial defined functions and we admit also infinite values; in addition, strictness 
is not imposed. Let us first refresh the notion of narrowing strategy. 

Defini t ion 15 A narrowing strategy is a partial function from expressions to their occur- 
rences NST : EXP ~ IN* such that it is defined iff the argument is narrowable, choosing 
a narrowing point in it. [] 

Defini t ion 16 A narrowing sequence is admissible under a narrowing strategy NST iff 
any of its narrowing steps Mi N ~ 1 M i + l  is made on the redex NST~MI). [] 

For the class of specifications considered by Echahed any strategy is complete. This is 
no more true for simple-BABEL programs verifying pfns. It is due to non-strictness and 
partial defined functions in one hand, and to the admission of infinite and partial defined 
functions on the other hand. Let us see three different examples illustrating the different 
kinds of patological situations that can be presented. 

The first example shows the kind of problems that we can find, even if we are only 
interested on the computation of finite and total values of expressions. 

Example  1 Let 111 be the program defined in Table 1, and take as E1 the expression 
f(g(y)). We have two possible narrowing points ¢ and 1. If our strategy chooses the 

c = {0, s} 
F = { f , g }  
/(x) := 0 
g(0) := ,(0) 

% Natural numbers 
a( f )  = 1 a ( g ) =  1 
% Non-strict 
% Partially defined 

Table h Definition of II1 
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second, then we should unify y and 0 : we would get the value 0 for the evaluated expres- 
sion, corresponding to the case y = 0, but all the remaining zero values corresponding to 
any y > 0 would be lost. As we said, non-strictness of f in association with a partially 
(syntactically) defined function g has caused the problem. The solution in this case will 
be to allow just strategies choosing lazy redices. Check that we have LR(E1) = c. rn 

The second example presents the new difficulties that  we find, if we also want to 
compute (arbitrary accurate approximations of) infinite but total values. 

E x a m p l e  2 Let 1-[2 be the program defined in Table 2, and take as E2 the expression 
p(i, i). We have [E2]I = p(oo, oo) under any Herbrand interpretation that  was a model 

c = {0, u {p} 
F = { q  

% Natural numbers and the pairing constructor 
a(i) = 0 % "Infinite" defined constant 
% Infinite value 

Table 2: Definition of H2 

of II2. Finite approximations of this value are the pseudo-expressions p(~ ,  ~) where m 
and n are natural numbers and ~ denotes the m-th successor of I formally defined by 

= 2., s(rn) = s (~) .  Then if we want completeness in the sense of Theorem 3, we would 
need narrowing sequences E2N * *E L with ] EL 1--- P(m,~), for any m ,n  C IN. But, if we 
work under a strategy NST such that NST(p(s,( i) ,  i)) = 1. ln, where s,~(i) is defined 
by so(i) = i, s,(~)(i) = s(s~(i)), and 1~ by 10 = E,  1~(~) = 1 . 1 , ,  then any narrowing 
sequence under such a strategy would lead us to some E~ = p(s,~(i),i), with n E lN and 
obviously for none of them we have, for instance, [ E L I~ p(_L, s(_L)). Now the problem 
has been caused by infinite values, and the solution will be to impose in some way that  
the strategy only will lead us to fair narrowing sequences. [] 

Finally the third example shows a new kind of problem, that  could appear if we desired 
to compute approximations of any kind, including partial ones, of values, covering so the 
full completeness result presented in our Theorem 2. 

E x a m p l e  3 Let II3 be the program defined in Table 3, and take as E3 the expression 
p(f(x) ,g(x));  for x = 1 its value is p(±,  1), but it could not be computed by narrowing 

c = {0,1} u {p} 
F = {f, g) 
f(0)  := 0 
g ( = )  = 1 

% Two constants and the pairing constructor 

a ( f ) = l  a ( g ) = l  
% Partially defined 

Table 3: Definition of Ha 

under a strategy NST such that  NST(Ea) = 1, because this would lead us to the substi- 
tution x = 0. In this case the problem comes from the partial definedness of f ;  but as p 
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is a constructor we can not solve it just by restricting narrowing to lazy redices: in fact 
1 is such a redex. 

Two solutions are possible: the first consists on a syntactical completion of syntacti- 
cally partially defined functions, f ,  by means of the rule f (x)  := f (x) ,  or more exactly 
of a development of it in order to maintain pfns. In our example we would add rules 
f (1)  := f (1) ,  f (p(x,y))  := f(p(z,y)).  The second possibility is more pragmatic but  less 
elegant; it consists in a generalization of the strategy notion, under which a strategy could 
select a set of redices (in practice we would take sets as small as possible) that  should 
be complete what roughly means that the set of substitutions covered by m.g.u.'s corre- 
sponding to the application of applicable rules under those redices should be maximal. 
[] 

Next we will formally present the three completeness theorems covering the three cases 
presented above, and illustrated by our examples. 

We begin with the case in which we only are interested in the computation of finite 
and total values. 

D e f i n i t i o n  17 We say that  a strategy is lazy if it always selects lazy redices. [] 

T h e o r e m  4 Let II be a simple-BABEL program verifying pfns, E an expression and O 
a data-substitution with dora(O) = vat(E) such that [EO]I = t with t a (total, finite 
and ground) term, under any Herbrand interpretation (specially under the minimal one); 

* ! 
then, for any lazy strategy LNST there exists a narrowing sequence under it EN------~Mt, 
and a substitution $ such that  0 = o" M o .~ and tt~ = t. 

The proof is based on the following lemma that states the main property of lazy 
redices, and more generally of applicable and pending rules, for programs verifying pfns. 

L e m m a  1 Let II be a simple-BABEL program verifying pfns and E = f ( E 1 , . . . ,  En) an 
expression. Then if r = L := R is pending for E on I for some r E I I ,  any other r '  E 1I is 
either pending for E on I ,  or fails for it. 

P r o o f :  If r '  = L' := R' is applicable to E ,  or is pending for I '  with I ~ I '  then for 
i E I ,  in the first case, and i E I - I '  in the second, we will have, as r is pending on 
i, some occurrence u such that  root(E/iu) E F and Vv < u root(E/iv) E C. But as r '  
is applicable or not pending for E on i, we must have some v < u such that  L~/iv is a 
variable, and then L and L' would be strictly subunifiable, against the fact that  II verifies 
pfns. D 

C o r o l l a r y  3 Let H be a simple-BABEL program verifying pfns and u E LR(E); if E = 
M0N * ; ~ M n  is a lazy narrowing sequence such that  in none of its steps we have applied 
a rule on the redex u, then we have 

I. Vv < u Vm < n root(Mm/v) = root(Ely) 

2. We have neither applied any rule on any redex v > u. 
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Proof: 

1. As u E LR(E) we have that  Vv < u such that  root(Ely) E F if i is such that  
v / <  u then we have some rule in II pending for E/v  on I .  Then Lemma 1 tells us 
that  Vv < u root(E/v) E F we do not have applicable rules. So the first rule that  
we will apply along our narrowing sequence will leave root(E/v) unchanged for any 
v < u. After the application of the corresponding narrowing step, for any v < u 
with root(E/v) none formerly pending rule for it can become applicable as M1 and 
E are equal along the pa th  given by u. Then either u remains in LR(M1) or there 
is some v < u such that  any rule fails for 311/v. In the first case we will follow the 
same reasoning to the remaining steps of the sequence; in the second the laziness 
of the computat ion assures us that  we will not apply any rule on any w > u, and 
Lemma I tells us that  we will not do it on any w < u. 

2. As u E LR(E) we have some rule that  applies to E/u ,  and then we can not have 
pending rules, so that  LR(E/u)  = {c}. 

El 

Let us go now to the proof of Theorem 4: 

Proof: As we know that  lazy narrowing is complete (Theorem 3) we must  have a 
narrowing sequence E N ;~Et', and a substitution )` such that  0 = (rE o )` and t')` = t. 
But  we have to prove that  we can get such a sequence under the s t rategy LNST; this will 
be obtained from the former by a sequence of careful modifications. We will construct it 
by induction on the length l of the given narrowing sequence. 

If  t = 0 we have an empty  sequence that  of course is allowable under LNST. 
Otherwise, we consider u = LNST(E)  and we have two possibilities: we make nar- 

rowing on u on the first step of the given sequence, or not. 
In the first case the same step is allowable by LNST and then the result follows by 

induction hypothesis. 
Otherwise, by Corollary 3 we know that  either we have applied a rule on u along 

the sequence or root(t'/u) = root(E/u) but this second case is impossible because u E 
LNST(E) ,  and then root(E/u) E F, so that  for any substitution )` we would have that  

I t')` 1 is not total; and then I t')` l# t. So let E = Mo N * ,~. 

N a~lvli+l, )~,bMt = t', where i is the first step in which we have applied a rule on 
u, and aE = a~ o al o ab. We have the following facts : 

1. Mi/u = (Z/u)a~, as an immediate consequence of Corollary 3. 

' and ' 2. Let r = L := R, then L, E /u  are unifiable via m.g.u, a i a i < a~ o cri. This 
follows from 1 and definition of m.g.u. 

3. E = MeN ) ~ v ,  1 is an admissible narrowing step under LNST. 

4. The steps before the i-th on the given computat ion work on occurrences that  are 
not modified, but  perhaps by some substitution, by the application of r to E.  
Note particularly, because it is very important  in order to maintain the length of 
the sequence, the use of part  ii. in Corollary 3 in order to obtain this fact, and 
consequently the use of the fact that  the given sequence is lazy. 
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. 

Those steps can be given after M; obtaining a sequence (of the same length!) M~ 
N * ,~,.M[+ 1 where ~ o d a ~. era o ai SO that M[+ 1 is a variant of M~+I. 

We can extend the sequence by means of the corresponding variant of the sequence 
-Mi+l N * ~ M t  = t I, to reach M[ by cd b variant of or, so that  we have some ~l such 
that  1 M y  t = t. 

I * I I I  Finally we can apply the induction hypothesis to the sequence M~ N ~=,=bM~, 
whose length is 1 - 1 and is lazy as the original sequence was, and as we saw in 
the proof of Corollary 3, the data-substitutions induced by narrowing steps just can 
slightly change the set of lazy narrowing points: If we narrow E at u getting E '  
through the substitution a, then Yv ~ u we have v E LR(E')  ~ u E LR(E) ,  and 
as LR(E')  is prefix-free we have that  if some v ~ u belongs to LR(E)  - LR(E')  
then we would have [E'/v~(p) = _L under any substitution, and as in order to apply 
any rule at any w < v in E we need a defined value of E / v ,  we have the same for 
E'a, getting that  [Ea]  (p) would be a partial value for any substitution p. So if this 
would be the case for our sequence we would have some a < ere such that for any 
p [Ea](p) is partial, contradicting the fact that  [EO~ is total for some 0 > =E. 

1:3 

In order to extend our results to the computations of (any finite approximation) of 
infinite values, we introduce a dynamic notion of strategy generalizing the static notion 
introduced in Definition 15. 

D e f i n i t i o n  18 A dynamic strategy DS is a function from narrowing sequences to occur- 
rences, such that if q = M r~ * ~ N ,  DS(q) is defined iff N is narrowable, and gives in 
that case a lazy redex in N. [] 

R e m a r k s :  

1. We include the restriction to lazy redices in the definition of dynamic strategies, 
because we want to generalize Theorem 3 to infinite values, and the restriction of 
lazy strategies has been necessary even to cover the finite case considered there. 

2. It  is easy to check that  any of Echahed's results on completeness of strategies and also 
our Theorem 3, are also valid for dynamic strategies, because the static character 
of strategies is never used along their proofs. 

D e f i n i t i o n  19 A dynamic strategy is fair iff if q = M N * ~ N ,  u E LR(N) ,  we cannot 
have a sequence of computations q,~ = MN * *~N,, with n E IN, such that  qo = q, and for 
all i E IN qi+x strictly extends qi, DS(qi) ~ u and u E LR(Ni).  [] 

Intuitively a dynamic strategy is fair iff it cannot infinitely postpone the choice of a lazy 
redes that  remains like that  forever, from some point, along an admissible computation 
under the considered strategy. 

N o t e :  The reason to introduce dynamic strategies is mainly pragmatic. We could develop 
this part  of our theory just for static strategies, but in practice we will have different kinds 
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of problems : on one hand it would be difficult (probably undecidable) to decide if an 
arbitrary (computable) strategy would be fair; on the other hand many simple strategies 
will be unfair : take for instance outermost or innermost ones; we would have in fact 
some lazy and fair strategies, like the corresponding version of breadth narrowing, but 
they should be, in our opinion, too restrictive. We have prefered to introduce dynamic 
strategies that  are thought to be really devised in a dynamic way, getting the fairness 
constraint in different ways according to the particular taste of the user. 

T h e o r e m  5 Let H be a simple-BABEL program verifying pfns, E an expression and 9 
a data  substitution with dora(8) = va t (E)  such that  [E0]~ = t with t a total, ground 
but  (possibly) infinite term, under any Herbrand interpretation. Then for any lazy fair 
dynamic strategy FDS there exists an infinite narrowing sequence under it E = M0 
N ;a0M1 N *", . . . .  Mi N ~ M i + l  oo . . . .  such that Vi 3Ai ~ro o .-.  o o'i-1 o Ai = 0 and 
([ MiAi [)iel~ is a monotonic sequence of finite elements whose limit is [E~]z. 

P r o o f :  As Hv is a domain and the tree of narrowing sequences from E is finitary, we 
know from Theorem 3 that we have a lazy narrowing infinite sequence q as that  looked 
for. As in the proof of our previous theorem we will convert this sequence in other "more 
or less" equivalent to it. For we consider first U = FDS(e),  and, as in that  proof, we 
will check that there must be some i such that in the i-th step of q we have narrowed on 
u. Then we will rearrange the first i steps of the sequence getting an equivalent one E1 
whose first step is allowable under FDS. We will repeat this process for the infinitely many 
steps of the sequences, obtaining a succession of equivalent sequences (q~)~e~ whose first 
n steps, for each q~, are permissible under FDS. 

Then it is clear that if we consider the sequence limit of this succession qoo defined in 
a natural way, we have an infinite sequence allowed by FDS. What it is not trivial is that  
qoo will compute the same value as q; in fact it can be false for arbitrary strategies and 
this is the reason why we said "more or less" equivalent. Take for instance our Example 2. 
We can take as q the sequence 
E2 = MoN ,,Mx N * ,~. . .  Mj N------+¢Mj+I N * ~ . . .  where Mj = p ( s ~ ( i ) , s ~ ( i ) )  i f j  is 

odd and M i = p(sj/2(i), si/2(i)) if j is even, and each narrowing step has been given over 
1 ~  and 2 • li=~ respectively. Then, it is easy to check that if we would take as strategy 

2 2 
the N S T  described there, cr~ would be the (only) sequence making narrowing in j - th  step 
on 1 i and obtaining after j steps M? ~sT = p(s j ( i ) , i ) ,  so that  [-Jie~ ] Mf f  sT l = p(oo,_l_) ~. 
p(oo, oo). 

So what happens in the general case is that qoo is less or equivalent to q, but not 
necessarily equivMent, because some step of q could have been infinitely delayed and so 
avoided by qoo. But  that  is exactly what our notion of fair strategy avoids, at least for 
programs satisfying pfns. Indeed, if we consider the redex ul corresponding to the first 
step of q, we have that ul E LR(E) ,  and if II verifies pfns we have that it will remain 
in the set of lazy redices until a narrowing step will be done on it; otherwise, as we saw 
in our previous proof, the value of the corresponding subexpression E / u l  would be _l_, 
and that of E partial against the hypothesis. But then our fairness restriction assures us 
that  sooner or later this redex will be selected by the strategy, so let us say that  in the 
n-th step of q~ we would apply on u the same rule that was applied in the first step of q. 
But along q all the constructors in t wilt be computed, so that  for any depth h, all the 
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constructors in t up to this depth will be calculated after some (finite) number of steps 
Sh. Then, after iterating the reasoning presented upwards for the first step of q, we would 
get some nh such that  if E = M0N * *~hM, h is the subsequence of q~h constituted by its 
nh first steps, we have that there is some ~h such that I M-h)~h I is equal to t up to depth 
h . [ ]  

Let us finish with our third case. Again we obtain a broader generalization, but  for it 
we have to restrict more the class of admissible strategies. As we said, there are several 
ways to do it, that  we present in the following. 

D e f i n i t i o n  20 Let II be a simple-BABEL program over ~ = (C, F) .  We say that  

1. f is syntactically totally defined by II iff for each tuple of data terms ( t l , . . .  ,t,,) 
with a ( f )  = n, we have some r = L := R E I I  applicable to f ( t l , . . . ,  t=). 

2. II is syntactically complete iff for all f in F, f is syntactically totally defined by II. 

[] 

T h e o r e m  6 Let H be a simple-BABEL program syntactically complete and verifying 
pfns, E an expression, O a data  substitution with dora(O) = vat(E),  and s a finite, ground 
and (possibly) partial term, such that [EO~x ~ s under any Herbrand interpretation; then 
for any lazy fair dynamic strategy FDS there exists a narrowing sequence under it q : E 
N * , ~ N  and a substitution A such that 0 = aE" A and [ NA I-7 s. 

Let us begin noting why fairness is needed even if we would know that  [EO]]I is finite. 
For let us modify our program in Example 3, taking f ( x )  = f ( x )  as the definition of this 
function. Then II verifies all the hypothesis of the theorem, and [p(f(1),  g(1))]t  = p(± ,  1). 
But if we consider the static strategy selecting (always) 1 as redex, we would obtain a 
unique narrowing sequence that does not make any progress at all so that  any reachable 
expression would be the initial one, whose shell is p (± ,  L)  ~ p(± ,  1). 

Now we introduce a formal concept that  will be used to express the fact we are only 
interested in obtaining a value greater than s but not more. 

D e f i n i t i o n  21 Let E be an expression and s a partial value such that  we are interested on 
the evaluation of the partial substitutions 0 such that [EO]x(p) ~_ s under any Herbrand 
interpretation I, and for any environment p. Let u ~ LR(E) ,  we say that  u is unnecessary 
for computing s iff if w is the greatest prefix of u contained in the defined (labelled by 
some constructor) occurrences of s, then for all w' < w we have root(E/w')  E C (in fact 
we will have root(E/w')  = root(z/w').) [] 

We can proceed now with the proof of the theorem. 

P r o o f :  We consider, as in the proof of Theorem 4, a lazy narrowing sequence q : E = M0 
N * ~os ~ and a substitution A such that 0 = aoA and [dA 1_~ ~. It must exist by Theorem 3. 
It is easy to check that  we can suppose that  it does not contain unnecessary steps (those 
applied on unnecessary redices on each intermediate expression Mi, in order to compute 
s.) Indeed, if we have not yet computed s by Mi, and then we make narrowing on an 
unnecessary redex u, we can just eliminate this and all the following steps on redices 
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u I > u, and changing the substitutions accordingly we would obtain a (shorter) sequence 
with the same properties as the original. We have just to i terate the argument in order 
to remove all the unnecessary steps. 

Then we t ry  to convert it in an admissible sequence under the given strategy. For let 
u be the redex selected by it in the beginning; there are two possibilities: either u is a 
necessary redex on E to compute z or it is unnecessary. In the first case reasoning as in 
the proof of Theorem 3 we have that u must be the selected redex in one of the steps of 
q; otherwise the path along q will remain unchanged at 8 f, and as u is necessary on E to 
compute s we would have ] s'A I~- s for any substitution ~. Then we can proceed as in 
that  proof getting a sequence ql equivalent to q, but whose first step is Mlowed by our 
strategy. 

On the other hand, if u is unnecessary to compute 8, and there is not any step of q 
narrowing on u, we know by Corollary 3 that there will be neither any step narrowing in 
any occurrence comparable with u. Then we would take the (or any in general) rule in 
II that  is applicable to (E/u)O. If a '  is the substitution used to narrow E / u  by this rule 
on its root, we have that  # < 8 so that cr and a I are compatible. Then we can execute 
q after this first step, by means of the corresponding substitutions getting a sequence 
ql : E N ;~ls t. Note that as q contains no unnecessary steps, the new sequence remains 
lazy : if a necessary redex would become no more lazy redex after a narrowing step, this 
would mean than the value of some subexpression containing this redex would become 
undefined, but as the redex is necessary in order to compute s we could not do it any 
more, contradicting our hypothesis. Oppositely if we would have unnecessary steps in q 
some of them could have become non lazy without contradiction as it would just imply 
that  the value of some subexpression that  is no needed in order to compute s is undefined. 
So we can get in both cases some ql equivalent to q, but whose first step is allowed by 
our strategy. 

We then have just to iterate the construction, but how long? Obviously until exhaust- 
ing q, in which moment the constructed sequence q' will be allowable under the current 
strategy and will verify the thesis of the theorem. When we are in the first of the two 
former cases we indeed use one step of q in order to compute the following narrowing 
sequence; this is not true in the other case, but  it cannot be repeated infinitely often, 
because some (at least the first) of the remaining steps will correspond to lazy redices 
that  will remain like that  after any narrowing step on an unnecessary redex, and then 
sooner or later some of them must be selected by our fair strategy. [] 

Remarks: 
1. In this case we can not extend the completeness result, without changing the notion 

of admissible strategy, to the case in which dora(O) C var(E). For let us consider a 
new modification of Example 3 : take now f(0)  = 0; f (1)  = 1; f (p (x ,  y)) = 0 as the 
definition of this function. Then if we take E = p( f (x ) ,g (x ) )  and as 0 the empty 
substitution, we have that  for any data  substitution p [E]I(p)  _~ p ( l ,  1). But if our 
strategy would choose 1 as first redex we would have to bound x to 0, 1 or p(x I, y), so 
that  any substitution ~ corresponding to an extension of any of these computations 
would be not a < 8, and the completeness thesis would not be fulfilled. 

2. We could syntactically complete any partial definition by adding the clause f ( x )  := 
f (x ) .  Clearly this would not modify the meaning of the program, but,  of course s if 
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f was not totally syntactically undefined, we would obtain after this modification 
a program not verifying the pfns. In the next section we will prove that  we can 
transform each program in an equivalent one verifying pfns. Besides, if the original 
program is syntactically complete the transformed one also has this property, and 
so we would be in the hypothesis of applying Theorem 6. 

You can see that  the necessity of fairness, the problem reported in part 1 of the previous 
remark, and the necessity to restrict ourselves to syntactically complete programs are all 
of them due to the admission by the strategy of narrowing steps on occurrences that  are 
unnecessary for the searched result. 

In order to avoid these restrictions, we could introduce the notion of goal oriented 
strategy. This would be defined given a goal term s that  must be (it or any other term 
improving it) obtained by the evaluation of the considered expression E (see Theorem 6 
for the corresponding technical details.) We say that  a narrowing strategy GST is goal 
oriented to s if it never selects unnecessary redices in order to compute s; then, we have 
the following 

T h e o r e m  7 Let II be a simple-BABEL program verifying pfns, E an expression, 0 a 
data substitution with dom(O) C_ vat(E), and s a finite, ground and (possibly) partial 
term, such that [EO]x(p) ~_ s under any Herbrand interpretation and for any environment 
p over I; then for any goal oriented to s strategy GST there exists a narrowing sequence 
under it q : EN * , ~ N  and a substitution A such that  0 = ere o ~ and l NA I-1 s. 

P roof :  : Similar to that  of previous theorem; just note that syntactical completeness 
of the program, fairness of the strategy and the restriction to ground expressions EO 
were all just necessary in order to cope with the selection of an unnecessary redex along 
the narrowing process, so we can leave them out once only goal oriented strategies are 
admissible, o 

We even announced in the introduction a third possibility in order to treat the problem 
caused by the computation of partial values. Again we have to generalize the notion of 
strategy in order to describe it. 

Def in i t ion  22 A sufficiently general strategy SGS is a function associating to any ex- 
pression E a set of its lazy redices SGS(E) such that if E is narrowable on some u under 
a, there is some u' E SGS(E) such that  E is narrowable on u' under some o ~ with a < a'.  
D 

Intuitively a general strategy would be the straight generalization of strategies that  is 
obtained by considering functions that select a set of redices instead of a single one. This, 
of course, would introduce some backtracking on redices, increasing the probability to 
maintain completeness under some adverse hypothesis as those introduced in the case that  
we are now studying. On the other hand sufficient generality is captured by the condition 
on substitutions related with possible narrowing steps, that  means that  the narrowing 
steps corresponding to the redices selected by the strategy are sufficiently general, so that  
no substitution corresponding to other redex will be lost, although just redices in the 
selected s e t ,  will be considered. 
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Def in i t ion  23 A narrowing sequence is admissible under a sufficiently general strategy 
SGS iff any of its narrowing steps Mi N , ~ ,  3//+1 is made on some redex in SGS(Mi). D 

Of course one could argue that these general strategies are not real ones, because in 
fact the universal one associating to each expression the set of all its redices would be 
indeed one of them, but it is clear that it does not make any selection at all, what is 
just the objective of strategies. That is true; we introduced complete strategies, that  is 
to say, strategies preserving completeness of narrowing, in order to reduce backtracking 
along computations. This is so because we do not need to consider all the narrowing steps 
from the reducing expression, but just the corresponding to one redex: this selected by 
the adopted strategy. Then, what we are now proposing is the consideration of strategies 
selecting sets of redices, that of course will be only used in practice when we do not know 
any complete ordinary strategy. And obviously in these cases we will look for strategies 
selecting sets as small as possible (although this is not at all a theoretical imperative.) 

We should extent the notion of dynamic strategy to general ones in order to introduce 
fairness, what can be done in a rather straightforward way. Then we have 

T h e o r e m  8 Let II be a simple-BABEL program verifying pfns, E an expression, 0 a 
data substitution with dora(O) C vat(E), and s a finite, ground and (possibly) partial 
term, such that  [EO]1(p) ~_ s under any Herbrand interpretation and for any environment 
p over I; then for any sufficiently general strategy SGS there exists a narrowing sequence 
under it q : E N * ; , ~ N  and a substitution A such that 0 = aE o A and ] NA ]-7 s. [] 

4 Transforming specif icat ions 

Echahed has made in [1] a detailed presentation of an algorithm that transforms a spec- 
ification into an "equivalent" one fulfilling the pfns. We will present a simple example 
in order to illustrate the algorithm, and mainly to explain why we have quoted the word 
equivalent in our previous sentence. 

E x a m p l e  4 Let us consider the following simple-BABEL program (and also specification 
in Echahed's sense): 

f(0,  0) := 0 
f(s(x),O) := 1 
f ( x , s ( y ) )  : =  2 

Echahed's transformer would transform it, into the following specification: 

f ( 0 , 0 )  : =  0 
:=  1 

f (o ,  : =  2 
f(s(x),s(y)) := 2 

n 

We need this transformation because in the original specification we had a situation 
of strictly subunification on the first argument of the function, between the third and 
the two first equations. In order to eliminate this problem we unfold the x in this third 
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equation, introducing a new equation for each constructor in the signature over which we 
are working. Note that  in the general case we have to consider all the constructors in 
that  signature, and not just those included in the patterns of the conflicting equations; 
this has been just a coincidence in our example. Also, in the general case we would 
have to iterate the algorithm in order to avoid conflicts between a variable and a pattern 
containing nested constructors: for instance if we had two patterns x and 8(s(y)) it would 
not be sufficient to unfold x into 0 and s(x'), we would have to iterate the process because 
a conflict between x' and s(y) remains. In any case, we think that  once the idea of the 
algorithm is understood, it is more or less easy to guess how it would work in the general 
case, so that  we will not include here a more detailed presentation of the algorithm; this 
should be just a copy of that  in [1] . 

Once we have understood the transformation, we will probably assert without any 
doubt that  the original and the obtained specifications are equivalent. But this immediate 
assertion needs a more accurate statement: in the general case S and TR(S) will be 
equivalent for ground expressions, but not for arbitrary ones. This is exactly the same 
problem that  we reported in part 1 of our last remark. It was not a problem for Echa.hed 
because he was only interested in the evaluation of ground terms. 

For instance, we had for the original specification in our example If(x, s(y))]1(p) = 2 
under any Herbra~ld interpretation, and for any environment p. Nevertheless, this ex- 
pression is undefined under TR(S). This is completely reasonable under our semantics of 
simple-BABEL programs, because we admit partial values, and of course they can appear 
not only as results but also as arguments. So we have as possible environment one verify- 
ing p(z) = _1_, and clearly f(_l_, s(y)) is undefined for any value of y. Of course, this would 
only be a problem for us if we are interested on general completeness results covering also 
non-ground cases. 

Fortunately, we have got a new transformer, pointed to us by J.J.Moreno-Navarro, 
fully preserving the semantics of programs. Again we will begin by showing how it works 
by means of an example, the same that was used before. 

If we denote by TR' this new transformer, TR'(S) would be the following "simple- 
BABEL" program: 

f(x,O) := f'(x,O) 
f(y,O) : =  f"(y,O) 
f(x,s(y)) : =  2 

f ' ( 0 ,  0) : =  0 
. =  1 

You can see that  the philosophy of the transformer is just the opposite of that  of the 
former one. Instead of particularizing variables, we generalize non-variable patterns. 

We had also to quote a word in the sentence before the description of the transformed 
program. This is because, unfortunately, it is not a real simple-BABEL program, because 
for instance f(3,  0) matches both f(x, O) and f(y, 0), but If '(3,  0)] = _k ~ 1 = If"(3,  0)]. 

Nevertheless, we can generalize the class of simple-BABEL programs, relaxing the 
non-ambiguity restriction, by putting instead the following generalized non-ambiguity 
restriction: If L1 :-- E1 and L~ := E~ are in II and L1 and L2 are unifiable via m.g.u. ~r, 
then either IEl(a)]  -- [E~(a)l or one of them is undefined. 
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Of course, we need slight modifications in our definitions in order to cope with this 
generalization. For instance, in Definition 5 we have to add the condition [E]I ~ 3_ to 
the description of the first ease. Also the strong soundness result presented in Theorem 2 
is lost, but we have yet its weak version saying [MaM],(p) ~_ [NaM],(p), what is enough 
taking into account the fact that usually we are only interested in the computations of total 
values, and the completeness result whose validity remains and says us that  selecting the 
appropiate branch we can ever compute by narrowing the (total) value of an expression. 

Let us go now with the formal definition of the new transformer. 

Def in i t ion  24 Let f be a function defined in a simple-BABEL program II. We say 

. For each argument i the pattern defining it in a rule L := R corresponding to f is 
too particular iff there exists some other rule defining f ,  L' := R', with the pattern 
defining that  argument strictly more general than the former; that  is to say, if t and 
t ~ are those patterns, there exists a non-trivial substitution a with t = t~a. 

. If the pattern t defining the i-th argument of f in a rule L := R is too particular, 
we call the most general covering (mgc) of it in H any renaming of the pattern t' of 
that  argument on any other rule for f in 1-I that was not too particular, and verifies 
t = t'a for some substitution cr. 

13 

Def in i t ion  25 We obtain the transformed version TR'(H) of a simple-BABEL program 
II in the following way: 

- If none of the patterns in L := R E I] is too particular we include L := R in TR '(H). 

- If tpp(L := R) # ~, where tpp(r) denotes the set of arguments with too particular 
patterns of a rule, we include in TR'(II) a couple of rules 

I ! f(t ' l , . . . , t~) := f'~(tl,...,t~) 
f ' ( t l , . . . , tn)  := R 

where L = f ( t l , . . . ,  t,,); t~ = ti if this argument is not too particular, and t~ = 
mgc(tl) if it is too particular; and f '  is a new defined function for each so developed 
rule r. Of course, the sets of variables in each t~ will be taken disjoint, which is 
possible by the linearity of the rules in II. 

O 

T h e o r e m  9 If I I  is a simple-BABEL program, its transformed version TR'(II) is a general 
simple-BABEL program, verifying the pfns, and such that  any (possibly non-ground) 
expression has the same semantics under both programs. D 
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Remarks: 

1. The size of TR'(H) is always linear in the size of II; in fact this size can only be 
increased by a factor of 2 when the new transformer is applied. Oppositely, even if 
II has no nested constructors in the patterns of its rules, the size of the definition 
of a function in a program can increase by a factor of c n where n is its arity, and 
c the number of constructors in the signature. One can check that things will be 
even worse if the patterns include nested constructors, Mthough this is not, indeed, 
a very usual case in practice. 

2. From the pragmatic point of view, general simple-BABEL programs could not be 
very interesting if traversing of many failing branches in a computation tree implied 
too many wasted time in useless unifications. But this is not a real problem for 
the programs obtained by means of our transformer, because the only useless uni- 
fications for them will be those leading us to sorne of the introduced functions f~, 
and immediately the computation would fail if this was indeed a useless path. For 
instance, if in our example we compute f(3, 0), the first new rule will lead us to 
f '(3, 0), and immediately this branch will fail; then we will apply the other possi- 
ble rule, obtaining fI~(3, 0), and then 1. Moreover, although this new transformer 
introduces many new functions, they could be implemented more efficiently than 
ordinary ones, because they are always just defined by a single rule. 

On the other hand, if we computed the possible values of f (x ,  1) we would imme- 
diately obtain the answer 2, without any binding for x; instead, if we computed it 
using TR(II) we would obtain a couple of answers 2, with x = 0 and x = s(x') as 
bindings. We have not only lost the most general answer, covering also the case 
x = _1_, but also we have introduced an unnecessary duplication of answers, what 
could be dramatic if this situation presented repeatedly in a nested way. 
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