
From Reduction Machines
To Narrowing Machines

Rita Loogen
RWTH Aachen, Lehrstuhl fiir Informatik II
Ahornstrage 55, W-5100 Aachen, Germany

Abstract

Narrowing, the evaluation mechanism of functional logic languages, can be seen as a gener-
~zation of reduction, the evaluation mechanism of purely functional languages. The unidirec-
tional pattern matching, which is used for parameter passing in functional languages, is simply
replaced by the bidirectional unification known from logic programming languages. We show
in this paper, how to extend a reduction machine, that has been designed for the evaluation of
purely functional programs to a machine that performs narrowing. The necessary extensions
concern the realization of unification and backtracking. The latter has to be incorporated to
handle nondeterministic computations. It turns out that the resulting narrowing machine can
also be seen as an extension of Warren's Prolog engine [Warren 83]. This extension enables a
space efficient handling of nested expressions and embodies an optimized treatment of deter-
ministic computations. As in Warren's machine the central component of the machine is a stack
that contains environments, i.e. activation records of function calls, and choice points to keep
track of possible alternative computations. It is ensured that choice points always contain the
minimal amount of information that is necessary to restore a previous state on backtracking. A
complete specification of the machine and of the translation of a sample language into abstract
machine code is given. To test the feasibility of the new implementation technique a preliminary
implementation has been developed in Miranda.

1 I n t r o d u c t i o n

The integration of the functional and logic programming paradigms has been extensively investigated
during the last years (for surveys see e.g. [DeGroot, Lindstrom 86] and [BeUia, Levi 86]). Logic
languages have more expressive power than functional languages while the latter have a simpler
execution model based on the reduction principle. Reduction applies when an expression matches
the left-hand side of a program statement (function definition) and consists in replacing the expression
by the corresponding right-hand side.

Functional logic languages are extensions of functional languages with principles derived from logic
prQgranaming. While their syntax almost looks like the syntax of conventional functional languages,
their operational semantics is based on narrowing, an evaluation mechanism that uses unification
instead of pattern matching for parameter passing. Narrowing is a natural extension of reduction
to incorporate unification. It means applying the minimal substitution to an expression in order to
make it reducible, and then to reduce it.

Reduction machines for compiler implementations of functional languages, in general, make use of
a stack to control the reduction process. The stack contains frames representing the environment of
function calls, e.g. the actual parameters and storage for the local variables of the function definition.
Of course, higher-order functions and/or data structures additionally require the use of a heap or
graph structure. A survey of different techniques can e.g. be found in [Field, Harrison 88].

439

Compiler implementations of logic programming languages usually are variations of Warren's
Prolog Engine [Warren 83] whose main components are a stack, a heap and a trail. The stack is
used to store both the environments (stack frames) of clauses and so-called choice or backtrack points
indicating possible alternative computations and containing information necessary to restore previous
states of the machine. The heap, which is organized as a stack, is used for the construction of lists
and structures. The trail contains references to variables that have been bound during unification
and that must be unbound on backtracking.

Taking these well-known techniques for the implementation of functional and logic languages as
a basis we develop in this paper a technique for the sequential implementation of functional logic
languages whose operational semantics is based on narrowing. On the one hand, the narrowing
machine that will be presented is an extension of a stack-based reduction machine by components
that are necessary for the realization of unification, the more general parameter passing mechanism,
and backtracking which must be integrated to handle alternative computation paths induced by
the generalized parameter passing. On the other hand, the machine can be seen as an extension of
Warren's Prolog engine by features that enable the handling of nested expressions and lazy evaluation.
Furthermore, a special property (nonambiguity) of the class of functional logic programs that we
consider makes an optimized treatment of deterministic computations possible. Up to now the
narrowing machine has been implemented in Miranda* to test its feasibility. A more elaborate
implementation in C is in preparation.

The paper is organized as follows. In section 2 we describe the syntax and operational semantics
of a sample functional logic language, called Simple BABEL. Section 3 presents the heart of the
narrowing machine. The compilation of Simple BABEL programs into machine code is specified in
section 4. In section 5 we report on important extensions that are necessary to implement higher-
order functions and lazy evaluation. Section 6 describes the current state of the implementation. A
discussion of related work is given in section 7. Section 8 finally contains some conclusions.

2 A Simple Functional Logic Language

In this section we define a small abstract language called Simple BABEL. It corresponds to a subset
of the functional logic language BABEL [Moreno,Rodriguez 88,89]. Simple BABEL is a first-order
weakly typed functional logic language based on a constructor discipline. Its operational semantics is
innermost narrowing. The restriction to Simple BABEL simplifies the explanation and specification
of the narrowing machine. The extensions that are necessary to cope with 'full' BABEL, will be
discussed in section 5.

2 .1 S y n t a x o f S i m p l e B A B E L

Let DC = U~eN DCn and F S = U,e~ F S ~ be ranked alphabets of constructors and function symbols,
respectively. We assume the nuUary constructors 'true' and 'false' to be predefined. Predefined
function symbols are the boolean operators and the equality operator. In the following, letters
e, d, e . . . are used for constructors and the letters f , g, h . . . for function symbols.

The following syntactic domains are distinguished:

* Variables X , Y, Z . . . E Vat

* Terms s, t G Term: t

• Expressions M , N . . . E Exp:

::= X % Variable
[c(l~ t,,) % c E D C ~ , n > _ O

*Miranda is a trademark of Research Software Limited,

44O

M ::= t % t E Terra
I c(M~,. . . ,M~) % c E D C " , n > O
I f (M , , . . . , M ,) %feFS",n>>_O
1 (B --* M) % guarded expression
I (B ~ MII3M2) % conditional expression

B ~ M and B ~ Mlt3M2 are intended to mean "if B then M else not defined" and "if B then
M1 else M2", respectively.

A Simple BABEL-program consists of a finite set of defining rules for the not predefined function
symbols in FS. Let f E F S m. Each defining rule for f must have the form:

f (t l , . . . ,trn) := M

and satisfy the following conditions:

1. Data Pattern: ti E Term.

2. Left Linearity: f (t l , . . . , t,n) does not contain multiple variable occurrences.

3. Local daermi~isr~: v a r , (f (t l , . . . , t m)) _~ vats (M) .

4. Nonambiguity: Given any two rules for the same function symbol f :

f (t l , . . . ,t,~) := M and f (s l , . . . ,s,~) := N,

if f (t l , . . . ,tra) and f (s l , . . . ,sin) have a most general unifier ~ then Mcr, N~r are identical.

Ma denotes the expression M where all variables X have been replaced by a(X).

If necessary, the followingrules for the predefined function symbols are implicitly added to a Simple
BABEL program.

:= false [f a l seVY := Y]
:= Y true V Y := true

:= t rue % c E'DC °,
:= (x~ = ~) A, . , ^ (x . = Y~)

% c E DC", n > O
:=false % c E DC", d E DC'*, e ~ d or n # m

• Rules for the boolean operations:

-~ false := true] false A Y
-~ true := false] true A Y

• Rules for the equality operator '= ' :

(c = c)
(c(X, , x ,) = c (~ , . . . , Y ,))

(c(X~,.. . , X~) = d(Y~,..., ~ ,))

2 . 2 N a r r o w i n g

Narrowing is described inductively. Narrowing rules define local computation steps. The narrowing
relation specifies rewriting within expressions.

The evaluation mechanism of functional languages (pattern matching and reduction) only allows
the evaluation of expressions which do not contain free variables. By replacing pattern matching
by unification it is possible to evaluate general expressions. Unification allows to bind free variables
to patterns given in the rules and thus to generate an instantiation of the given expression that is
reducible. The result of a narrowing sequence is a modified expression and a substitution for the
free variables in the original expression. In general several outcomes are possible for an expression
containing free variables.

441

2.2.1 N a r r o w i n g Rules

---% C_ Exp × Ezp with a : liar --* Ezp

Let ~ denote the empty substitution, i.e. ~(X) = X for all X E Vat.

1. (true ---* M) ---% M (true ~ M1DM2) ---% M1 (false --~ Mlt3M2) ----~, M2

2. Let f (t l , . . . ,tin) := R be a rule of some fixed program and f (M] , . . . , M,~) an expression.

If ~ U cr : Vat --* Ezp is a most general unifier with tiO =Micr for 1 < i < m, then:

f(M~ ,M,~) ----~ RO.

The second narrowing rule describes the application of a Simple BABEL rule for the evaluation of a
function application and corresponds to the copy rule or fl-reduction in the reduction semantics of
functional languages. Simple pattern matching corresponds to the determination of a substitution
O : Var ~ Ezp with rio = Mi, while unification of 'pattern ' ti with expressions Mi explicitly allows
the binding of variables in Mi. Such bindings are given by the subfunction a of the most general
unifier 0 U a. 0 describes the binding of local variables in the BABEL rule.

2.2.2 N a r r o w i n g R e l a t i o n

The narrowing relation ~ C Ezp x Exp where o" : Var --* Exp is inductively defined by:

• If Mi ----~ N~ for i E {1 , . . . , n} then

- c(M1 , Mi Mn) ==~ c (M l a , . . . , Ni , M,a)

- f (M ~ , . . . , M i , . . . , M~) ~ f(M~a,..., N,, . . . , M,a)

• B - - - ~ B ~ implies

- (B --* M) ==*, (B' --* Ma) and (B --* MIOM2) ~ (B' ~ MxaClM~a)

The execution of several computation steps is given by the transitive, reflexive closure of the
narrowing relation with composition of the substitutions, = ~ .
Narrowing of a Simple BABEL expression M may lead to the following outcomes:

• Success: M ~ t with t E Term,

• Failure: M ~ N, N is not further narrowable and N ~_ Term,

• Nontermination.

For simplicity we consider in the following sections first the leftmost innermost narrowing strategy.

2.3 Programming in Simple B A B E L

A Simple BABEL program looks like a functional program. Additional expressive power is provided
by the free (logic) variables that may be contained in the expressions that are to be evaluated. The
definition of the append function for list concatenation

append ([1, Z) := Z.
append ([X I Y], Z) := [X I append(Y, Z)].

can e.g. be used

• in a purely functional way, as in append([a, b], [b, a]),

442

• to compute llst differences, as in the expression

(append(X, [a, b]) -- [b, a, a, b]) = true

• or to test, if a list is a sublist of another list:

(*) (append(X, append([a, bt, Z)) = [b, a, b, a, b]) = true.

Note that it is not advisible to use the expression (append(X, In, b]) = [b, a, a, b]) to compute the
difference of the two lists, as it would yield, in addition to the unique solution true, binding X to the
list [b, a], infinitely many successful computations with the result false, binding X to lists different
from [b, a].
A successful innermost narrowing sequence of the expression (*) is the following:

(append(X, append([a, bl, Z)) = [b, a, b, a, b]) = t r u e

=~, (append(X, [a I[b I Z]]) = [b, a, b, a, b D = true
==Vix/[xqy,l} ([X' l append(Y', [a I [b I Z]])] = [b,a, b, a, hi) = true
~{X' /b} (append(y', [a I [b I Z]])-- In, b, a, b]) -- true
~ Y ' / N ~ ([a I[b I Z]] = [a, b, a, b]) = true
=~{z/[a,bl} true = true
==~ true

It yields the variable bindings {X/[b], Z/[a, b]}.

3 The Narrowing Machine

A goal for a given Simple BABEL program is any expression M. To solve a goal, the narrowing
machine tries to reduce it to a normalized form. This means that the left hand sides of rules for
the defined and predefined function symbols are unified with appropriate subexpressions, which are
then replaced by the corresponding instances of the rule's right hand sides. The machine tries the
program's rules in their textual ordering and evaluates arguments from left to right; it backtracks
when a failure or a user's request for alternative solutions occurs.

3.1 Components of the Store

The store of the narrowing machine contains the following six components:

• program store ps : PAdr ---~ Instr
The program store contains the translation of the program rules into abstract machine code.
This component remains unchanged during the evaluation of programs.

We choose PAdr := ~q. The set Instr of machine instructions will be explained later.

• instructio~i pointer ip E PAdr
The instruction pointer points at the address of the next instruction in the program store that
has to be executed.

• data stack d E Adr*
The data stack is used for all accesses to the graph, which contains the representations of terms.
The data stack entries are graph (heap) addresses, Adr := ~q.

The arguments of function calls or constructor applications will be passed via the "data stack
and the result of these evaluations will be returned on top of this stack. Furthermore it is used
during unification to organize the scanning of argument terms.

443

• (en,,ironm .O aack st (aa u Paa u u {?})*
The environment stack is the central component of the machine. It is used to store the en-
vironment of function calls as in a reduction machine. For the realization of narrowing one
furthermore needs to store special control information (choice points) in order to keep track
of possible alternative computations. Thus, environments contain the control information for
forward computations while choice points control backward computations, i.e. backtracking.

The environment stack is accessed via two pointers:

- the environment pointer ep E IN indicates the topmost environment (function or activation
block) on the stack;

- the backtrack pointer bp E IN indicates the topmost choice point.

The environments of function calls have the same structure as in reduction machines, say

{ nlv, Ivar s, args , sep, ra)

where

- nlv E IN is the number of storage locations reserved for local variables in this environment
block.

- lvavs E (Adr U {?})"~ are nlv stack positions for local variables. When the environment
block is created, these positions are initialized with the symbol ? to indicate that a binding
has not yet occurred. During pattern matching the ? will be overwritten by the pointer
to the graph node representing the expression to which the local variable must be bound.
For simplicity we always reserve place for the maximal number of local variables occurring
in a rule of the function corresponding to the environment block.

- avgs E Adv* is the lists of arguments of the function call. The arguments are represented
by pointers to their graph representation.

We adopt here the handling of arguments in reduction machines. In Warren's machine
the arguments are accessed via special argument registers and saved in the choice points if
alternative evaluations of a clause are possible. A similar treatment would also be possible
in the narrowing machine by replacing the data stack by sets of registers.

- sev E IN is the saved pointer to the previous environment block.

- ra E PAdr is the return address of the function call, i.e. the program address at which
the computation has to be continued after a successful termination of the function call.

Choice points have the following components

(tds, nds, sds, tt , sbp, badr),

where

- The components tds, nds E IN ("top of the data stack, number of saved data stack posi-
tions") and sds E Adr* ("saved data stack positions") give information of how to restore
the data stack on backtracking. The stack has to be deleted up to position tds and then
the nds saved entries, sds, have to be copied onto the stack. The management of the
choice points and backtracking will be described in detail in the next subsection.

- tt E IN indicates the length of the trail to which this must be reset on backtracking.
Resetting means unbinding the variables noted in the trail.

- sbp E IN is the saved backtrack pointer, i.e. the pointer to the previous choice point.

- badr C PAdr is called backtrack address and indicates the code address of the next alter-
native rule.

444

Simple choice points are also required in a reduction machine that does pattern matching
explicitely and not by using a pattern matching compiler. These reduction choice points contain
the address of the next alternative rule and the original depth of the data stack. They occur
only on top of the stack in order to enable the switch to an alternative rule when the matching
with a rule fails. As soon as a matching is successful, i.e. an applicable rule has been found,
the choice point can be removed from the top of the stack. In the narrowing machine choice
points must not be deleted when a rule is applicable, because a successful unification does not
imply that no other rule is applicable. Later we will discuss a special situation that allows an
early deletion of choice points. The environment stack of the narrowing machine in general
contains a mixture of choice points and environments. The top of the stack is always indicated
by the maximum of the environment pointer and the backtrack pointer.

• trail tr E Adr*
The trail is used to mark variable bindings that may have to be reset (undone) if backtracking
is necessary.

• graph G : Adr ---* GNodes
The graph or heap is necessary for the representation of terms, i.e, variables and structured
terms. Furthermore the graph may contain special nodes called black holes which will be used
to construct term representations top down during unification.

The set GNodes of graph nodes contains the following types of nodes:

- variable nodes:
(VAR, a) with a E Adr 13 {?}, where (VAR, ?) represents an unbound variable

- constructor nodes:
(CONSTR, c, al : . . . : am) with c E DC and ai E Adr (1 < i < m)

- black holes: (HOLE).

The state of the machine will always be given by a tuple of the form

where

(ip, d, st, ep, bp, tr, G) E Store

Store := PAdr × Adr* x (Adr U ~q U PAdr U {?})* x IN ~ x Adr* × [Adr- -~ GNodes]

and stacks are assumed to grow to the left.

To sum up the narrowing machine has been developed by extending a reduction machine

1. by variables nodes in the graph components which are needed to represent the free variables of
the goal expressions and their bindings,

2. by the trail to keep track of variable binding and finally

3. by the more complex choice points on the environment stack.

3.2 Organization of Backtracking

For each function call with several defining rules a choice point is allocated on the environment stack.
The choice point contains information to restore the current state of the machine on backtracking:
the depth of the data stack, the length of the trail, the previous backtrack pointer and the code
address of the next alternative rule which is used to reset the instruction pointer. The environment
stack will be saved by the choice point on its top. The environment pointer does not need to be
saved as it points at the environment just below the choice point. For simplicity we do not reset

445

the graph on backtracking, although this would be no problem by noting its "depth" in the choice
point. As the trail will always grow during forward computations and only shrink on backtracking
it is sufficient to store its length in choice points.

Unfortunately, the data stack does not have such a regular behaviour. Due to the nesting of
expressions it is possible that the depth of this stack becomes smaller than the depth stored in the
last choice point.
Consider e.g. the program rules

f (X) := h(a,g(X))

and evaluation of the expression f (X) .

g (a) : = c
h(a, el):= c g(b) := d

First an environment for the call of f will be generated.
Then a pointer to the graph representation of constructor a and a pointer to the unbound variable
X will be loaded on the data stack. The call g(X) leads to the generation of an environment for
g on the stack. Thereby the pointer to X is deleted from the data stack. As function g allows for
two alternative computations a choice point is created. At this time the data stack contains the
representation of a and has depth 1. The computation of g(X) using the first rule and binding
the variable X to the constructor a is successful and yields a pointer to the graph representation
of constructor c on top of the data stack (see figure la). Now function h is called with arguments
a and c taken from the data stack. Especially the pointer to a that is needed for the alternative
computation represented by the choice point is eliminated and must be saved.

In the narrowing machine this will be done by extending the choice point on top of the stack by
the part of the data stack that is destroyed but must be saved for backtracking (see figure lb).

The data stack shrinks when a function call is executed or a new structure is generated in the
graph. Note that the depth of the stack may only become smaller than the depth stored in the last
choice point when this is on top of the stack. Thus it is easy to recognize when a part of the data
stack that has to be saved, is destroyed and, as the choice point is on top of the stack, it is easy to
save this part of the data stack in the choice point.

When a choice point is created, no data stack entries are saved in the choice point, i.e. sds =
e, nds = 0 and tds is the current depth of the data stack. The tds entries of the data stack must
be saved during the further evaluation. Only if the depth of the data stack sinks below the saved
depth, data stack entries are saved in the choice point. In this way the size of choice points is kept
as small as possible.

In general backtracking will be initiated if a unification fails. The instruction pointer is set to the
backtrack address stored in the choice point. The bindings noted in the trail since the generation of
the choice point are undone and eliminated. The entries for the local variables within the environment
just below the choice point - - this environment belongs to the function cail that generated the choice
point - - will be reset to '? ' . The environment pointer will be set to point at this environment. To do
this resetting the number of local variables is the first entry of each environment. Finally the data
stack has to be reset to the depth tds noted in the choice point and the data stack entries saved in
the choice point have to be restored on top of the reduced stack. The formal specification of the
backtracking operation is given in figure 2.

3.3 M a c h i n e I n s t r u c t i o n s

The machine instructions are grouped into unification instructions, control instructions and graph
instructions.

Uni f ica t ion I n s t r u c t i o n s

The unification of an argument of a function call and the formal parameter term of a function rule is
done by traversing the parameter term top down and performing local comparisons. As a term may
be a variable or a constructor term, we distinguish two instructions for local unification steps. The
formal specification of these instructions is given in figure 3.

446

D a t a S tack

Iiftlr- t l

a)

G r a p h

'VArt (X),
~X.~ -] OONSTR~ a~ 0 ~ ' CONSTR, a, 0

GONSTR, c, 0

-I '°j
bp

t

Choice Point

: t I ~°' tr

Trail

E n v i r o n m e n t S tack

'*l l,nv jt
ep

ip
C o d e !
f (X) := (a,g(X))

g(a):=c
~g(b):=d

h(a, d) := c

D a t a S tack

b)

E n v i r o n m e n t S tack Extended Choice Point

ep

cur(h) *dSl I ndsl
J

bp

sds
I

G r a p h

I vA~ (x), - ~
I CONSTR~ a~

I CONSTR~ a~

I c°Ns, T~,~,° I

~t

, I"pl'~
(

Trail

I

Code

/ (z) := h (~ , g (Z))

g(a) := c
- ~g(b) : = d

ip ,, h(a, d) := c

Figure 1: Example -- Extension of choice points

447

backtrack(ip, d,~ : . . . : dl , s t , cp, bp, tr, G)
:= let st[bp..1] = tds : nd8 : sds : t t : sbp : badr : k : Iv1 : . . . : tvk : at : . . . : am : ep ~ : ra : s t '

in (badr, sds : dtd, : . . . : dx,
tds : n d s : ads : t t : sbp : badr : k :? : . . . :? : ax : . . . : am : e f : ra : s t I,

bp - ntis - 5, bp, tr[1..tt], undo(G, tr[tt . .Ig(tr)]))

where undo(G, t r) := i f t r = ~ then G else let tr = a : t r ' in undo(G[a/ (VAR, ?)],tr ')
and Ig(tr) denotes the length of the trail tr .

Figure 2: Backtracking

C [UNIFYVAR i] (ip, do : d, s t , ep, bp, tr, G)
:= i f G(do) = (HOLE) then (ip + 1, d, st[ep - i/do], ep, bp, tr, a[do/(Vhlt, ?)])

else (ip + 1, d, st[ep - i/do], ep, bp, tr, G)

C [UNIFYCONSTR (c, n)] (ip, do: d, st , cp, bp, tr, G)
:= let a~ : . . . : arr+l := n e w (G , n + 1)

in f iG(do) = (CONSTR, c, bl : . . . : bn) then (i p + 1,bl : . . . : b,~ : d, st , ep, bp, tr, G)
else i fG(do) = (VAR, ?)

then (i p + 1,a~ : . . . : a•+l : d, s t , ep, bp, t r : do,
G[do/{VAR, a l > , a l / (C O N S T R , C, a 2 : . . . : an+l), a 2 / (H O L E) , ' ' ' , an+I/(HOLE)])

else i f G(do) = (HOLE)
then (ip + 1 , a l : . . . : a n : d, s t , ep, bp, tr,

G[do/(CONSTIt, c, al : . . . : an), a l / (HOLE) , ' ' ' , an/(ItOLE)])
else backtrack (ip, do : d, s t , ep, bp, tr , G)

where new (G, n) := let a = mJn{adr E Adr I G(adr) is undefined}
in i f n = 1 then a else a : new(G[a/ (HOLE)] ,n -- 1)

Figure 3: Unification instructions

• UNIFYVAR i is used to bind the ith local variable to the argument term represented by the
pointer on top of the data stack. It moves the pointer from the data stack to the i th local
variable position in the environment. If the pointer refers to a black hole node this is replaced
by an unbound variable node.

• UNIFYCONSTR (c, n) is used if the parameter term has the top level constructor c and n
component terms. It compares the constructor c with the graph node indicated by the top
element of the da ta stack. If the top element of the data stac~ points at a constructor node
with constructor c and n components, the pointer on top of the stack is replaced by the
addresses of the components of this constructor node (pattern matching). The unification
with the component terms will be done by the subsequent unification instructions. If the top
stack element points at an unbound variable node, this variable is bound to a newly generated
c-constructor node. For the n components of this node black holes are constructed. The
addresses of these black holes are stored in the constructor node and on top of the stack. If
the top element of the stack points at a black hole this node is overwritten by a c-constructor
node and again black holes are generated for the components. In all other cases, backtracking
is started.

448

C [CALL (f , n , k , j)] (ip, d , : . . . : d l : d, st, ep, bp, tr, G)
:= let top = max{ep, bp} in

if ep = top and j > 0
then % tail recursive call

t e t s t = k ' : a ' 1 : . . . :a} : ep' : ra ' : s f in
(c a (f) , d , k : ~ : dl : . . . : d.: ep': r. ': st',ep - j + k + . , bp, tr, G)

k times
else let st = tds :nds : st' and lg(d) = m

and newenv = k : ~ : dl : . . . : dn : ep : ip + l in
k times

if bp = top and tds > m % extension of choice point
then (ca(f) , d, newenv : m : n d s + (tds - rn): dtd,-,~ : . . . : dl : st',

top + k + n + 3 + (tds - m), bp + (tds - m), tr, G)
else (ca(f), d, newenv : st, top + k + n + 3, bp, tr, G),

where ca(f) denotes the code address (the address of the first line of code) of the function f .

C [RET j] (ip, d, st, ep, bp, tr, G)
:= let st[ep..1] = k : al : . . . : aj : ep' : ra : st ' in

if ep > bp then (ra, d, st', ep', bp, tr, G) else (ra, el, st, ep', bp, tr, G)

C [JMP l] (ip, d, st, ep, bp, tr, G) : = (l,d, st, ep, bp, tr, G)

JPF
C [{ JPT }l] (zp, d0 :d, st, ep, bp, tr, G[do/{CONSTR, b,e)l)

. . . f false
:= zJ0 = ~ true ~ then (l,d, st, ep, bp, tr, G) e l se (i p + 1, d, st, ep, bp, tr, G)

% J

Figure 4: Instructions for the forward control

Forward Contro l Ins t ruc t ions

The forward control instructions are the same as in a reduction machine except that the CALL-
instruction may lead to the extension of the top level choice point. The formal specification of these
instructions is given in figure 4.

• The evaluation of new function calls is initiated by the instruction CALL (f , n, k , j) . A new
environment is put on top of the environment stack taking n pointers to arguments from the
data stack and reserving place for k local variables. If the fourth parameter j is different from
0, the instruction overwrites the previous environment if this is on top of the stack (optimized
handling of tail recursion). In this case the fourth parameter gives the number of arguments
and local variables in the current environment block.

• RET j successfully finishes a function call. The parameter j gives the number of arguments
and local variables in the current environment. The instruction pointer is set to the return
address and the previous environment pointer is restored. Note that the current environment
can only be deleted if it is on top of the stack. If a choice point is on top of the stack the
environment will be saved, because it might be needed in an alternative computation.

• JMP t, JPT I, JPF t denote simple and conditional jump instructions.

44g

C [TRY_ME_ELSE 1] (ip, d, st, ep, bp, tr, G)
:= let top = max{@, ep} in (ip + 1, d, lg(d) : O: lg(tr) : bp : l : st, ep, top + 5, tr, G)

C [RETRY_ME~LSE/] (ip, d, tds :nds : sds : tt : sbp : badr : st, ep, bp, tr, G)
:= (i p + 1,d, tds : rids : sds : t t : sbp : 1 : st, ep, bp, tr, G)

C [TRUST_ME_ELSE_FAIL] (ip, d, tds :nds : sds : tt : sbp : badr : st, ep, bp, tr, G)
:= (ip + 1, d, st, ep, sbp, tr, G)

e [BACKTRACK[(ip, d, st, el), bp, tr, G) := backtrack (ip, d, st, ep, bp, tr, G)

C [POP] (ip, d, st, ep, bp, tr, G)
:= if ep > bp then (ip + 1, d, st, ep, bp, tr, G)

else let st = tds :nds : sds : tt : sbp : badr : st I
in if Ig(tr) = tt then (ip + 1, d, st', ep, bp, tr, G)

else (ip + l, d, st, ep, bp, tr, G)

Figure 5: Instructions for the backward control

B a c k w a r d Con t ro l I n s t r u c t i o n s

The formal specification of the backward control instructions is given in figure 5.

If a program contains more than one rule for a function symbol, the code for this flmction starts
with the instruction TRY_ME_ELSE l, which has the same meaning as in Warren's machine.
A choice point is generated on top of the stack to keep all information necessary to backtrack
to the next alternative rule whose code starts at program address I.

• RETRY_ME_ELSE l replaces the backtrack address of the choice point on top of the stack by
I if an alternative rule is tried and there are still more alternatives.

* TRUST_ME_ELSE_FAIL is the command that precedes the code generated for the last rule of
a function symbol. It eliminates the choice point on top of the stack.

• BACKTRACK immediately leads to backtracking. It is needed for the translation of guarded
expressions.

POP eliminates the choice point on top of the stack in special situations. In the reduction
machine it is possible to remove the choice point immediately after a successful pattern match-
ing. In the narrowing machine this is of course not possible because several rules might be
applicable using different bindings of free variables. If however no free variables have been
bound during unification, the nonambiguity of Simple BABEL programs guarantees that no
other applicable rule yields a different result. Thus, in the narrowing machine, the instruction
POP tests whether new variable bindings have been done, i.e. noted in the trail since the gen-
eration of the choice point on top of the stack. If the trail has not grown during the unification,
the choice point on top of the stack can be eliminated. Thus, especially locally deterministic
computations are recognized and handled as in the functional reduction machine.

Graph I n s t r u c t i o n s

The formal specification of the graph instructions is given in figure 6.

450

e [LOAD i] (ip, d, st, ep, ~ , tr, G)
:= le ta = new(G, 1) in

if st[ep - i] = ? then (ip + 1, a : d, st[ep - i/a], ep, bp, tr, a[a/ (vAa, ?}])
else (ip 3- 1, dereference(G, st[ep - i]) : d, st, ep, bp, tr, G)

where dereference(G, adr) := if G(adr) = (VAR, adr t) then derc.ferenee(V, ctdr t) else adr

C [NODE (c, n)l (ip, 4 , : . . . : d l : d, st, ep, bp, tr, G)
:= let a = new(G, 1) in

if bp > ep and st[bp] > Ig(d)
then let st = tds : nds: st I and Ig(d) = m in

(ip + 1, a : d, rn : nds + (tds - m) : d,~,_rn : . . . : da : st',
ep, bp + (tds - m), tr, G[a/(CONSTR, c, dl : . . . : 4`)1)

else (ip+ 1 ,a : d, st, ep, bp, tr, G[a/(CONSTR, c, dl : . . . : 4`)])

Figure 6: Graph Instructions

LOAD i loads the (i + 1)th entry (local variable or argument) of the current environment on the
data stack. If this entry equals ?, it is replaced by the address of a newly generated unbound
variable node and this address is written on the data stack.

NODE (c, n) generates a new constructor node where n addresses for the components are taken
from the data stack and replaced by the address of the newly generated node. If a choice point
is on top of the stack and the depth of the data stack becomes, smaller than the top element
of the environment stack, a part of the stack must additionally be saved in the topmost choice
point.

3.4 S t a t e T r a n s i t i o n s

The transitions of the machine are mainly determined by the code that is generated for a Simple
BABEL program. If the goal expression M has k local variables, the machine execution starts with
the configuration

(ca (M) ,e , k : ~ : 0 : 0, k + 3,0,[],G0)
k times

where ca(M) denotes the address of the first line of code for M and Go is assumed to be the empty
graph. The transition rule

(ip, ds, st, ep, bp, tr, G) e C~s(ip)! (/p, ds, st, ep, bp, tr, G)

is then applied until one of the following conditions is true.

• ep = 0 (successful computation):
This indicates that the evaluation has been successful. The result is represented by the top of
the data stack while the bindings that have been done are given by the trail and the graph
component. If bp > 0, more solutions are possible and to obtain these, the machine has to be
forced to backtrack.

• bp = 0 and ep > 1 (failure):
In this case a failure has occurred and no more choice point is given on the environment stack,
i.e. no more alternative computations are possible.

451

a) Let f be a function symbol with arity m, maximally k
local variables and more than one defining rules. Then:

proctrans((f t i l . . . t im = body~ 1 1 < i < r ,r > 2))
:= TRY_ME-ELSE rules

ruletrans (f t11 . . . tl,~ = body1, k)
rules: RETRY_ME_ELSE rule3

ruletrans (f t2~. . . t2m = body2, k)

Tide3:

nde~: TRUST_ME-ELSE_FAIL
ndetnzns (f t r l . . . t~m = body,, k)

b) rule trans(f t l . . , t m = body, k)
:= LOAD k + 1

unifytrans (tt)

LOAD k + m
unifytrans (tin)
POP
exptrans (body, m + k)
RET m + k

where k + i is the position of the ith
argument in an environment block
relative to the environment pointer.

Figure 7: Compilation schemes proctrans and ruIetrans

4 Compilation of Simple BABEL Programs

We group the rules of Simple BABEL prograsns according to the function symbols. Thus a program
has the general form:

7) = t~Jl/¢(J)t(J)i~ •. . t(i)im = body! i) [1 < i < r j) [1 < j < k}

The code generated for such a program consists of the code for the various procedures (groups of
rules for the same function symbol) which will be produced using the scheme proetrans given in
figure 7a). The defining rules of a function symbol are tested in their textual ordering. Before the
first rule is tried, a choice point is put on top of the environment stack to keep note of the alternative
rules. This choice point always contains the code address of the next rule. It can be removed, if the
last rule is applied.
If there exists only a single rule for the symbol f , the code for the procedure corresponds to the code
produced for this rule by the ruletrans scheme.

The translation of each rule consists of code for the unification of the arguments of the function
application with the terms on the left hand side of the rule and code for the evaluation of the body.
After the unification phase the POP instruction tests whether the computation is deterministic (i.e.
a choice point is on top of the stack and since the generation of this choice point no variable bindings
have been done) and in that case eliminates the choice point on top of the stack. In the code for the
last rule of a function and if there is only one rule, the POP instruction is superfluous, because the
choice point has already been deleted by the TRUST_ME ELSE_FAIL instruction or no choice point
has been created. It should therefore be omitted in these cases.

The translation schemes given in figure 8 are used to produce code for the unification and the
evaluation of expressions:

• unifytrans : Term --* Code generates code, which unifies an argument of the actual task given
on top of the data stack with the corresponding term on the right hand side of a rule.

• exptrans : Ezp × IN --~ Code produces code, which evaluates an expression to normal form
(in particular the right hand side of a rule and the goal expression). The second argument
indicates whether a tail recursive function call is possible. If this argument is 0, we do not
have tail recursion. This is the case for the goal expression. If it is different from 0, it gives
the number of argument and local variable positions in the current environment that can be
overwritten by the environment of the tail recursive call.

Note that the translation scheme given in figure 8 realizes the innermost evaluation strategy.

452

unifytrans (Xi) := UNIFYVAR i unifytFans (C(tl,..., tn))
:= UNIFYCONSTR (c, n)

unifytrans (tl)

,,.iyyt,~ns (t.)
exptrans (Xi, j) := LOAD i

ezptrans (c(M1,. . . , M,) , j)
:= ezptrans (311, O)

ezptrans (M~, O)
NODE (c, n)

ezptrans (f (M1, . . . , M,), j)
:= exptrans (M1, O)

exptrans (Mn, O)
CALL (f ,n , k, j)

~=#ra~s (B --* M, j)
:= e=ptrans (B, 0)

JMT lb_M
BACKTRACK

lb_M: exptrans (M,j)

ezptrans (B --* M t3 N, j)
:= exptrans (B, 0)

JMF lb_N
ezptrans (M, j)
JMP end.lb

lbAN: exptrans (N, j)
endlb: . . .

Figure 8: Compilation schemes unifytrans and ezptrans

Of course, one should optimize code sequences by avoiding sequences of the form LOAD i; UNIFY-
VAR j by directly writing LOAD i in the code for the body of the function call. This also decreases
the number of local variable locations in the environment. After this simple optimization we get the
code sequence given in figure 9 for the small example program of subsection 3.2.

5 E x t e n s i o n s

BABEL is a higher order polymorphicatly typed functional logic language which uses lazy narrowing
as evaluation mechanism. For short, the relationship of Simple BABEL and BABEL can be described
by the following equation:

' f ' : NODE (a,0)
LOAD 1
CALL (g, 1,0, 0)
CALL (h,2,0,1)
RET 1

'h': LOAD 1
UNIFYCONSTR (a, 0)
LOAD 2
UNIFYCONSTR (d, 0)
NODE (c, 0)
RET 2

TRY_ME_ELSE rule2
LOAD 1
UNIFYCONSTR (a, 0)
POP
NODE (c, 0)
RET 1
TRUST_ME_ELSE_FAIL
LOAD 1
UNIFYCONSTR (b, 0)
NODE (d, 0)
RET 1

Figure 9: Code for the example program of subsection 3.2

453

BABEL = Simple BABEL
+ polymorphic types
+ higher-order functions
+ lazy narrowing
+ free variables in guards on rhs of rules

The last extension concerns the form of the function rules. BABEL's function rules have a slightly
more general form than the rules of Simple BABEL. A BABEL rule can be guarded by a boolean
expression which may contain free variables, i.e. variables not occuring in the left hand side of the
rule:

M
lhs optional guard b o d y

As
Note that occurrences of free variables are allowed in the guard of a rule, but not in the body.
This restriction is necessary to guarantee determinacy. Furthermore the nonambiguity condition is
generalized in the following way:

Given any two rules for the same function symbol f :

f t l . . . t = := {B--~}M and f s l . . . s , := {C--*}N

one of the three following cases must hold:

(a) No superposition: f t l . . . t= and f sx . . . s , are not unifiable.

(b) Fusion of bodies: f Q . . . tn and f s l . . . s,~ have a most general unifier (m.g.u.) a
such that Ms, Ncr are identical.

(c) Incompatibility of guards: f t l . . . tn and f s l . . . sn have a m.g.u. ¢r such that the
conjunction (B A C)a is incoherent.

Incoherence is defined as a decidable syntactical property of expressions, and chosen
in such a way that no incoherent expression may denote the boolean value true, cfr.
[Moreno, Rodrlguez 89].

The guarded rules altow a simple translation of Prolog clauses into BABEL. The body of the clause
becomes the guard of the BABEL rule whose body is identical to true. To ensure left linearity the
guard must be extended by appropriate equality conditions.

Considering the above equation the following three extensions are necessary to implement full BABEL
on the stack narrowing machine. Note that polymorphic types have only to be handled by the
compiler. In the machine we assume that the compiled programs are correctly typed.

5 . 1 H i g h e r O r d e r F u n c t i o n s

BABEL supports higher order functions in the same way as they are used in functional languages.
Higher order logic variables are not allowed: higher order variables may occur in the lhs of rules, but
are forbidden to occur free in either rhs of rules or goals. This means that they are used only for
rewriting, as in applicative functional programming.

Thus, higher order functions can simply be supported by introducing function nodes in the graph
which will contain the name or code address of a function f E FS k, a partial list of arguments
al : . . . : am with m < k, the number of missing arguments m - k and the nmximal number of local
variables in the program rules for f :

(FUNCTION, f , a 1 : . . . : am, k - m, nlv).

454

Function nodes will be created by a new instruction FNODE, which takes the function symbol and
the number of given arguments as parameters. A new instruction APPLY performs the application of
a function represented by a function node to further arguments. It behaves as the CALL instruction,
if the further arguments complete the application, and as the FNODE instruction if the number of
arguments does not yet correspond to the arity of the function symbol. The scheme exptrans must
be extended by the following cases:

exptrans ((MN), j) := exptrans (M,j) exptrans (f , j) := FNODE (f,0)
exptrans (g , j)
APPLY

5.2 Lazy Narrowing
BABEL works with a lazy narrowing strategy. Hence, it tries to narrow expressions at outermost
narrowable positions. Narrowing at inner positions is performed only if it is demanded (by the
pattern in the lhs of some rule) and contributes to some later narrowing step at an outer position.

Initiating argument evaluations during unification contains a risk of nontermination, assuming
that backtracking is done in t-he reverse order of forward computation. Lets call this strategy straight-
forward lazy narrowing. Consider the following example program which is due to Juanjo Moreno
Navarro:

one(0) := s(0)
one(s(X)) := one(X)

nth(O,[YlVs]) := Y
nth(s(X),[Y[Ys]) := nth(X, Ys)

~ a ~ (X) := [Xlnats(s (X))]

and the goal expression
nth(one(X), hats(0)).

Note that the function one will always yield the value s(0) for all possible argument values si(0).
Thus the semantics of the goal expression is the second element of the list hats = [0,s(0),...], i.e.
the term s(0). Innermost narrowing will yield this value.

Straightforward lazy narrowing of the goal expression will however not terminate. Trying the
first rule of nth will force the evaluation of the first argument one(X) which will yield the value s(0)
binding the free variable X to 0. As it is not possible to unify 0 and s(0), backtracking is initiated
and one(X) is again evaluated yielding the value s(0) while binding X to the term s(0). Again
the first rule of nth is not applicable and backtracking is initiated. This process will not terminate,
because there are infinitely many alternative evaluations of one(X) but none will allow to apply the
first rule of nth.

To avoid such cases of nontermination it is better to try all rules of a function (finitely many!)
with an evaluated argument before backtracking on the argument evaluation. Instead of changing
the backtracking mechanism it is however possible to do a program transformation of functional logic
programs into so called uniform programs.
A BABEL program is called uniform, if for each f E FS" with program rules

f t n . . . ~ . . . t l , := rhsl

f t~l t~n := rhs~

the following donditions hold:

1. Vj (Vi tij E Vat V Vi tij • Vat)

=~ j th argument
is demanded

455

2. Vj Vi tlj is a fiat term, i.e. it is a variable or a constructor term whose components are variables.

In [Moreno et al. 90] an automatic transformation of BABEL programs into uniform programs
is specified. This transformation does not introduce significant inefficiencies and has a number of
advantages: Demanded arguments can be easily detected and evaluated to head normal form (hnJ)
before trying to apply rules by unification. This ensures that all rules are tried for a fixed hnf
evaluation of demanded arguments before backtracking for arguments' reevaluation is activated,
which tends to avoid the nontermination problems of straightforward lazy narrowing.
The implementation of uniform BABEL programs on our stack machine causes no problems. For
demanded arguments the innermost evaluation strategy can be taken. Non-demanded arguments are
represented by newly introduced suspension nodes, which contain the code address of the argument
and the environment that is needed during the execution of this code, i.e. a copy of the lists of local
variables and arguments within the environment block that is active when the suspension node is
created. Note that these lists contain only graph pointers. Furthermore, the node contains place
to keep note of the result after a successful evaluation. The node must not be overwritten after its
evaluation, because backtracking may lead to a reset.

(SUSPENSION, ca, locvars, arguments, result pointer).

Evaluation of a suspension node leads to the creation of a new environment block on top of the stack,
execution of the code at address ca and finally an update that notes the result of the evaluation in
the suspension node and adds the address of the suspension node to the trail. A formal description
of this m~chanism will be given in a forthcoming paper.

5 . 3 F r e e V a r i a b l e s i n G u a r d s

The translation of the rhs of guarded rules can be done similar to the translation of guarded ex-
pressions. The POP instruction must however be placed just before the evaluation of the body,
because a rule is only applicable if the unification is successful and the guard can be evaluated to
true. The generalized nonambiguity condition guarantees that no alternative rule needs to be tried
if the current rule is applicable and no variable binding has been noted in the trail during unification
and evaluation of the guard. The POP instruction may then delete all the environments and choice
points on top of the current environment. This situation is however not realistic, because in general
the free variables of the guard will be bound and trailed during its evaluation. By a special treatment
of free guard variables it is possible to detect further situations that allow the elimination of choice
points. E.g. it is possible to delete the choice points and environments of a guard evaluation, if only
the free variables of the guard have been bound during its evaluation.

6 State of the Implementation

The specification of the narrowing machine has been formulated in Miranda to get a first impression
of the behaviour of the machine. This prototype implementation shows that the elimination of choice
points by the instruction POP has the effect that purely functional computations are executed almost
in the same way as in reduction machines. Backtracking is performed very efficiently. As stacks are
realized as Miranda lists, the time behaviour of the implementation does not allow to draw final
conclusions. We currently develop a more efficient implementation in C where some extensions will
be included. For the evaluation of arithmetic expressions we will provide a direct representation
of numbers and an implicit implementation of the arithmetic operations. Up to now the equality
operator has been implemented by implicit rules which is not very efficient. The final implementation
of the machine will contain an explicit equality check (similar to the one specified in [Kuchen et al.
901).

456

7 Re la ted Work

Another approach to the implementation of functional logic languages based on Warren's Prolog
Engine has been presented in [Balboni et al. 89], [Bosco et al. 89]. In these papers, programs are
transformed into a flat form that allows the use of SLD resolution as evaluation mechanism. Thus,
narrowing is reduced to SLD resolution and, at least for an innermost evaluation strategy, Warren's
machine can be used without any extension. For a lazy implementation an extension of Warren's
machine has been proposed [Bosco et al. 89].

The transformation into flat form introduces a new variable for each nested expression. The
direct handling of nested expressions in our approach is more space efficient. Additional space is
only necessary for the extension of choice points, when it is unavoidable.

The lazy narrowing machine of [Bosco et al. 89] implements the straightforward lazy narrowing
strategy that may lead to nontermination in cases where the innermost strategy terminates.

Our stack narrowing machine leads to a simple dynamic detection of determinate computations
and thus supports purely functional computations in a good way. Transforming functional logic
programs into logic programs and using SLD-resolution for their evaluation hides the nature of the
functional components of programs and therefore may make an optimized handling of functional
computations more difficult.

[Lindstrom 87] describes the extension of a distributed graph reduction machine for functional
languages by features that support logical variables while preserving lazy evaluation, concurrency
opportunities and global determinacy. However, Or-parallelism and backtracking are not supported.

The extension of a graph reduction machine by features that support unification and backtracking
has been developed in [Kuchen et al. 90]. The backtracking mechanism of this graph machine is more
complicated due to the decentralized organization of the control information in the graph structure.
The advantage of taking a graph structure instead of a stack lies in the opportunity to exploit
parallelism in a more appropriate way, as has been shown in [Loogen et al. 89] for purely functional
languages. A lazy graph narrowing machine has been developed in [Moreno et al. 90].

8 Conclusions and Future Work

Our narrowing machine is an amalgamation of a stack reduction machine for functional languages
and Warren's Prolog Engine where we omitted several optimizations to obtain a simple presentation
of the new implementation technique. To support nested expressions directly, i.e. without program
transformations, one needs to extend choice points dynamically. As such an extension is only com-
pelling when the choice point that has to be extended is on top of the stack, no technical problems
arise. By taking into account the nonambiguity of functional logic programs it is possible to recognize
locally deterministic computations by a simple runtime check and thus to treat them in an optimized
way.

in a forthcoming paper, we will give a complete description of the implementation of full BABEL,
i.e. of a higher order lazy functional language using our stack narrowing machine. In addition to
the development of a more appropriate implementation, it has to be investigated to what extent the
stack narrowing machine can be embedded in a distributed system in order to exploit parallelism.

Acknowledgements

The author thanks Herbert Kuchen, Juan]o Moreno Navarro and Mario Rodriguez Artalejo for
lots of interesting discussions on narrowing and its implementation. She is also very grateful to
David de Frutos Escrig who suggested to take advantage of the nonambiguity of programs in an
implementation. Stephan Winkler developed a complete BABEL programming system in Miranda
using the stack narrowing machine described in this paper.

457

References

[Balboni et al. 89] G.P.Balboni, P.G.Bosco, C.Cecchi, R.Melen, C.Moiso, G.Sofi: Implementation of
a Parallel Logic Plus Functional Language, in: P.Treleaven (ed.), Parallel Computers: Object
Oriented, Functional and Logic, Wiley 1989.

[Bellia, Levi 86] M. Bellia, G. Levi: The Relation between Logic and Functional Languages, Journal
of Logic Programming, Vol.3, 1986, 217-236.

[Bosco et al. 89] P.G.Bosco, C.Cecchi, C.Moiso: An extension of WAM for K-LEAF: A WAM-based
compilation of conditional narrowing, Int. Conf. on Logic Programming, Lisboa, 1989.

[DeGroot, Lindstrom 86] D.DeGroot, G.Lindstrom (eds.): Logic Programming: Functions, Rela-
tions, Equations, Prentice Hall 1986.

[Field, Harrison 88] A.J.Field, P.G.Harrison: Functional Programming, Addison-Wesley 1988.
[Kuchen et al. 90] H.Kuchen, R.Loogen, J.J. Moreno-Navarro, M.Rodriguez-Artalejo: Graph-based

Implementation of a Functional Logic Language, European Symposium on Programming 1990,
LNCS 432, Springer Verlag 1990.

[Lindstrom 87] G.Lindstrom: Implementing logical variables on a graph reduction architecture, Work-
shop on Graph Reduction, LNCS 279, Springer Verlag 1987, 382-400.

[Loogen et al. 89] R.Loogen, H.Kuchen, K.Indermark, W.Damm: Distributed Implementation of
Programmed Graph Reduction, Coal on Parallel Architectures and Languages Europe 1989,
LNCS 365, Springer Verlag 1989.

[Moreno, Rodr~guez 88] J.J.Moreno-Navarro, M.Rodrlguez-Artalejo: BABEL: A functional and logic
programming language based on constructor discipline and narrowing, Conference on Algebraic
and Logic Programming 1988, LNCS 343, Springer Verlag 1989.

[Moreno, Rodrlguez 89] J.J.Moreno-Navarro, M.Rodrlguez-Artalejo: Logic Programming with Func-
tions and Predicates: The Language BABEL, Technical Report DIA/89/3, Universidad Com-
plutense, Madrid 1989, to appear in the Journal of Logic Programming.

[Moreno et al. 90] J.J.Moreno-Navarro, H.Kuchen, R.Loogen, M.Rodrlguez-Artalejo: Lazy Narrow-
ing in a Graph Machine, Conference on Algebraic and Logic Programming 1990, LNCS 463,
Springer Verlag 1990.

[Reddy 85] U.S.Reddy: Narrowing as the Operational Semantics of Functional Languages, IEEE Int.
Symp. on Logic Programming, IEEE Computer Society Press, July 1985, 138-151.

[Reddy 87] U.S.Reddy: Functional Logic Languages, Part I, Workshop on Graph Reduction, LNCS
279, Springer Verlag 1987, 401-425.

[Warren 83] D.H.D.Warren: An Abstract Prolog Instruction Set, Technical Note 309, SRI Interna-
tional, Menlo Park, California, October 1983.

