A Dynamic Failure Model For Predicting
the Impact that a Program Location

has on the Program

Jeffrey Voas
NASA-Langley Research Center
Mail Stop 478, Hampton, VA 23665 USA

Abstract

This paper presents a dynamic technique for predicting the effect that a “lo-
cation” of a program will have on the program’s computational behavior. The
technique is based on the three necessary and sufficient conditions for software fail-
ure to occur: (1) a fault must be executed, (2) the fault must adversely affect the
data state, and (3) the adverse effect in a data state must affect program output. In
order to predict the effect that a location of a program will have on the program’s
computational behavior, the following characteristics of each program location are
estimated: (1) the probability that a location of the program is executed, (2) the
probability that a location of the program noticeably affects the program state
created by the location, and (3) the probability that the data states created by a lo-
cation affect the program’s output. With estimates of these characteristics for each
location in a program, we can predict those locations where a fault can more easily
remain undetected during testing, as well as predict the degree of testing necessary
to be convinced that a fault is not remaining undetected in a particular location.

Index Terms: Software testing, data state, sensitivity analysis, mutant, fault,

failure probability.

1 Introduction

Software testing reveals failures. When an input distribution for a program is known,
random testing has several advantages over other validation techniques; it does not rely
on extensive analysis such as proof of correciness, it replicates operational behavior, and
it has a statistical basis. However, testing has drawbacks: any predictions based on black-
box random testing depend on an assumed input distribution. If an input distribution for
a program changes, any predictions based on the previous input distribution may change
dramatically. When testing reveals a failure, it provides little help in locating the fault.
Finally, testing requires an oracle; since automated oracles are rarely available, human
oracles (who require time and may introduce new faults) are required.

The dynamic technique presented in this paper complements software testing. It
does not identify faults; correctness is never an issue. Instead, the technique identifies
“locations” in a program where faults, if they were to exist, are more likely to remain
undetected from tests. In this technique, a location is defined to be either an input
statement, output statement, assignment statement, or the <expression> part of a while
or if statement.

This technique requires no oracle nor specification, however it does require that inputs
are selected at random consistent with an assumed input distribution. Preferably this in-
put distribution will be the operational distribution, however there are certain instances
where a uniform distribution may be substituted when the operational distribution is un-
known and still produce valid results. The technique uses a program’s input distribution,
syntactic mutants, and changes injected into dynamically created data states to predict
a location’s ability to cause program failure if the location were to contain a fault. The
technique can just as easily be applied to modules as programs; if this is done, the tech-
nique would predict the ability of a location in a module to cause module failure if the
location were to contain a fault.

The technique makes predictions concerning future program behavior by estimating
the effect that (1) an input distribution, (2) syntactic mutants, and (3) changed data
values in data states have on current program behavior. More specifically, the technique
first observes the behavior of the program when (1) the program is executed with a

particular input distribution, (2) a location of the program is injected with syntactic

mutants, and (3) a data state (that is created dynamically by a program location for some
input) has one of its data values altered and execution is resumed. After observing the
behavior of the program under these scenarios, the technique then predicts future program
behavior if faults were to exist. These three scenarios simulate the three necessary and
sufficient conditions for software failure to occur: (1) a fault must be executed, (2) a data
state error must be created, and (3) the data state error must propagate to the output.
Therefore the technique is tightly based on the conditions necessary for software failure.

Three analyses compose the technique: Ezecution Analysis (EA) estimates the prob-
ability that a location is executed according to a particular input distribution; Infection
Analysis (IA) estimates the probability that a syntactic mutant affects a data state; and
Propagation Analysis (PA) estimates the probability that a data state that has been
changed affects the program output after execution is resumed on the changed data state.
These analyses together form the technique that this paper presents—the technique is
termed PIE (for Propagation, Infection and Erecution analysis).

The remainder of the paper is organized as follows: Section 1 is responsible for pre-
senting the three analyses: Section 1.1 relates and differentiates PIE from other software
testing techniques, and Section 1.2 provides the algorithms of PIE. Section 2 shows (1)
how to apply the estimates that the algorithms produce in order to make predictions
about where faults can more easily remain undetected and (2) how to quantify the likeli-
hood that a location will reveal a fault if one were to exist. Section 3 contains empirical
results showing that the probability estimates that the algorithms producé do accurately

reflect the effect that a location has on the program’s computational behavior.

1.1 Survey of Related Techniques

Testing plays a significant role in analyzing software for faults. And as stated in the
introduction, PIE can be used to complement the efforts of software testing even though
PIE is fundamentally different than software testing.

PIFE is a white-box analysis technique, i.e., its results are a function of the syntax and
semantics of the code. Further, PIF is a dynamic technique—its results are also a function
of an input distribution. Other white-box analysis techniques include coverage-based (or

syntactic) testing techniques such as statement testing, branch testing, path testing, and

mutation testing. Statement testing attempts to execute every statement at least once;
branch testing requires that each branch be executed at least once; and path testing requires
that each path be executed at least once; FA differs from statement, branch, and path
testing because EA does not perform testing—it only estimates the probabilities that a
particular location is executed. The results of FA can be useful, however, to persons
performing statement, branch, or path testing, because FA estimates the probability of
executing a particular location. For instance, if a person attempting to perform statement
testing is having difficulty finding an input to execute a particular statement, then the
person could look at the estimate of the probability that the statement is executed (from
EA), and if it turns out that EA has produced a tiny estimate for this probability, then
the person can decide whether statement testing is still a feasible goal.

Of all testing techniques, PIF is most closely related to mutation testing. It is related in
the processes employed, not in the information produced. Mutation testing [1] is a testing
strategy that evaluates inputs by taking a program P and producing n versions(mutants)
of P, [p1,p2,..., Pn], that are syntactically different from P. If a set of inputs distinguish
the mutants created from P, then it is assumed that if the actual program works with
those inputs, the program is good. Mutation testing assumes the “competent programmer
hypothesis” that states that a competent programmer produces code that is close to being
correct, where “close” means only a few syntax changes are required to correct a program.
Mutation testing also assumes that faults that interact can be caught with test data that
reveals single faults, i.e., fault coupling is ignored [5]. Mutation testing tests input data;
good test data kills all mutants.

IA uses mutation testing ideas in the following way: syntactic changes are made to
program statements with the requirement that these syntactic changes must have semantic
differences. Whereas mutation testing tests inputs, IA tests a location’s ability to sustain
a change in its semantics yet not change the data state. PA generalizes the applicability
of mutation testing by allowing a data state to be mutated. PA tests to determine the
frequency with which a change in a data state causes a change in the program’s output.
In short, PA and IA’s goal is significantly different from mutation testing’s goals.

Another technique that PIE is closely related to is error-based testing. Error-based
testing attempts to define certain classes of errors and the subdomain of the input space

that should reveal any error of that class if that error type exists in the program. Morell

4

[4] proves properties about error-based strategies concerning certain errors that can and
cannot be eliminated using error-based testing. Since error-based testing restricts the
class of computable functions, the testing achievable by error-based testing is limited as
well. This is because error-based testing defines errors in terms of their syntax, as does
mutation testing. PA advances the concept of error-based testing by defining classes of
errors in terms of their semantic effect in a data state.

In summary, PIE is a technique that is fundamentally different than software testing.
Testing’s goal is to detect faults through the production of failures; PIE’s goal is to
estimate (1) the probability that a location of a program is executed, (2) the probability
that a location of a program noticeably affects the data state created by the location, and
(3) the probability that a data state created by a location affects the program’s output.

With these estimates, PIE complements software testing.

1.2 Definitions

The PIFE technique is built in three levels. We begin with basic terminology in Section
1.2.1; then Section 1.2.2 describes the first level; Section 1.2.3 describes the second level,
and Section 1.2.4 describes the third level. The third level contains the algorithms that

are used in implementing the technique.

1.2.1 General Definitions

We view a program as a function ¢ mapping a domain of possible inputs to a range of
possible outputs. Another function, f (with same domain and perhaps different range),
represents the desired behavior of g, and can be thought of as a functional specification
of g. In practice, it is not necessary to have f explicitly, but it is necessary to be able
to say whether a particular output of ¢ is correct or incorrect for a particular input z,
with the latter implying that g(z) # f(z), and the former implying that g(z) = f(z).
The failure probability of program g, 7, p, given that ¢’s inputs 21, %9, T3, ... are drawn at
random according to a fixed but known probability distribution D, is the probability that
g results in failure for a randomly selected input, z;. The probability that a specific input
; is selected is just D(z;).

A variable is live if its current value may eventually affect the output. The program

counter is considered live. Whether a variable is live or not is determined statically; this
can be done using dataflow analysis. A data state between two consecutive locations
(where consecutive is determined dynamically) is a set of mappings between all statically
declared and dynamically allocated variables and their values at that point in execution.
Also included in each data state are the input that began the execution and the program
counter. The execution of a location is considered to be an atomic operation, hence
data states can only be viewed between locations. An data state error is an incorrect
variable/value pairing in a data state where correctness is determined by an assertion for
that location. A data state error is frequently referred to as an infection, and these two
terms are used interchangeably. If a data state error exists, the data state and variable
with the incorrect value at that point are termed infected. A data state may have more
than one infected variable. Propagation of a data state error occurs when a data state
error affects the output.

In formalizing this technique, we will regularly mention “data state mutants.” Recall
that a data state is just a snapshot during execution of the values of all statically declared
and dynamically allocated variables. Thus, a data state is a function of the location where
it is taken, as well as the program input and the particular iteration of the location. A
data state mutant is a change to a data state that would normally occur given an input,
location, and iteration of that location.

In this paper, we will consider that data state mutants are created in one of two
different ways: (1) either a forced change into a value in a data state (during PA), or a
change that results from executing a syntactic mutant of the location (during IA). Note
the difference between a data state error and a data state mutant: a data state error is
defined with respect to the correct program, whereas a data state mutant is defined with
respect to the current program. The current program that we have in our hands that we

are applying this technique to may be correct, but we will not know whether this is true.

1.2.2 Definitions for known faults

Section 1.2.2 describes the first level of the PIE technique. The first level formalizes (1)
the probability that a location is executed, (2) the probability that an infection occurs,
and (3) the probability of an infection propagating to the output. To do so, we define
three probabilities: (1) the execution probability, (2) the infection probability, and (3)

6

the propagation probability. These probabilities are defined for a known fault, , injected
into an otherwise correct program, p. Though these definitions are not directly usable in
a conventional situation (where the faults, if any exist, are unknown), these definitions
provide a foundation for understanding how faults affect the computational behavior of a
program.

To define execution, infection, and propagation probabilities, we first introduce nota-
tion. Recall that this is a dynamic technique that collects information about what occurs
during execution under certain circumstances; some of this information concerns the data
states that are created as a program executes. It is therefore necessary to be able to
uniquely identify a data state according to the input that the program is currently exe-
cuting on, the location in the program where we are observing the data state, and which
iteration of the location we are observing this data state on (if the location is executed
more than once). Unfortunately, all of this identifying information complicates the notion
but provides precision.

Let S denote a specification, p denote a correct version of S, = denote an input,
domain(S) be a set of all possible inputs to p for which S is defined, D be the probability
distribution of domain(S), ! denote a program location in p, and let ¢ denote a particular
execution (or iteration) of location ! caused by input . Hence if ¢ > 1, then ! is in a loop
or in a procedure that is called more than once. Let B;,; , represent the data state that
exists prior to executing location [on the i** execution from input = € domain(S), and
let Ay, represent the data state produced after executing location [on the it* execution
from input z. Note that before p begins execution on z, Al iz and By, ;, equal the
empty set for all ¢ and all . The execution of each location causes the data state that
succeeds the location to no longer equal the empty set. Thus if after execution on x, some
Alpiz =D , then [was not executed an ** time by z.

It is important for us to be able to group data states into sets with similar properties.
For instance, assume that location [is executed n, times by input . Then we might
want to look at all of the data states that are created by this input immediately before [

1s executed or immediately after. The following sets allow us to do so:
Bipe = {31,p,i,z | 1<:< nw}

‘Al,p,:b‘ = {Alyp:iﬂ’ I]‘ —<— i S nz}

7

We further group these sets into a single set for all z € domain(S):
Bi.pdomain(s) = {Bipe | © € domain(S)}

A1 p,domain(S) = {Al,p,z | T € domam(S)}

We let f; denote the function that is computed at location I. The input to a function
computed at a location is a data state and the output of such a function is also a data
state. It is important to talk about the function that is computed at a particular location
in order to see how individual locations map one incoming data state to an outgoing data
state.

The exzecution probability of a known fault y in location [is simply the conditional

probability that a randomly selected input z will cause fault x to be executed:
€100 = Pr[A1, o # O after p executes on z | z selected according to D) @)

The infection probability of a known fault in location / is the conditional probability

that a data state that location ! creates becomes infected when location ! is executed for

a randomly selected input z:

Prlinfected(Bi,p.z, X, 1) | Atpe # O after p executes on z (2)

where

T if Iy € Bi,. fily) # fx(y)

F otherwise

infected(By p 0, X, 1) =

(fi denotes the function that should be computed at location [that instead contains fault

X, and f, denotes the function that is computed by location ! when fault X is inserted

into it.)
The propagation probability of a known fault x in location [is the conditional prob-

ability that a program will fail given that the fault at ! has infected at least one of I’s

successor data states:

Pr[p fails on input z | infected(B, , -, X,)] (3)

1.2.3 Definitions for hypothesized faults and infections

When testing begins, the actual faults in a program are not known. Also, we do not know

if our program is correct, which was an assumption in the definitions for the previous

8

three probabilities. In other words, we do not know if we have a correct program p
with a single fault x injected at location [. Therefore the definitions for infection and
propagation probabilities are not useful. However, estimation can be performed on the
program that we do have, denoted by P, by “hypothesizing” that a fault or infection
exists in P, and then estimating the effect of the “hypothesized fault” or “hypothesized
infection.” A hypothesized fault is simply a mutant of a location that is similar to those
used in mutation testing [1]. This estimation based on a program P that we do have
constitutes the second level of the PIFE technique.

So in level two, we generalize the definitions of the previous probabilities for hypoth-
esized faults, hypothesized infections, and the current program P. The hypothesized exe-
cution probabilily is the conditional probability that location ! of program P is executed

given an input z selected at random according to D:
e,p.p = Pr[A; pr # O after P executes on z | z selected according to D) (4)

The hypothesized infection probability for a location [and hypothesized fault & is the
conditional probability that hypothesized fault & produces a data state mutant in A p;

for some input x and iteration ¢. A p,, is the data state that occurs immediately after

i*h execution of h—this data state is sampled after A is injected into [and execution of

P begins on input z. The occurrence of a data state mutant is detected by comparing

Apiz With A p; ;. The hypothesized infection probability for location I, hypothesized

fault A, and input z selected at random according to D is:

Ang,p,p = Prlinfected (B,pg, b, 1) | Aips # @ after P executes on] (5)
where

T if 3y € Brps
infected (Byp.g, b, 1) = if 3y € Birs fiy) # fuly)
F otherwise,

and f, denotes the function computed by hypothesized fault k at location /. The estimate
of the hypothesized infection probability is Xh,[,P,D and is computed according to the
algorithm in Section 1.2.4.

The hypothesized propagation probability for a location [in P is the conditional prob-
ability that if a data state mutant is injected into the data state immediately following [

on I’s i™ iteration, different program output occurs.
%a,i,p,p = Pr[differing output from P occurs on input « | perturbed(a, Ay piz)]. (6)

9

where

perturbed(a, Ay p;) = T ifa# Qe Apia)
F otherwise,

and (a, A, p;) is a function that extracts the value of variable a in A; p; .. The estimate

of the hypothesized propagation probability is ’('Za,,;,(,p,p and is computed according to the

algorithm in Section 1.2.4

1.2.4 Algorithms for hypothesized infection probabilities and hypothesized

propagation probabilities

We are now at the third level of the PIE technique. The third level contains the algo-
rithms necessary for estimating the hypothesized propagation probability, estimating the
hypothesized infection probability, and estimating the hypothesized execution probability.

It is necessary in these algorithms to sample internal data states. However the sets
B1,Pdomain(s) and QP domain(s) are not computable if there exists an element of domain(S)
on which P does not halt. We can, however, randomly select a finite set of inputs X
according to D from domain(S), and if on each € X P halts, we can compute o p x
and fipx. Although we cannot determine whether a program will halt for a specific
input, we can set a time limit for termination, and if termination has not occurred in
that interval, we will not include this input in X. This will be the scheme for creating X.
Note also that some element, z;, may occur more than once in X if D(z;) is large enough
to cause it to be resampled when X is created. So with this we have the sets: oy px and
Bipx-

Propagation analysis is a technique that estimates the hypothesized propagation prob-
ability defined in equation 6. A propagation estimate is an estimate of the hypothesized
propagation probability. In PA, a hypothesized data state error is created by a perturba-
tion function. A perturbation function is a function that takes in a data value of a variable
and changes it according to certain parameters. A perturbation function is a mechanism
used by PA for upholding the condition a # ©(a, 4 p;.) in the definition of the function,
perturbed. A variable whose value is changed by a perturbation function is said to have
been perturbed.

The algorithm for finding ’(,Ba’,',l’p,p (see equation 6) is:

1. Set variable count to 0,

10

2. Randomly select an input « in X, and find the corresponding A; p, in oy p x. Select

data state y to be A; p; ;.

3. Perturb the sampled value of a if a is defined, else assign a a random value, and

execute the succeeding code on both the perturbed and original data states,

4. For each different outcome in the output between the perturbed data state and the
original data state, increment count; increment count if we believe that an infinite
loop has potentially occurred (set a time limit for termination, and if execution is

not finished in that time interval, assume an infinite loop occurred),
5. Repeat steps 2-4 n times,
6. Divide count by n yielding b ;; p.p.

Note that the perturbation functions defined thus far in this research only perturb data
values, however research is ongoing in creating perturbation functions to perturb data
structures and the program counter. Since faults can create incorrect data structures and
miscalculate the program counter as well as create incorrect data values, this research
will eventually suggest perturbation functions to perturb data structures and the program
counter. Without these additional perturbation functions, PA is an “incomplete” method.

Infection analysis is a technique that estimates the hypothesized infection probability
defined in equation 5. The results of infection analysis are a function of the hypothesized
faults used at a location and the distribution of Bi,pz- The estimate of a hypothesized

infection probability is termed an infection estimate.

The algorithm for finding :\h,l,p,p (see equation 5) is:
1. Set variable count to 0,
2. Create a hypothesized fault for location ! denoted h,

3. Randomly select an input z from X, and find the corresponding B; p, in [ipx.

Uniformly select a data state, y, from B; p.

4. Present the original location / and the hypothesized fault A with data state y and

execute both locations in parallel,

11

5. Compare the resulting data states and increment count when [fi](y) # [f4](),
6. Repeat steps 3-4 n times,
7. Divide count by n yielding :\h,11p’D.

The choice of which hypothesized faults to use in this algorithm determines the value
gained from performing JA. The discussion is limited to hypothesized faults for arithmetic
expressions and predicates, because this is where most of the empirical results thus far
have come from (see Section 3). For arithmetic expressions, the hypothesized faults
considered in this research are limited to single changes to a location: (1) a wrong variable
substitution, (2) a variable substituted for a constant, (3) a constant substituted for a
variable, (4) expression omission, (5) a variable that should have been replaced by a
polynomial of degree k, and (6) a wrong operator. For predicates, the hypothesized faults
we consider are limited to (1) substituting a wrong variable, (2) exchanging and and or,
and (3) substituting a wrong equality/inequality operator.

Ezecution Analysisis a technique that estimates a hypothesized execution probability
defined in equation 4. An ezecution estimate is an estimate of the hypothesized execu-
tion probability. The execution estimate of location ! is denoted éi,pp and is computed
according to the following algorithm. The input distribution used during E'A is the same
distribution that is used for creating the data state distributions used by PA and IA.

The algorithm for finding é; pp for the current program P, location [/, and probability

distribution of the input domain D is:

1. Set array count to zeroes, where the size of count is the number of locations in the

program being analyzed,

2. Instrument the program with “write” statements that signal when a particular lo-

cation was executed, making sure repeated locations only print once per input,

3. Execute n inputs according to D on the “instrumented” program; this will produce

n strings of location identifiers,

4. Increment the corresponding count([l] for each printed identifier stating location /

was executed; if location / is executed on every input, then count[l] = n at the

completion of this step.

12

5. Divide each element of count[l] by n yielding é; pp.

1.3 Understanding the Resulting Estimates

When PIFE is completed for the entire program, we have three sets of probability estimates

for each program location ! in P given a particular D:
1. Set 1: The estimate of the probability that program location ! is executed, &; p p;

2. Set 2: The estimates of the probabilities, one estimate for each hypothesized fault
in (h1, hs,...) at program location I, that given the program location is executed,

the hypothesized fault will adversely affect the data state: ({:\hl,l, P.D; j\hz,l,p,p, e}

and

3. Set 3: The estimates of the probabilities, one estimate for each variable in (ay, ay, ...)
at program location /, that given that the variable in the data state following loca-
tion [is changed, the program output that results from this will too be changed:
({fzal,i,l,P,m fzaz,i,l,P,D, e })e

Note that each probability estimate has an associated confidence interval, given a par-
ticular level of confidence and the value of n used in the algorithms. The computational
resources available when PIF is performed will determine the value of the ns that are

chosen in each algorithm. For example, for 95% confidence, the confidence interval is

: [1 _ : number of occurrences of some event A
approximately p 2 21/p(1 — p)/n, where p is the total number of attempts of event A

(p is the sample mean) [6, 3.

2 Sensitivity Analysis

The remainder of the paper focuses on making predictions. Remember that we want
to show how the information of PIE can complement software testing. Section 2 shows
(1) how to apply the estimates that the algorithms produce in order to make predic-
tions about where faults can more easily remain undetected and (2) how to quantify the
number of tests necessary to be convinced that a location is not protecting a fault from

detection. Note the shift in emphasis in the paper—from estimation, that PIE performs,

to prediction, that “sensitivity analysis” performs.

13

Sensitivity analysis (SA) is a tool for making predictions concerning where faults can
more easily remain undetected during testing. Sensitivity analysis uses PIE’s estimates to
predict the minimum effect on the failure probability that a particular location will have,
i.e., SA quantifies the minimum effect that a program location has on the program. Note
that program computational behavior is not dependent on an oracle; failure probability
is dependent on an oracle.

With sensitivity analysis, a framework is created that can begin to answer the following
questions: (1) Where can we get the maximum benefit from limited testing resources? (2)
When should we use another validation technique other than testing? (3) What degree of
testing must be performed to persuade ourselves that a location is probably not protecting
a fault from detection? (4) When should we rewrite the software in a manner that makes
it less likely to protect faults from detection?

Before we begin formalizing sensitivity analysis, consider the following analogy. If
software faults were gold, then testing would be gold mining. The results of sensitivity
analysis would be a geologist’s survey performed before mining begins. It is not the
geologist’s job to dig for gold, but instead to establish the likelihood that digging at a
particular spot would produce gold. A geologist might say, “This valley may or may not
have gold, but if there is gold, it will be in the top 50 feet.” At another location, the
geologist might say, “Unless you find gold in the first 10 feet on this plateau, there is
no gold. However, on the next plateau you will have to dig 100 feet before you can be
confident that there is no gold.”

When software testing begins, such an initial survey has obvious advantages over
testing blind. From this analogy, sensitivity analysis is the “geologist.” Sensitivity analysis
predicts the required testing intensity for a particular confidence, whereas the geologist
predicts the digging depth. Sensitivity analysis provides the degree of difficulty that will
be incurred during random black-box testing of a particular location to detect a fault.
If after random black-box testing to the degree specified by sensitivity analysis only to
observe no failures, we then feel confident that the location is correct.

Sensitivity of a location [is a prediction of the minimum probability that a fault in [
will result in a software failure under a particular program input distribution. If location [
is assigned a sensitivity of 1.0 under a particular input distribution D, then it is predicted

that each input in D that executes ! will result in a software failure if I were to contain

14

a fault. If [is assigned a sensitivity of 0.0 under D, then it is predicted that no matter
what fault is present in /, no input in D that executes [will cause a failure. (Note that
there is a continuum of sensitivities in [0,1].) The greater the likelihood that a fault in
location [will be revealed during testing, the greater the sensitivity that is assigned to [.
A location with a low sensitivity is termed insensitive. A location with a high sensitivity
is termed sensitive.

Testing either reveals or does not reveal faults; SA quantifies the significance of testing
when testing reveals no faults. If testing’s goal is to estimate the probability of failure,
sensitivity is not an issue. Sensitivity is only an issue when testing’s goal is to reveal

faults. SA allows us to gauge how much trust we can place in testing for faults.
As an example, consider a simple program P:

{specification: output 1 if aZ?+ b%* + ¢ < 900000 else output O}
(1) read(a);
(2) read(b);
(3) read(c);
(4) 4 :=sqr(a) + 1000;
(5) e := sqr(b);
(6) £ := sqr(c);
(7) if ((d + e + £) < 900000) then
(8) writeln("1")
else
9) writeln("0");

P is supposed to perform the function described in the brackets but contains a fault in
location 4. Assume that testing P under a particular input probability distribution D
produces no failures. What does this testing say about the existence of faults in P? While
we can make predictions about P’s probability of failure under D, we do not have any
assurances about an absence of faults in P. This is because: (1) D may not execute portions
of P where the faults (if any) reside, (2) incorrect data states may not be produced, or
(3) incorrect data states may be cancelled.

For P, Figure 1(i) and Figure 1(ii) contain input probability distributions that are
not likely to reveal the fault in location 4; If the range of potential input values for
variables a, b, and c are fixed in the interval [545, 550], then the fault is more likely to
be caught during testing. SA would warn that locations 4, 5, and 6 have the capacity

to protect faults from detection if testing is performed according to Figure 1(i) or Figure

15

Figure 1: Probability distributions that are unlikely to reveal fault.

1(ii) (assuming D = Figure 1(i) or D = Figure 1(ii) when PIE is performed).
PIE’s probability estimates for P given that D = Figure 1(i) or D = Figure 1(ii)

follow:

1. EA reveals that there is a zero probability of a fault existing in locations 4, 5,
and 6 and not being executed, and thus produce €app = 1.0, é&spp = 1.0, and

ée.p.p = 1.0.

2. IA reveals that locations 4, 5, and 6 produce high infection estimates, suggesting

that actual faults in the locations would almost certainly produce infections.

3. Unlike the high probability estimates of IA and EA, PA tells something quite
different. As an example, if the value of variable d is modestly altered after location
4, 1t is likely that P will still produce correct output. This is true of variable e after
location 5, and variable f after location 6. PA will take this into consideration and
indicate that locations 4, 5, and 6 are locations where infections can more eagily
remain undetected from testing, i.e., PA will produce low propagation estimates for

variables d, e, and f at locations 4, 5, and 6.

Mapping the probability estimates for a location to a single sensitivity for that location
is difficult, because determining the relative importance for each different set of probability
estimates is difficult. Each estimate has an associated confidence interval, and we take the
lower bound on the confidence interval. This assures that if bias occurs when finding a

sensitivity, the bias causes underestimation of the sensitivity rather than overestimation.

16

This is clearly a conservative method. This conservative approach is taken one step further
by only considering the minimum of the lower bounds of the infection estimates and the
minimum of the lower bounds of the propagation estimates of a location when determining
the location’s sensitivity.

Let (:)min denote the lower bound for the confidence interval for an estimate, and let
(-)maz denote the upper bound for the confidence interval for an estimate. The scheme

for mapping PIF’s probability estimates into a sensitivity prediction of some location I,

denoted by 6;, follows:

01 = (€1,p,D)min - O (IT}Lin[(S\h,z,P,D)min], H}lin[(d;a,i,z,P,D)min]) (7)

where
a—(1-b) ifa—(1-0)>0

0 otherwise.

o(a,b) =

Equation 7 represents a prediction of the minimum probability that “if a fault were to
exist in [, the existence of the fault will be revealed through testing.”

With sensitivities in hand, we now return to the four proposed questions and explain

how SA can begin to answer them.

1. Where to get the most benefit from limited testing resources:
Sensitive locations require less testing than insensitive locations. By identifying

sensitive locations, sensitivity analysis saves resources that can be applied to more

critical insensitive locations.

2. When to use some other validation technique other than testing:
Sensitivity analysis may show extreme insensitivity (frequent protecting of faults
from detection), thereby pinpointing locations for which no reasonable amount of
testing under an assumed distribution can be performed to gain confidence in such
locations’ lack of faults. At such locations, alternative techniques should be applied

such as testing under a new distribution, proofs of correctness, code review, or

exhaustive testing.

3. The degree to which testing must be performed in order to be convinced that a location

is probably not protecting a fault from detection:

Sensitivity analysis results may be used to determined how many test cases are

17

3

necessary to be convinced a location is correct with an acceptable confidence. 6;
can be used as an estimate of the minimum failure probability for location [in the
equation 1 — (1 — 6,)T = c [2], where c is the confidence that the actual failure
probability of location [is less than #;. With this equation, we can obtain the
number of tests T' needed for a particular ¢. To obtain confidence ¢ that the true
failure probability of a location [is less than ; given the sensitivity of the location,

we need to conduct T tests, where

_In(1—¢)
" In(1 -). ®)

When 0; = 0.0, we effectively have confidence c after T tests that location ! does

T

not contain a fault. To obtain confidence ¢ that the true failure probability of a

program is less than 6; given the sensitivities of its locations, we need to conduct T

tests, where
In(1 —¢)
9
In(1 — min[8;]). ©)
When min[6;] & 0.0, we effectively have confidence ¢ after T tests that the program

T =

does not contain a fault. Note that for equation 8 and equation 9, 6; can not be

Z€ro or one.

. Whether or not software should be rewritten:

Sensitivity analysis results may be used as a guide to whether critical software has
been sufficiently tested. If a piece of critical software is classified as having many
insensitive locations, then the software may be rejected since too much testing will

be required to achieve a sufficient level of confidence from testing.

Results

This section shows that PIE’s probability estimates are correlated to the actual effects

that program locations have on the program’s failure probability when the locations were

forced to contain faults; this section contains both (1) empirical results and (2) examples.

Section 3’s results only expose the accuracy of the algorithms; a preliminary experiment

showing that equation 7 is conservative is found in [9].

For the empirical results, we took the gold-version, G, of a battle simulation that was

approximately 2000 lines in length and is specified in [7]. We

18

1. Made a copy of G, denoted by G',
2. Randomly selected some location [of G,

3. Injected a single fault F that virtually always infected into G’ at location [(typically

a fault was just a changed operator in an arithmetic expression),

4. Found 7g/ p (7ar,p represents the failure probability resulting from an injected fault

F at location ! in G, and 7a p is an estimate of this probability),

5. Found él,G',D,

6. Found '(Z’a’i’l,Gl,D, where a is the variable on the left-hand side of the assignment
statement at location /, and variable a was forcefully perturbed on each iteration 2

of I. In this experiment, ¥, ;1 p is a function of:

(a) A perturbation function producing a uniformly selected value in the interval

[0.52, 1.5z], where z is the original value variable @ had before it was perturbed,
(b) A uniform program input distribution,
(c) 100 program inputs, and

(d) Perturbation functions that were applied on each iteration i of (if location !

was executed more than once for some z).

7. Removed F' from G’, and
8. Went back to Step 2 and reperformed this analysis on a different I.

In these empirical experiments, we purposely injected faults with infection probabilities
of approximately 1.0 so that the likelihood of low infection probabilities affecting the
failure probability was negligible. This allowed correlation between (éie,p- '(La’i’[’Gl’ p) and
fe,p (see Table 1 and Table 2). The reason for multiplying the execution estimate and
the propagation estimate is because propagation estimates are conditioned on executing
a specific location; failure probability estimates are not. The correlation found from
these 9 experiments is 0.995, meaning that the correlation found between the product
of the propagation estimate and execution estimate and failure probability estimate was

high. This preliminary result supports the claim that PA and EA produce probability

19

estimates that are accurate enough to predict what effect a particular location has on the
computation of the program.

Sixteen similar experiments using the same gold-version resulted in an overall corre-
lation of 0.975 for all 25 experiments. The additional 16 injected faults were all omission
faults, suggesting that PA can be used under certain circumstances as a debugging tech-
nique for omission faults.

For brevity, we will not include empirical results concerning I A and the gold-version,
and will instead argue that A’s importance can be easily shown. There are locations that
when injected with faults, do not affect the resulting data state; these are locations where
faults can more easily remain undetected. Consider a correct location such as k := i *3,
that is replaced by k := 1 * c. If i frequently has the value of 0 or ¢ frequently has the
value of 3 immediately before the location is executed, infection is not likely to occur. As
another example, consider a correct location x := x mod 1000. If x is typically small
(x < 500) before this location is executed, then a fault such as x := x mod 10000, if

injected, would easily go undetected.

4 Concluding Remarks

This paper has presented two techniques that are based on the three necessary and suf-
ficient conditions for software to fail; one technique, PIE, performs estimation, and the
other, sensitivity analysis, performs prediction.

The first technique dynamically estimates program characteristics that affect a pro-
gram’s computational behavior. This technique does not require a specification nor oracle,
however it requires an input distribution. PIE may be performed on incorrect programs
and still reveal useful information. Since PIE is a code-based technique, it is expected
that the program under analysis is “close” to being a correct implementation of the spec-
ification, both syntactically close and semantically close.

To date, PIE has only been applied to small programs, since no automated PIE system
has yet been completed, and all results shown in this paper have been a combination of
both manual and dynamic effort. In the future, PIE will be performed automatically—
work on building a PIE system has begun. Once available, we recommend that PIE first

be applied to the critical portions of a large-scale system. If resources allow for PIE to

20

trial location |

fault F

1

XCorner := Batts[Beta][G].X -
(((Army[Beta][G].Grow-1)/2)*
Army[Beta][G].Squadsep);

A4 := (m+1)*((n+1)*Terrain[m,n}-n*

Terrain[m,n+1})-m*((n+1)*
Terrain[m+1,n]-n*Terrain[m+1,
n+1]);

Dist := sqrt(abs(sqr(x1-x)+
sqr(yl-y)));

CiX := TX-TW/2;

x1 := x+Batts[Beta][G].v*
cos(Army[Beta][G].Theta);

1 := trunc(r);

Xcorner := Batts[Beta)[G].X-
((Maxi-1)/2)*
Army[Beta][G].Squadsep);

Templ := 14+(k+m) mod
Batts[Beta][G]. NW(E,J];

Af := Army[Beta][G].FixRate*

Batts[Beta][G].Numfixers/cc;

XCorner := Batts[Beta][G].X -
(((Army[Beta][G].Grow+1)/2)*
Army[Betal][G].Squadsep);

A4 := (m)*((n+1)*Terrain[m,n}-n*
Terrain[m,n+1])-m*((n+1)*
Terrain[m+1,n]-n*Terrain[m+1,
n-+1]);

Dist := sqrt(abs(sqr(x1-x)*
sqr(y1-y)));

C1X = TW-TX/2;

x1 := x+Batts[Beta][G].v*
sin(Army[Betal][G].Theta);

i := trunc(round(r));

Xcorner := Batts[Beta][G].X-
(((Maxi-1)*2)*
*Army[Betal][G].Squadsep);

Templ := (k4+m) mod
Batts[Beta][{G].NW[E,J];

Af := Army|Betal[G].FixRate+

Batts[Beta][G].Numfixers/cc;

Table 1: Injected Faults

trial wvariablea €10p Yaiiep 7D

1 XCorner 1.0

2 M 0.98
3 Dist 1.0
4 CiX 0.98
5 x1 0.98
6 i 1.0
7 Xcormer 0.16
8 Templ 0.01
9 Af 1.0

1.0 1.0
1.0 0.85

0.98 1.0
0.0 0.08
1.0 0.98
1.0 0.98
0.8125 0.09
1.0 0.01
0.87 0.94

Table 2: Propagation Analysis Results

21

be performed on non-critical portions, that is beneficial as well.

The reason we mention performing PIF on specific program sections is PIE’s enormous
costs: the sequential PA algorithm in this paper is of quadratic order. Therefore for large-
scale systems, probably only sections of the program can have this analysis performed.
One way of improving PIE’s costs is parallelization; parallelization of the PA algorithm
has been shown to produce near linear speed-ups {10].

When to apply PIF in the software life-cycle is an important concern—towards the
end of the testing and validation phase appears to be the most appropriate time. Once
program structure is certain to minimally change, which should be true at this point
in the life-cycle, then PIE can be applied. If PIE were applied at the beginning of the
testing phase, and major modifications were made to the program, then PIF would almost
certainly need to be reperformed.

The second technique predicts whether locations are likely or unlikely to reveal faults.
This technique, like PIFE, is a function of the input distribution that PIF uses. It is
expected that this input distribution will be the same one that the program will be
tested according to. If the input distribution were to change, for example, to an input
distribution based on some white-box analysis, then SA would predict the likelihood of
faults remaining undetected if the program were tested according to this other input
distribution. Thus for better predictions from SA, PIFE should use the input distribution
that the program is expected to be tested according to, which preferably is the operational
distribution.

With SA, not only can we say that a program executed k inputs successfully, but if
the program has many locations that are sensitive, we keep the confidence gained about
the correctness of the program after testing is complete. If a program has many locations
that are insensitive, we should realize that although it is possible that the program is
correct, it is also possible that faults are remaining undetected, and thus the & successful
tests do not offer an equivalent confidence.

Insensitive code is not necessarily bad. After all, correct code can be insensitive.
The problem with insensitive code is that it suggests a greater ability to protect faults
from detection, and that arguably is not a desirable characteristic. Research has been
suggested that certain computable functions may have the misfortune of tending to result

in insensitive code when implemented [8, 11]. This says that upper bounds may exist

22

on the sensitivity that we can achieve for particular functions. We believe that there
are design techniques that can be specified to create software that is “generally” more

sensitive [11], however these techniques are only preliminary ideas requiring formalization.

5 Acknowledgements

The author expresses gratitude to Larry Morell for the help provided in formalizing these
ideas in the years 1988 through 1990. This research was performed before the author
accepted his current position as a National Research Council NASA/Langley Resident
Research Associate, and during that time was funded as a graduate student under NASA

grants NAG-1-824 and NAG-1-884 at the College of William and Mary.

References

(1] Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on Test

Data Selection: Help for the Practicing Programmer. [EEE Computer, 11(4):34-41,
April 1978.

[2] Richard G. Hamlet. Probable Correctness Theory. Information Processing Letters,
pages 17-25, April 1987.

[3] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis. McGraw-
Hill Book Company, 1982.

[4] Larry Joe Morell. A Theory of Error-based Testing. Technical Report TR-1395,
University of Maryland, Department of Computer Science, April 1984.

[5] L. J. Morell. A Model for Code-Based Testing Schemes. Fifth Annual Pacific North-
west Software Quality Conf., pages 309-326, 1987.

[6] S. K. Park. Lecture notes on simulation, version 3.0. Department of Computer
Science, College of William and Mary in Virginia, 1990.

[7] Timothy J. Shimeall. CONFLICT Specification. Technical Report NPSCS-91-001,

Computer Science Department, Naval Postgraduate School, Monterey, CA, October
1990.

[8] J. Voas and K. Miller. Improving Software Reliability by Estimating the Fault Hiding
Ability of a Program Before it is Written. In Proceedings of the 9th So ftware Reliability

Symposium, Colorado Springs, CO, May 1991. Denver Section of the IEEE Reliability
Society.

[9] J. Voas, L. Morell, and K. Miller. Predicting Where Faults Can Hide From Testing.
IEEE Software, 8(2), March 1991.

23

[10] J. Voas and J. Payne. A Parallel Propagation Analysis Algorithm. Technical Re-
port WM-91-2, College of William and Mary in Virginia, Department of Computer
Science, March 1991.

[11] J. Voas. Preliminary Observations On Factors That Affect Program Testabilities. In
Proc. of the 9th Pacific Northwest Software Quality Conf., Portland, OR, To appear
October 1991. Pacific Northwest Software Quality Conference, Inc., Beaverton, OR.

24

