
Agents in Proactive Environments

Dov Gabbay Rolf Nossum 1 Michael Thielscher 1

Department of Computing Department of Mathematics FG Intellektik
Imperial College Agder College University of Technology

London Kristiansand Darmstadt
England Norway Germany

authors’ email: { dg, rn7, mt11} @doc.ic.ac.uk
phone: +44 171 594 8205

fax: +44 171 594 8201

Abstract. Agents situated in proactive environments are acting autonomously while
the environment is evolving alongside, whether or not the agents carry out any particular
actions. A formal framework for simulating and reasoning about this generalized kind
of dynamic systems is proposed. The capabilities of the agents are modeled by a set
of conditional rules in a temporal-logical format. The environment itself is modeled by
an independent transition relation on the state space. The temporal language is given
a declarative semantics on the basis of an abstract, general model structure for formal
specifications of proactive environments.

1 Introduction

To motivate what follows, we discuss some aspects of scenarios involving agents and their
environment, both capable of changing the state of affairs of the world. The environment
in these scenarios is evolving freely, whether or not there is any action on the part of the
agent. This seems realistic, many real-world scenarios are like that. This contrasts with
the scenario classes that have mainly been studied, where the environment is perceived as
a purely reactive mechanism; e.g. in [21] pp.16-17 we find: “The definitions in this book
will be made in such a way that if no action is invoked by the ego, then the world will
advance by one single timestep while keeping all feature-values unchanged.” Scenarios
like the following go beyond this idealistic view of the world pausing whenever an agent
decides not to act:

1Most of the work was carried out while these authors were visiting Imperial College. An extended
abstract of this work has been presented at KI’97. Some of the results have been presented previously at
IJCAI’95.

1

• An interest-bearing bank deposit accrues interest from time to time, increasing the
balance of the account. The owner of the account can meanwhile make deposits
and withdrawals, not necessarily synchronized with the times at which interest is
added. The rate of interest on such accounts varies with the bank, with the size of
the deposit, with inflation, trading balance and other economic parameters in that
particular country, and ultimately on the current state of the world economy.

• Users of a timesharing computer compete for unique access to certain system re-
sources. At irregular times, the timesharing system itself reserves access to these
resources, e.g. for maintenance.

A free resource can be claimed by a user by performing a certain system call. The
resource then becomes busy until that user performs a releasing system call.

One day, two users both require simultaneous unique access to the same pair of
resources, and each of them gets hold of one resource by performing the appropriate
system call. They are then deadlocked, and a conflict resolution tactic must be
deployed, either by the users themselves or the system environment.

These examples are intended to convey the flavour of agents in an environment which
is changing in a way that is not purely reactive to individual actions, and which is too
complex to be described fully as a multi-agent system. We propose a formal framework
for modeling dynamic environments with situated agents whose actions influence the de-
velopment in the course of time. We start with a brief discussion on and inert vs. transient
state components (Section 2). In Section 3, we introduce a temporal execution language
named TEAL. It allows for the specification of both proactive environments and the ef-
fects on it caused by the performance of actions. An example domain, viz. competition
for access to system resources as mentioned above, is formalized by means of TEAL in
Section 4. Section 5 contains a brief discussion on the operational semantics followed by
an example execution scenario (Section 6) which describes a particular evolution of the
dynamic system formalized in Section 4. In Section 7, we develop a general, abstract
model structure for specifications of dynamic systems with proactive environment. On
this basis, in Section 8 we provide a declarative semantics for TEAL. In Section 9 we
extend the declarative semantics to both nondeterminism and conflict resolution. The
paper ends with a discussion of related work in Section 10, and some concluding remarks
in Section 11.

2 Inertia vs. transience

We take the state of affairs in the world to consist of a countable set F of atoms (called
fluents [18]), some of which are designated as inert. These are the fluents that are thought
of as stable if not explicitly changed. The agent, as well as the environment, can change
them. For example, the lights in a room are inert; when the switch is flicked, the status
of the light changes, and remains inert until the bulb burns out, or the switch is flicked
again. The lights in the stairways of some buildings are fitted with a time-delay circuit,

2

which turns them off when they have been on for a while; this can be viewed as the
environment acting on the fluent, independently of the agent that turned it on.

The non-inert fluents are transient,2 i.e. lasting for a single time unit. This is an
approximation to the transient nature of events like the sound of a doorbell, or a flash of
lightning.

Some transient fluents are designated as actions, and are carried out by agents or their
environment. The flicking of a switch is an action, and therefore transient, but the status
of the light, which is an effect of the flicking, is inert. Ringing a doorbell is an action, and
so is setting off a lightning flash in a thunderstorm, but the latter is an action available
only to the environment.

A flash of lightning can have drastic effects, which can greatly influence the further
evolution of agent scenarios, for instance by rendering some courses of action impossible
for some agents.

Flashes of lightning are in general not provoked by any action on the part of an agent, so
it would be unnatural to have a model where the environment was restricted to responding
directly to actions of an agent. On the other hand, the agent can influence the evolution
of the environment, for instance by erecting a lightning rod.

3 TEAL—A Temporal Executable Action Language

We proceed to give a formula language similar to that in [5], with an informal interpreta-
tion of some formulas as describing the actions of an agent. A precise formal semantical
interpretation in terms of a logic of proactive environments follows in a later section.

The language elements are the following. Propositional fluents, denoted p, q, r, etc;
classical connectives with their usual semantics, as well as temporal modalities © (”to-
morrow”), {(”yesterday”); and actions, which are denoted by atomic terms like shoot,
and ground terms like make deposit(250).

There is a distinguished predicate exec(...) on actions, generating atomic propositions
from action terms.

3.1 Action Rules

Fluents and negated fluents are called literals. Literals are combined with connectives
and modalities into formulas. Literals with 1 or more {s on them are called past literals,
and literals with 1 or more ©s on them are called future literals.

Clauses of the form

past literals ∧ exec(a)→ future literals

are called action rules.
Action rules are interpreted by evaluating the past literals, and if they are true, record-

ing the action as having been carried out at the present time, and performing the future

2called momentary in [14]

3

literals at the appropriate points in time. More precisely, a rule∧
i

{ici ∧ exec(a)→
∧
j

©jej

is eligible at time t if t |= ∧
i

{ici, cfr. the operational semantics below. Whether it is
actually carried out depends on constraints, and on possible conflicts with other rules.

3.2 Constraints

It follows from a separation result by Gabbay [6] that a large class of temporal formulas
can be normalized as action rules. Formulas outside this class can be interpreted as
constraints on the execution of action rules.

A constraint ψ prevents a rule
∧
i

{ici ∧ exec(a) → ∧
j©jej from execution at time t

if t |= ψ → ¬exec(a), and also conflicts with it if t+ j |= ψ → ¬ej for some j.

4 Example: timesharing and deadlock

We take a closer look at one of the examples mentioned in the introduction, namely the
competing users of a timesharing computer system.

There are two users, competing for access to both of two distinct resources. Each
resource can only be accessed by one user at a time. Each user wants control over both
resources simultaneously in order to accomplish a certain task. Also, the operating system
may reserve and release these resources, say for periodic maintenance, on a schedule that
is left unspecified here.

We set out some action terms and fluents which will help formalize this picture. A
resource r, which is not in use, can be reserved for a user u by an action takes. Therefore,
for each user u and each resource r we have action terms

u takes r

A user u, who has acquired both resources, accomplishes the task at hand by performing
the action

u succeeds

and then releases the resources.
Finally, we need fluents

u has r

for each user u and resource r, to describe who, if anyone, has reserved access to each
resource.

Supposing the two competing users are u1 and u2, the operating system is os, and the
contended resources are r1 and r2, we can describe the race to reserve both resources by
the following TEAL clauses:

4

(T1) ¬u1 has r1 ∧ ¬u2 has r1 ∧ ¬os has r1 ∧ exec(u1 takes r1)→©u1 has r1

(T2) ¬u1 has r2 ∧ ¬u2 has r2 ∧ ¬os has r2 ∧ exec(u1 takes r2)→©u1 has r2

(T3) ¬u1 has r1 ∧ ¬u2 has r1 ∧ ¬os has r1 ∧ exec(u2 takes r1)→©u2 has r1

(T4) ¬u1 has r2 ∧ ¬u2 has r2 ∧ ¬os has r2 ∧ exec(u2 takes r2)→©u2 has r2

If and when a user succeeds in getting both resources, then the task at hand is per-
formed, and both resources released:

(T5) u1 has r1 ∧ u1 has r2 ∧ exec(u1 succeeds)→©¬u1 has r1 ∧©¬u1 has r2

(T6) u2 has r1 ∧ u2 has r2 ∧ exec(u2 succeeds)→©¬u2 has r1 ∧©¬u2 has r2

The operating system can intervene at any time by reserving any of the resources for
its own purposes, in unspecified ways. We can imagine that there exist TEAL clauses
describing this, but that they are unavailable for analysis.

The following constraints describe the exclusiveness of access to the resources:

(C1) u1 has r1 → ¬u2 has r1 ∧ ¬os has r1

(C2) u1 has r2 → ¬u2 has r2 ∧ ¬os has r2

(C3) u2 has r1 → ¬u1 has r1 ∧ ¬os has r1

(C4) u2 has r2 → ¬u1 has r2 ∧ ¬os has r2

(C5) os has r1 → ¬u1 has r1 ∧ ¬u2 has r1

(C6) os has r2 → ¬u1 has r2 ∧ ¬u2 has r2

All of the above clauses taken together, including the existing but unknown clauses for
the operating system, form a specification of ways in which the competition for resources
may evolve. There are a multitude of different TEAL executions of them, corresponding
to nondeterministic choice of clauses where the preconditions are fulfilled, and conflict
resolution between clauses where the effects are contradictory or in violation of the con-
straints.

Some of the possible executions result in undesired states, where

(DL) u1 has r1 ∧ u2 has r2 ∨ u1 has r2 ∧ u2 has r1

It is tempting to call this eventuality deadlock, since in every continuation of such states

¬exec(u1 succeeds) ∧ ¬exec(u2 succeeds)

holds. It is however more properly conceived of as a form of livelock, since other compu-
tations may well proceed normally, e.g. the activities of the operating system.

Deadlock avoidance is a matter of conflict resolution, and in this example it is natural
to include the negation of DL as another constraint:

(C7) (u1 has r1 → ¬u2 has r2) ∧ (u1 has r2 → ¬u2 has r1)

5

5 Operational semantics

For simplicity we take integer time with finite past. Action rules can be executed at points
of time, resulting in a change in the future state.

For the moment, we disregard possible conflicts between different rules, and concentrate
on the operational semantics of executing a single rule at a certain timepoint t. Issues
of competing clauses, and in the case of concurrency, conflicting ones, are dealt with
elsewhere.

We rely on an underlying notion of truth of fluents at timepoints. Intuitively, we may
visualize the development of the state through time as a two-dimensional matrix, indexed
in one direction by fluents and in the other by time. For finite-past integer time, the matrix
will be infinite in one direction, that of advancing time. For the sake of uniformity, we
assume that the past-most timepoint is 1.

Thus, operationally speaking, an execution model is a set of fluents together with a
mapping |= of timepoints and fluents to truth values. For a fluent f and a timepoint t,
the realtion t |= f is either true or false. This matrix can be maintained as a temporal
database, using whatever database technology one prefers, e.g. that of [17]. To check
whether t |= ϕ holds, one can query the database for, say, ?t : ϕ. Formulas composed by
propositional connectives or temporal modalities must satisfy the usual inductive defini-
tions:

• t |= ¬ϕ iff not t |= ϕ

• t |= ψ → ϕ iff t |= ψ implies t |= ϕ

• t |= {ϕ iff t− 1 |= ϕ

• t |=©ϕ iff t+ 1 |= ϕ

To execute a rule at time t, the preconditions are queried from the temporal database. If
they are met, the action fluent exec(a) is recorded as true at time t, and the effect fluents
are entered into the database at the appropriate times as indicated by their temporal
prefixes. Database management rules and constraints will need to be accounted for.

There is no guarantee that these updates of the temporal database can be made con-
sistently. Conflict resolution between rules that have inconsistent effects, is dealt with in
Section 9.

The definition of TEAL does not address any technicalities of backtracking or fork-
ing required to implement non-determinism. This is left to the implementor, who will
call for one or the other implementation technique, depending mainly on the number of
independent processing modules that are available.

6 Execution scenarios

Returning to clauses (T1)− (T6), which describe the two competing users of a computer
system, we recall that some possible action sequences result in deadlock, but not all.

6

Every particular possible course of events can be retrieved after the fact by projecting
the resulting temporal database onto the exec(...) action fluents, revealing which actions
were done when.

A happy course of events would be this: at time 1, u1 took hold of resource r1, then at
time 2, user u1 took hold of r2 also, enabling u1’s success and release of the resources at
time 3. Then u2 did a similar sequence of actions from time 4 onwards, while all the time
the environment, the operating system, did nothing at all to restrict access the resources.
We can model this scenario by a sequence of sets of action fluents, indexed by timepoints
from 1 onwards:

[{exec(u1 takes r1)}, {exec(u1 takes r2)}, {exec(u1 succeeds)},
{exec(u2 takes r1)}, {exec(u2 takes r2)}, {exec(u2 succeeds)}]

To complicate matters a little bit, without running into deadlock, suppose that the
environment takes out resource r2 for maintenance in the time interval 4 . . . 12. This
makes u2 have to wait a while, but eventually both users succeed. To formalize it, we
need to specify action patterns of the operating system. Let user os have available the
action os takes r for r = r1, r2 in similar ways as in (T1) − (T4), and let there be an
action drops as follows:

(DR) u has r ∧ exec(u drops r)→©¬u has r

for arbitrary u and r. Then the following execution scenario leads to eventual success for
both of u1 and u2:

[{exec(u1 takes r1)}, {exec(u1 takes r2)}, {exec(u1 succeeds)},
{exec(u2 takes r1), exec(os takes r2)}, {}, {}, {}, {}, {}, {}, {},
{exec(os drops r2)}, {exec(u2 takes r2)}, {exec(u2 succeeds)}]

Operationally speaking, an execution model wrt. an execution scenario σ = [a1, . . . , an]
obtains as follows. A truth value assignment F0 is updated wrt. the exec instances in a1,
thus yielding the initial state of the database at time t = 1. The database then evolves
according to the underlying action rules but with constant updating of exec instances as
specified in σ until time t = n. After completing the execution scenario, the database
may continue evolving on its own, i.e., without further exogenous actions.

Execution models wrt. execution scenarios correspond directly to formal developments
in the logic of proactive environments (see below), and this will provide us with a declar-
ative semantics for reasoning about TEAL specifications.

7 The Logic of Proactive Environments

We proceed by developing a logic-oriented, formal theory of dynamically changing worlds
and the process of acting in them. Our model-theoretic approach comes with two main
features. First, the notion of concurrency is intrinsic to the theory. Second, we can
easily model delayed effects of actions by initiating additional independent events which
eventually trigger a particular effect.

7

When specifying a dynamic system, a major challenge is to find a compact description
of the underlying causal model, which defines the space of possible state changes in the
course of time. Our theory includes these two fundamental concepts: First, the persistence
assumption,3 which enables one to state explicitly only what changes during a single
state transition while everything else is implicitly assumed to remain unchanged. Second,
atomic causal laws are used to state relationships between single cause-effect-pairs. Since
usually several of these atomic laws apply to the current state of a dynamic system, a
combination of such laws determines the entire transition step. The use of atomic causal
relationships is especially helpful in theories which involve concurrency of actions and
events.

The major modes of reasoning with formal specifications of dynamic systems are the
following:

• In temporal projection, one is interested in the result of performing a particular
sequence of actions starting in a particular state of the system.

• In planning , the question is whether a sequence of actions, a plan, can be found
whose execution results in a system state that satisfies a given goal.

• In postdiction,4 one is faced with a narrative which is represented by a number
of observations regarding a system’s development during a specific period. These
observations are used to derive more information about what has happened.

7.1 Specifying Dynamic Systems

A formal specification of a dynamic system has two components. First, we need a col-
lection of fluents to describe particular states of the system. Second, the behavior of
the system as regards state transitions needs to be determined. Let us, for the moment,
focus on deterministic dynamic systems; nondeterminism is dealt with in Section 9. This
restriction is reflected in the following definition, where a transition function maps a state
into a unique successor state.

Definition 7.1 A deterministic, propositional dynamic system is a pair (F ,Φ) consist-
ing of a finite set of symbols F , called fluents , and a partially defined mapping Φ : C 7→ C,
called causal model . The range of the latter is a particular set of subsets of F , i.e., C ⊆ 2F .

Each subset s of F determines a (not necessarily possible) state of the dynamic system
at hand. Each fluent f ∈ s is then said to be true in s while each fluent f ∈ F \ s is
taken to be false. The set C is intended to contain all so-called consistent states—only
for these states s the successor state Φ(s) is defined by the causal model.

Based on the notion of truth of fluents in states, we can construct (propositional)
formulae and extend the notion of truth as usual:

3also called frame assumption or inertia principle
4called chronicle completion in [21]

8

Definition 7.2 Let F be a set of fluents. The set of fluent formulae (based on F) is
the smallest set such that each element f ∈ F is a fluent formula; and if F and G both
are fluent formulae then so are ¬F , (F ∧G), (F ∨G), and (F→G).

Given a state s ⊆ F and a fluent formula F , the notion of F being true in s, written
s |= F , is inductively defined as follows:

• s |= f iff f ∈ s, where f ∈ F .

• s |= ¬F iff s 6|= F .

• s |= (F ∧G) iff both s |= F and s |= G.

• s |= (F ∨G) iff s |= F or s |= G (or both).

• s |= (F→G) iff s 6|= F or s |= G (or both).

Fluent formulae can be used, for instance, to specify consistency of states more compactly
by means of a particular formula C such that a state s ∈ F is defined to be consistent
iff s |= C. Then the set C, which contains all consistent states of a dynamic system (see
Definition 7.1), is implicitly given by C = {s ⊆ F | s |= C}. Some distinguished fluents
Fa ⊂ F are called actions ; these are fluents which an agent can force to become true in
the current state in order to influence the system’s behavior.

Example 1 The Yale Shooting domain [12], in several variants, shall be used as the
running example of this section. To formalize a preliminary version, consider the set of
fluents F = {alive, loaded , load , shoot}—where alive and loaded are used to describe the
state of the turkey and the gun, respectively, while load and shoot are action fluents
representing the events of loading the gun and shooting, respectively. Then in the state
s = {alive, load} ⊆ F , for instance, the turkey is alive, the gun is unloaded, and some
agent intends to perform a load action. The successor state Φ(s) might then be defined
as {alive, loaded}, indicating that the turkey is still alive and that the gun is now loaded.
Furthermore, one might wish to specify that the gun cannot simultaneously be loaded
and shot with. This can be achieved by means of the constraint C = ¬(load ∧ shoot). We
then have, say, s |= C on account of {alive, load} 6|= shoot .

7.2 Causal Laws

The main challenge when specifying a dynamic system is to find a compact representation
of the corresponding causal model Φ. The most fundamental concept related to this is the
principle of persistence, which enables one to only specify the changes during a particular
state transition; all other fluents are implicitly assumed to keep their value.

As motivated in Section 2, we make a distinction between so-called inert fluents Fi that
“tend to persist,” i.e., which are assumed to keep their value until the contrary is explicitly
stated (and, hence, to which the persistence assumption should apply), and transient
fluents Ft that “tend to disappear.” As an important subclass of transient fluents we
have the action fluents Fa. Altogether, the set of fluents F describing a dynamic system
consists essentially of three components (Fi,Ft,Fa) where Fa ⊆ Ft and Fi ∩ Ft = {}.

9

Based on this sophistication, the persistence principle is integrated into our framework
by defining that, for each state s, the successor state Φ(s) is specified via an associated
triple of sets of fluents 〈i−, i+, t+〉. Here, i− contains the inert fluents which change
their truth value to false during the state transition, hence which are removed from s; i+

contains the inert fluents which change their truth value to true, hence which are added
to s; and t+ contains all transient fluents which are true in Φ(s). All other inert fluents
in s continue to be (and no other inert fluents become) element of Φ(s) while all transient
fluents except for those in t+ shall not be contained in the resulting state.

Example 2 Consider an extension of the Yale Shooting domain with the inert fluents
Fi = {alive, loaded} and the transient fluents Ft = {bang , bullet , load , shoot}, where
the additional fluents bang and bullet describe, respectively, the temporary acoustical
occurrence of a shot and a flying bullet. We then might specify the following:

s = {alive, loaded , shoot} : 〈i−, i+, t+〉 = 〈{loaded}, {}, {bang , bullet}〉 (1)

s = {alive, bang , bullet} : 〈i−, i+, t+〉 = 〈{alive}, {}, {}〉 (2)

Put in words, shooting with a previously loaded gun causes the gun to become unloaded
(loaded ∈ i−(1)) and the occurrence of two events, bang and bullet ; a flying bullet hits the

turkey and, hence, causes it to drop dead (alive ∈ i−(2)). This example illustrates how our
paradigm allows for a natural formalization of delayed effects (here, the turkey being shot
as the final result of having shot with the gun). With this specification we obtain, for
instance, Φ(Φ({alive, loaded , shoot})) = Φ({alive, bang , bullet}) = {}. Notice that finally
both bang and bullet disappear automatically because they are transient.

The persistence assumption allows for a more compact, implicit definition of successor
states Φ(s). Yet the above formalization still requires an exhaustive description as regards
the space of states. Therefore, the second major principle of specifying the behavior of
a dynamic system consists in splitting the definition of a single state transition into
separate atomic laws of causality, which then apply to a variety of different states. This
is particularly crucial in theories which involve concurrency since it enables one to specify
the effects of each single action (or event like bullet) separately:

Definition 7.3 Let F = Fi∪̇Ft be a set of inert and transient fluents. A structure
c : 〈i−, i+, t+〉 is called a causal law if c ⊆ F , called the condition; i−, i+ ⊆ Fi; and
t+ ⊆ Ft.

A causal law is applicable in a state whenever its condition is contained in the state
description.5 For notational convenience, to have access to the four components of some
causal law ` = c : 〈i−, i+, t+〉 we introduce the four functions cond(`)

def
= c, inert−(`)

def
= i−,

inert+(`)
def
= i+ and transient+(`)

def
= t+. We furthermore use the following abbreviation to

5It is for the sake of simplicity that we restrict the condition of a causal law to a set of fluents and
define applicability as validity of the conjunction of these fluents in the state at hand. It is however
natural and straightforward to consider arbitrary fluent formulae (c.f. Definition 7.2) instead.

10

describe the result of applying a set of causal laws L to some state s:

Trans(L, s) def
= ((s \ ⋃`∈L inert−(`)) \ Ft)

∪ ⋃
`∈L inert+(`) ∪ ⋃

`∈L transient+(`)

where Ft denotes the set of transient fluents considered in the dynamic system at hand.
Hence, first all inert fluents are removed from s that are supposed to become false by
some causal law in L; afterwards, all transient fluents are removed; and finally, all inert
and all transient fluents are added that are supposed to become true by some law in L.

Example 3 Consider the two causal laws

{shoot , loaded} : 〈{loaded}, {}, {bang , bullet}〉 (3)

{bullet , alive} : 〈{alive}, {}, {}〉 (4)

whose conditions are contained, hence satisfied, in the state s = {alive, loaded , bullet , shoot}
(where bullet might result from a previous shot). We obtain Trans({(3), (4)}, s) =
{bang , bullet}.

It is of course important to take into account the possibility that the simultaneous
occurrence of two or more actions (or events) might have different effects than their
separate occurrence. As an example, consider a table with a glass of water on it. Lifting
the table on either side causes the water to be spilled whereas nothing similar happens if
it is lifted simultaneously on opposite sides [9]. This situation may be specified by these
three causal laws:

{lift-left} : 〈{}, {}, {water-spills}〉 (5)

{lift-right} : 〈{}, {}, {water-spills}〉 (6)

{lift-left , lift-right} : 〈{}, {}, {}〉 (7)

where lift-left and lift-right both are action fluents and water-spills , too, is transient
(but not an action). Unfortunately each of these laws is applicable in the state s =
{lift-left , lift-right}, thus determining the unintended result Trans({(5), (6), (7)}, s) =
{water-spills}.

In order to avoid such conclusions, we employ an additional criterion to suppress the
application of some causal law as soon as, informally speaking, more specific information
is available (see also [3, 13]). For instance, causal law (7) should override both (5) and (6)
whenever it applies. A given set of causal laws naturally determines the following partial
relation on the elements:

Definition 7.4 Let `1, `2 be two causal laws then `1 is called more specific than `2,
written `1 ≺ `2, iff cond(`1) ⊃ cond(`2).

E.g., (7) ≺ (5) and (7) ≺ (6) but neither (5) ≺ (6) nor (6) ≺ (5).6

Based on the specificity criterion, the causal model of a dynamic system is obtained
from a set of causal laws as follows:

6If we allow for arbitrary fluent formulae as conditions of causal laws (c.f. Footnote 5), then a law
with condition c1 is said to be more specific than a law with condition c2 iff ∀s. s |= c1→c2 and ∃s. s |=
¬(c2→c1).

11

Definition 7.5 Let F be a set of fluents and L a set of causal laws. For each consistent
state s ⊆ F we define

L(s) := { ` ∈ L | cond(`) ⊆ s & ¬∃`′ ∈ L . `′≺ ` & cond(`′) ⊆ s } .

Then Φ(s) := Trans(L(s), s).

Put in words, L(s) contains all causal laws ` ∈ L that are applicable in s (i.e., which
satisfy cond(`) ⊆ s) unless there is a more specific law `′ ∈ L that is also applicable (i.e.,
that satisfies both `′≺ ` and cond(`′) ⊆ s). For instance, since the two causal laws (5)
and (6) are less specific than (7), we now obtain—due to L({lift-left , lift-right}) = {`3}—
the successor state Φ({lift-left , lift-right}) = {}, as intended. On the other hand, we still
obtain, say, Φ({lift-left}) = {water-spills} because law (7), though more specific than (5),
does not apply here.

One should be aware of the fact that nonetheless it might well happen that two most
specific applicable laws have mutually exclusive effects. A reasonable way to handle this
problem will be proposed and formalized below, in Section 9. For the moment we assume
that the combination of most specific causal laws never gives rise to a conflict, that is,⋃

`∈L(s)

inert−(`) ∩
⋃

`∈L(s)

inert+(`) = {} (8)

for each (consistent) state s (where L(s) is as in Definition 7.5).

7.3 A Model Structure

The specification of state transition can be used to describe the evolution of a dynamic
system over a longer period and under the influence of one or more agents. To direct
the development of a system, these agents are able to (simultaneously) execute actions.
The performance of one or more actions in a particular state is modeled by adding the
corresponding set of action fluents to the state descriptions prior to applying the transi-
tion function. Since we take action fluents as transient, these are immediately removed
automatically during a state transition.

Definition 7.6 Let (F ,Φ) be a dynamic system with action fluents Fa ⊂ F , and let
σ = [a1, . . . , an] (n ≥ 0) be a sequence of sets of action fluents (i.e., ai ⊆ Fa). Suppose
s0 is a consistent state, then the application of σ to s0 yields an infinite sequence of system
states 〈s1, . . . , sn, sn+1, . . .〉 where

• s1 = s0 ∪ a1;

• si+1 = Φ(si) ∪ ai+1, for each 1 ≤ i < n; and

• si+1 = Φ(si) for each i ≥ n

provided each of s1, . . . , sn is consistent—otherwise the application of σ to s0 is undefined.
If it is defined then the triple (σ, s0, 〈s1, . . .〉) is a development in (F ,Φ).

12

Notice that some sets of actions ai might be empty, that is, the agents have the possibility
to pause for a moment and let the system evolve autonomously. Notice further that,
after having executed the entire sequence of actions, the resulting state is not necessarily
stable; the system might run into a limit cycle by oscillating among a number of states.
Although a transition function Φ should be designed such that no inconsistent state
results from a consistent one (c.f. Definition 7.1), the process of adding action fluents may
cause inconsistency of some state si. This is the reason for the additional requirement of
consistency.

Example 4 Recall our formalization of the Yale Shooting domain with the causal model
being determined by the two causal laws (3) and (4). The application of the sequence
[{}, {shoot}] to the initial state s0 = {bang , alive, loaded} yields

s1 = s0 ∪ {} = {bang , alive, loaded}
s2 = Φ(s1) ∪ {shoot} = {alive, loaded , shoot}
s3 = Φ(s2) = {alive, bang , bullet}
s4 = Φ(s3) = {}
s5 = Φ(s4) = {}

...

A dynamic system that evolves over time may admit observations regarding the truth
value of certain state components at particular timepoints. Such an observation can
be formalized as a fluent formula associated with a particular timepoint. We then call a
development (in the sense of Definition 7.6) a model of an observation iff the corresponding
fluent formula is true at that time, that is, in the corresponding state:

Definition 7.7 Let (F ,Φ) be a dynamic system. An expression [i]ψ is called an ob-
servation if i ∈ IN and ψ is a fluent formula. This observation holds in a development
(σ, s0, 〈s1, . . .〉) iff si |= ψ. A model of a set Ψ of observations is a development in (F ,Φ)
where each element of Ψ holds.

For instance, [1]alive ∧¬bullet and [3]¬alive are two observations that can be formulated
in our Yale Shooting domain. This development is a model of these observations:

([{shoot}] , {alive, loaded} ,
〈{alive, loaded , shoot}, {alive, bang , bullet}, {}, {}, . . .〉)

For we have s0 = {alive, loaded} |= alive ∧ ¬bullet and s3 = {} |= ¬alive. The reader
is invited to verify that not only in this development but in every model of our two
observations the additional observation [1]shoot ∧ loaded holds—hence, we are allowed to
conclude that a shoot action must have taken place and that the gun was necessarily
loaded at the beginning.

An observation that holds in all models of a set of observations is considered to be
entailed by the latter:

13

Definition 7.8 Let (F ,Φ) be a dynamic system and Ψ a set of observations. Ψ entails
an additional observation [i]ψ, written Ψ |=Φ [i]ψ, iff [i]ψ holds in each model of Ψ.

Based on this model-theoretic formalization of dynamic systems, we can classify the
different modes of reasoning mentioned at the beginning.

• A temporal projection problem consists of an initial state s0 along with a sequence
of sets of actions σ = [a1, . . . , an]. The task is to compute the resulting state after
having applied σ to s0.

In terms of our theory, the problem is essentially to find a model for the particular set
of observations that describes the given initial state and exactly those occurrences
of action fluents which are determined by σ, i.e.,

Ψ = { [0]
∧
f∈s0 f ∧

∧
f∈F\s0 ¬f ,

[1]
∧
f∈a1 f ∧

∧
f∈Fa\a1 ¬f ,

...

[n]
∧
f∈an f ∧

∧
f∈Fa\an ¬f }

where Fa denotes the underlying action fluents.

• A classical planning problem consists of an initial state s0 and a fluent formula g,
called the goal . The task is to find a sequence of sets of actions σ, a plan, whose
application to s0 yields a sequence of system states containing one particular state sn
which satisfies g.

In terms of our theory, the problem is essentially to find a model for this set of
observations:

Ψ = { [0]
∧
f∈s0 f ∧

∧
f∈F\s0 ¬f ,

[n]g }

for some n ∈ IN.

• A postdiction problem consists of a narrative given by a set of observations Ψ along
with a sequence of sets of actions σ = [a1, . . . , an]. The task is to decide whether an
additional observation is a logical consequence of this scenario.

In terms of our theory, the problem is essentially to decide entailment wrt the
particular set of observations that includes the given ones and describes exactly
those occurrences of action fluents which are determined by σ, i.e.,

Ψ ∪ { [1]
∧
f∈a1 f ∧

∧
f∈Fa\a1 ¬f ,

...

[n]
∧
f∈an f ∧

∧
f∈Fa\an ¬f } .

14

8 A Declarative Semantics for TEAL

We now take the Logic of Proactive Environments (LPE, for short) of the preceding section
as the basis for a declarative semantics for our action language, TEAL. This semantics
goes beyond the mere operational semantics in supporting, e.g., reasoning backwards to
explain how a particular configuration came about.

Consider a given TEAL specification. This we interpret by a dynamic system as fol-
lows. The set of action fluents Fa consists of all (transient) fluents exec(a) where a is an
action term. All other fluents, inert or transient, are adopted. The major challenge when
employing LPE as a semantics for TEAL specifications is to find a suitable interpretation
of action rules in terms of causal laws. Notice that causal laws, as opposed to action rules,
have no temporal structure; they only concern the state at the time of their application,
and the one that immediately follows. Reference to conditions in the past and effects ex-
pected in the farther future, respectively, can however be made by introducing additional
transient fluents, separately for each action rule. These fluents might be regarded as a
flags indicating that the action rule in question is ‘progressed.’

Consider an action rule r, ∧
i

{ici ∧ exec(a)→
∧
j

©jej (9)

Let nα, nω ∈ IN so that nα is the maximal number of nested {s and nω the maximal
number of nested ©s in this rule. Then r is re-written as∧

c∈Cnα

{nαc ∧ . . . ∧ ∧
c∈C0

{0c ∧ exec(a) →
∧
e∈E1

©1e ∧ . . . ∧
∧

e∈Enω

©ne

where each Ci is the (possibly empty) set consisting of all the condition literals following
i {s, and where each Ej is the (possibly empty) set consisting of all the effect literals fol-
lowing i©s. Now we introduce nα+nω−1 new transient fluents f r−nα , . . . , f

r
−1, f

r
1 , . . . , f

r
nω−1.

With their help, action rule (9) is interpreted by the following nα + nω + 1 causal laws:∧
c∈Cnα c : 〈{}, {}, {f r−nα}〉∧

c∈Cnα−1
c ∧ f r−nα : 〈{}, {}, {f r−nα+1}〉

...∧
c∈C1

c ∧ f r−2 : 〈{}, {}, {f r−1}〉∧
c∈C0

c ∧ f r−1 ∧ exec(a) : 〈E−1 , E+
1 , Et

+
1 ∪ {f r1}〉

f r1 : 〈E−2 , E+
2 , Et

+
2 ∪ {f r2}〉

...

f rnω−2 : 〈E−nω−1, E
+
nω−1, Et

+
nω−1 ∪ {f rnω−1}〉

f rnω−1 : 〈E−nω , E
+
nω , Et

+
nω〉

(10)

where E+
j and E−j denote all affirmative and negated, respectively, inert fluents in Ej,

and Et+j contains all transient fluents which occur affirmatively in Ej. The extra tran-
sient fluents f r−nα , . . . , f

r
nω serve as flags indicating that the action rule in question is

15

being ‘processed’, and each particular one of these flags denotes the current status of this
execution.

The set of causal laws designed for an action rule reflect the latter as follows. Let
(F , |=) be an execution model and (σ, s0, 〈s1, s2, . . .〉) a development. At any timepoint
t the antecedent of an action rule is true, i.e., t |= ∧

i
{ici ∧ exec(a), iff beginning at

time t − nα the conditions of the first nα + 1 causal laws hold successively in the states
st−nα , . . . , st. Likewise, the consequent of a rule is true at time t, i.e., t |= ∧

j©jej,
iff the conditions of the nω − 1 remaining causal laws hold successively in the states
st+1, . . . , st+nω−1.

Definition 8.1 Consider a TEAL specification which consists of a set of fluents F and
a set of action rules R. Then (F ,R) is interpreted by the dynamic system (F̂ , Φ̂) where

• F̂ is F augmented by the transient fluent needed to rewrite R as causal laws; and

• Φ̂ is the causal model for the causal laws thus obtained.

Based on the notions of model and entailment of Section 7.3, our interpretation of TEAL
action rules as causal laws provides a declarative semantics of specifications in TEAL.
This semantics provably captures the operational semantics as described in Section 5 if
no conflicts arise during the execution. Prior to establishing the formal proof, let us
illustrate the application of LPE to TEAL by taking up again our Timesharing domain
of Section 4.

The translation of the TEAL rules into LPE is as follows: Let the sets Ft and Fa of
transient and action fluents, respectively, coincide and be as follows.

Ft = Fa = {exec(u takes r) : u ∈ {u1, u2, os}, r ∈ {r1, r2}}
∪ {exec(u drops r) : u ∈ {u1, u2, os}, r ∈ {r1, r2}}
∪ {exec(u succeeds) : u ∈ {u1, u2}}

and F = Fa ∪ {u has r : u ∈ {u1, u2, os}, r ∈ {r1, r2}}. Then (T1)− (T4) give rise to a
causal law each, for example for (T1) we get:

(T1′) ¬u1 has r1 ∧ ¬u2 has r1 ∧ ¬os has r1 ∧ exec(u1 takes r1) :
〈{}, {u1 has r1}, {}〉

Clauses (T5)− (T6) similarly give rise to a causal law each, e.g. for (T5) we get:

(T5′) u1 has r1 ∧ u1 has r2 ∧ exec(u1 succeeds) : 〈{u1 has r1, u1 has r2}, {}, {}〉

Finally, clause (DR) of Section 6 gives rise to the following causal law:

(DR′) u has r ∧ exec(u drops r) : 〈{u has r}, {}, {}〉

for any u ∈ {u1, u2, os} and r ∈ {r1, r2}.

16

Recall the execution scenario σ = [a1, . . . , a14] of Section 6:

[{exec(u1 takes r1)}, {exec(u1 takes r2)}, {exec(u1 succeeds)},
{exec(u2 takes r1), exec(os takes r2)}, {}, {}, {}, {}, {}, {}, {},
{exec(os drops r2)}, {exec(u2 takes r2)}, {exec(u2 succeeds)}]

Suppose the initial state of the database be such that all resources are available and no
action occurs, i.e.,

s0 = {¬u has r : u ∈ {u1, u2, os}, r ∈ {r1, r2}} ∪ {¬f : f ∈ Fa}

State s0 and action sequence σ = [a1, . . . , a14] admit a unique development (σ, s0, 〈s1, s2, . . .〉),
which, for instance, entails the following observations:

[3] u1 has r1 ∧ u1 has r2

[7] u2 has r1 ∧ ¬u2 has r2 ∧ os has r2

[14] u2 has r1 ∧ u2 has r2 ∧ exec(u2 succeeds)

These observations illustrate that our declarative semantics captures the operational se-
mantics of TEAL. In the following we will establish a formal proof of our declarative
semantics being correct in this respect in general.

The proof requires some preparation. We call a partial development any initial segment
(σ, s0, 〈s1, . . . , sn〉) (where n ≥ 0) of a development (σ, s0, 〈s1, . . . , sn, sn+1, . . .〉).
Definition 8.2 An execution model (F , |=) is said to coincide with a partial develop-
ment (σ, s0, 〈s1, . . . , sn〉) iff

1. for all t = 1, . . . , n and all f ∈ F we have t |= f iff f ∈ st, and

2. for all f ∈ F̂ \ F we have f 6∈ s0.

The following observation shows that the causal laws by which we interpret an action
rule, behave exactly the way the rule does.

Lemma 8.3 Let F be a set of fluents, R a set of action rules, and (F̂ , Φ̂) the dynamic
system interpreting (F ,R). Consider an execution model (F , |=) and a partial develop-
ment δ = (σ, s0, 〈s1, . . . , sn〉) with which (F , |=) coincides. Then for any action rule r ∈ R
of the form (9) and any t ∈ {1, . . . , n− 1} such that 1 ≤ t− nα < t+ nω ≤ n, we have

t |=
∧
i

{ici ∧ exec(a) ∧
∧
j

©jej

iff the corresponding causal laws of equation (10) are consecutively applicable in the states
st−nα , . . . , st, . . . , st+nω−1.

Proof: Since (F , |=) coincides with δ, we know that t |= ∧
c∈Cnα c holds

iff Cnα ⊆ st−nα . According to the topmost causal law in (10), the latter is
equivalent to f r−nα ∈ st−nα+1.7 Consequently, t |= ∧

c∈Cnα c ∧
∧
c∈Cnα−1

c iff
both Cnα ⊆ st−nα and Cnα−1 ∪ {f r−nα} ⊆ st−nα+1. Reiterating this argument
proves the claim.

7Notice that the newly introduced transient fluents are unique, that is, fr
−nα

, for instance, does not
occur in any causal law but the two topmost ones in (10).

17

We are now prepared to prove that the declarative semantics obtained via LPE cap-
tures the operational semantics of TEAL, provided we do not encounter a conflict during
execution.

Theorem 8.4 Let F be a set of fluents, R a set of action rules, and (F̂ , Φ̂) the
dynamic system interpreting (F ,R). Consider an execution scenario σ = [a1, . . . , an]
(n ≥ 0) and an initial state F0 over F such that there is a unique execution model
(F , |=) wrt. σ and with initial state F0 updated by a1. Then there is a unique development
δ = (σ, s0, 〈s1, s2, . . .〉) in (F̂ , Φ̂) satisfying s0 = F0∪{¬f : f ∈ F̂ \F}. Moreover, (F , |=)
coincides with all initial segment of δ.

Proof: We prove by induction that there is a unique sequence of par-
tial developments (σ, s0, 〈s1〉), (σ, s0, 〈s1, s2〉), (σ, s0, 〈s1, s2, s3〉), . . . such that
(F , |=) coincides with each. Moreover, the limit of these initial segments is the
unique development in (F̂ , Φ̂) with initial state s0 and execution scenario σ.

For the base case, let s1 = s0 ∪ a1. The initial state of the database in the
execution model (F , |=) is given by F0 updated by a1. By construction of s0

we thus have, for any f ∈ F , that 1 |= f iff f ∈ s1. Hence (F , |=) coincides
with (σ, s0, 〈s1〉).
For the induction step, assume that (F , |=) coincides with the partial develop-
ment (σ, s0, 〈s1, . . . , sn〉) (n ≥ 1). Let sn+1 = Φ̂(sn) ∪ an+1. We have to show,
for any f ∈ F , that t+ 1 |= f iff f ∈ sn+1. To this end, consider an arbitrary
fluent f ∈ F . We distinguish three cases:

1. If f ∈ an+1, then both t+ 1 |= f and f ∈ sn+1 by definition.

2. Otherwise, suppose there exists an action rule r ∈ R of the form (9) and
some t ≤ n such that

t |=
∧
i

{ici ∧ exec(a) ∧
∧
j

©jej

and f (resp. ¬f) occurs in ej with t+ j = n+ 1. Then n+ 1 |= f (resp.
n + 1 |= ¬f). According to Lemma 8.3, this implies f ∈ Φ(sn) (resp.
f 6∈ Φ(sn)).

3. If there exists no such action rule, then f persists, that is, n+1 |= f iff n |=
f . According to Lemma 8.3, there is no causal law which is applicable
in sn and which has f as positive or negative effect. Consequently, f ∈
Φ(sn) iff f ∈ Φ(sn).

This proves that if (F , |=) coincides with (σ, s0, 〈s1, . . . , sn〉), then so does it
with (σ, s0, 〈s1, . . . , sn, sn+1〉).
The way in which we have constructed the successive states to obtain the
sequence of partial developments is in accordance with Definition 7.6. Hence
the limit δ of the sequence is the unique development in (F̂ , Φ̂) wrt. σ and s0.

18

9 Nondeterminism and Conflict Resolution in LPE

In this section, we extend our declarative semantics to so-called nondeterministic dynamic
systems, which will then provide a basis also for handling conflicts. Nondeterminism arises
if parts of the successor state are uncertain even in case the current state is completely
known. This is reflected in the following definition, where the causal model consists of a
relation on pairs of states (see, e.g., [4]) instead of a function as in Definition 7.1:

Definition 9.1 A nondeterministic, propositional dynamic system is a pair (F ,Φ) con-
sisting of a set of fluents F and a relation Φ ⊆ 2F × 2F .

Given a state s ⊆ F , each s′ such that (s, s′) ∈ Φ is called a possible successor state. A
state is now said to be inconsistent in case it has no successor at all.

The concept of nondeterminism is reflected in an extended notion of a causal law where
several effects 〈i−i , i+

i , t
+
i 〉 can be associated with a single condition; each triple then

determines a possible alternative:

Definition 9.2 Let F = Fi∪̇Ft be a set of inert and transient fluents. An extended
causal law is a structure c : {〈i−1 , i+

1 , t
+
1 〉, . . . , 〈i−n , i+

n , t
+
n 〉} where n ≥ 1; c ⊆ F ; i−i , i

+
i ⊆

Fi; and t+
i ⊆ Ft (1 ≤ i ≤ n).

Example 5 The Russian Turkey scenario (see, e.g., [21]) is obtained from the Yale
Shooting domain by adding an action fluent spin. The effect of spinning its cylinder is
that the firearm becomes randomly loaded or not, regardless of its state before. This
nondeterministic effect is formalized by the following extended causal law:

{spin} :

〈{loaded}, {}, {}〉,
〈{}, {loaded}, {}〉

 (11)

As for the special case of deterministic systems, the combination of all most specific
laws shall determine the behavior of the system at hand. Hence, for each state s we define

L(s) := { ` ∈ L | cond(`) ⊆ s & ¬∃`′ ∈ L . `′≺ ` & cond(`′) ⊆ s } ,

similar to Definition 7.5, where L denotes the underlying set of (extended) causal laws.
Now, suppose that L(s) be {c1 : A1, . . . , ck : Ak} (k ≥ 0) and define

Poss(L(s)) := {{c1 : a1, . . . , ck : ak} | ai ∈ Ai (1 ≤ i ≤ k)}
That is, Poss(L(s)) contains all combinations of alternatives. Each element then deter-
mines a possible successor state of s, i.e.,

(s, s′) ∈ Φ iff ∃P ∈ Poss(L(s)). s′ = Trans(P , s) .

19

Suppose, for example, (11) is the only applicable causal law in the state s = {alive, spin}.
Then Poss(L(s)) is

{{spin : 〈{loaded}, {}, {}〉} , {spin : 〈{}, {loaded}, {}〉}}
Hence both (s, {alive}) ∈ Φ and (s, {alive, loaded}) ∈ Φ.

The concept of nondeterminism provides us with an interesting solution to the problem
of concurrently performed actions with mutually exclusive effects. Consider, for instance,
the two causal laws

{push-door} : 〈{}, {open}, {}〉
{pull-door} : 〈{open}, {}, {}〉

(12)

where push-door and pull-door denote action fluents while the inert fluent open describes
the state of the door under consideration here. Now, assume three agents acting concur-
rently: The first one tries to push the door, the second one tries to pull it, and the third
agent intends to lift the left hand side of a table inside the room (c.f. (5)–(7)). Suppose
further that the door is currently closed and no water spills out of the glass placed on
top of the table, that is, s = {push-door , pull-door , lift-left}. Now, aside from (5) both
causal laws in (12) are applicable. However, the first one claimes the door be open in the
succeeding state (open ∈ i+) while the second one postulates the opposite (open ∈ i−).
Hence, our consistency condition, (8), is not satisfied here.

Most classical AI formalizations of concurrent actions, such as [15, 3, 11], declare situ-
ations like s inconsistent and, hence, do not allow any conclusions whatsoever about the
successor state. It is impossible indeed that both actions push-door and pull-door suc-
ceed. However, as we have argued in [4] (in the context of a theory developed in [8] and
extended in [3]), it is reasonable to draw conclusions at least about uninvolved fluents;
e.g., we would like to conclude that the third agent is successful in lifting the table, which
causes water be spilled. Preventing global inconsistency in case of local conflicts is the
basic intention of this idea.

The notion of nondeterminism provides us with a ready approach to support such
conclusions. Instead of declaring undefined the successor state of s, we take only the
disputed fluents (here: open) as uncertain while any other effect (here: water-spills , coming
from (5)) occurs as intended. In our example, we thus obtain two possible successors of s,
namely, {open,water-spills} and {water-spills}—providing us with the conclusion that
water-spills become true.

This strategy of conflict solving is integrated in the following definition of how to obtain
the causal model in case of nondeterministic systems:

Definition 9.3 Let F be a set of fluents and L a set of (extended) causal laws. For
each (consistent) state s ⊆ F we define

L(s) := { ` ∈ L | cond(`) ⊆ s & ¬∃`′ ∈ L . `′≺ ` & cond(`′) ⊆ s } .

Suppose L(s) be {c1 : A1, . . . , ck : Ak} (k ≥ 0) and let

Poss(L(s)) := {{c1 : a1, . . . , ck : ak} | ai ∈ Ai (1 ≤ i ≤ k)}
20

Furthermore, we define (s, s′) ∈ Φ iff

∃P ∈ Poss(L(s)), i↙∈Confl(P). s′ = Trans(P , s) \ i↙

where
Confl(P) :=

⋃
`∈P

inert−(`) ∩
⋃
`∈P

inert+(`) .

The set Confl(P) is intended to contain all disputed fluents (c.f. (8)), and each possible
combination of these fluents determines a possible successor state.8

Finally, the semantics developed in the previous section is extended to nondeterministic
dynamic systems in the following way (c.f. Definition 7.6):

Definition 9.4 Let (F ,Φ) be a nondeterministic dynamic system with action fluents
Fa ⊂ F , and let σ = [a1, . . . , an] (n ≥ 0) be a sequence of sets of action fluents in Fa.
Suppose s0 is a consistent state, then a triple (σ, s0, 〈s1, . . . , sn, sn+1, . . .〉) is a development
iff

• s1 = s0 ∪ a1;

• si+1 = s′i ∪ ai+1, where (si, s
′
i) ∈ Φ, for each 1 ≤ i < n;

• (si, si+1) ∈ Φ for each i ≥ n

and each of s1, . . . , sn is consistent.

10 Related Work

A well-known framework for reasoning about action and time is the one put forward by
J.F.Allen in his article [1], which was seminal. Allen’s theory is based on the notion
of time intervals, and through a meets relation on pairs of intervals, time is structured
linearly.

A critical examination by A.Galton [7] found Allen’s framework unsuitable for repre-
senting facts about continuous change, and proposed revisions to accommodate this. In
particular, the temporal ontology is enriched by instants in addition to intervals, and the
property concept is refined into states of position and states of motion, respectively. As
a result, Allen’s category of processes is subsumed by Galton’s category of properties.

In [2], Allen and Ferguson compare interval temporal logic with other formalisms, no-
tably those based on the situation calculus, and present an approach to proactive envi-
ronments based on explanation closure. For each property it is specified which events can
change it. External events are divided into three classes;

• triggered events, which do not occur unless specifically triggered by an agent’s action

• definite events, which are certain to occur, but at uncertain times, and

8Notice that we are supposed to remove the set i↙ from Trans(P, s), for all elements in Confl(P) are
first of all added when computing Trans(P, s).

21

• spontaneous events, which may or may not occur.

Reasoning about change then amounts to reasoning about which events may or may not
have occurred, and it is seen that all events have to be accounted for in advance, even
external ones.

By comparison, our approach does not necessitate any a priori tabulation of the system
properties affected by external events. Rather, unforeseen effects caused by the environ-
ment are tackled on the fly, through dynamic satisfaction of constraints.

TEAL falls broadly within the MetaTem paradigm of executable temporal logic. The
most important difference between TEAL and the MetaTem framework has to do with
the scope of influence of the environment, compared to that of the agent. MetaTem
requires the set of fluents controlled by the environment to be disjoint from the set of
fluents controlled by the agent, cfr section 3.2.1 of [19], whereas the opposite requirement
is made by TEAL. Here these sets are taken to coincide, or at least have a non-empty
intersection, and the complications arising from the interference by the environment are
of particular interest.

GOLOG is a logic programming language for dynamic domains, based on situation
calculus semantics. Actions play a fundamental role, and assumptions about the envi-
ronment are formally specified within the language, cfr. the discussion in section 6 of
[16].

The interpreter for the GOLOG language maintains an explicit model of the system’s
environment, treating it as a logical database to be queried and reasoned with at runtime.
This is reminiscent of our view of the evolving state of execution, but TEAL differs from
GOLOG when it comes to computing a new state based on existing information and a
given program of clauses. Where GOLOG utilises a simple solution to the frame problem
put forward by Reiter [20] to deal with effects of the environment, no such harnessing is
attempted by TEAL. Rather, arbitrary interference by the environment is expected and
dealt with on the fly as explained in [19] and in section 3 of this paper.

11 Conclusion and further work

We have presented a temporal-logical language to model agents situated in proactive en-
vironments, and we have developed an abstract, general theory of such dynamic systems.
We have illustrated that our framework allows for a natural treatment of concurrent
actions and simultaneous events as well as delayed effects, and we have integrated a rea-
sonable way to handle the problem of concurrent actions with mutually exclusive effects.
We have then devised a formal semantics for TEAL programs as sets of LPE causal laws.

Delayed effects constitutes a particular category of indirect effects of actions. The
Ramification Problem [10] deals with indirect effects that are so closely connected to the
their triggering effects that they arise in the same state transition step. Accounting for
such effects, which derive from state constraints, is amenable to the techniques of [22],
and this issue is receiving further attention in ongoing work by the authors.

22

References

[1] J. F. Allen. Towards a general theory of action and time. Artificial Intelligence,
23:123–154, 1984.

[2] J. F. Allen and G. Ferguson. Actions and events in interval temporal logic. J. Logic
and Computation, 4(5), 1994.

[3] Chitta Baral and Michael Gelfond. Reasoning about effects of concurrent actions.
Journal of Logic Programming, 31(1–3):85–117, 1997.

[4] S.-E. Bornscheuer and M. Thielscher. Explicit and implicit indeterminism: Reasoning
about uncertain and contradictory specifications of dynamic systems. Journal of
Logic Programming, 31(1–3):119–155, 1997.

[5] D. Gabbay and R. Nossum. A temporal executable agent language. Workshop on
Executable Temporal Logic at IJCAI95, Montreal, 1995.

[6] Dov Gabbay, Ian Hodkinson, and Mark Reynolds, editors. Temporal Logic: Mathe-
matical Foundations and Computational Aspects, volume 1. Oxford University Press,
1994.

[7] A. Galton. A critical examination of allen’s theory of action and time. Artificial
Intelligence, 42:159–188, 1990.

[8] Gelfond and Lifschitz. Representing action and change by logic programs. JLP,
17:301–321, 1993.

[9] Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov. What are the limitations
of the situation calculus? In S. Boyer, editor, Automated Reasoning, Essays in Honor
of Woody Bledsoe, pages 167–181. Kluwer Academic, 1991.

[10] Matthew L. Ginsberg and David E. Smith. Reasoning about action I: A possible
worlds approach. Artificial Intelligence, 35:165–195, 1988.

[11] Gerd Große. Propositional State-Event Logic. In C. MacNish, D. Peirce, and L. M.
Peireira, editors, Proceedings of the European Workshop on Logics in AI (JELIA),
volume 838, pages 316–331. Springer, September 1994.

[12] Steve Hanks and Drew McDermott. Nonmonotonic logic and temporal projection.
Artificial Intelligence, 33(3):379–412, 1987.

[13] Steffen Hölldobler and Michael Thielscher. Computing change and specificity
with equational logic programs. Annals of Mathematics and Artificial Intelligence,
14(1):99–133, 1995.

[14] Vladimir Lifschitz and Arkady Rabinov. Things that change by themselves. In
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
pages 864–867, Detroit, MI, 1989.

23

[15] Fangzhen Lin and Yoav Shoham. Concurrent actions in the situation calculus. In
Proceedings of the AAAI National Conference on Artificial Intelligence, pages 590–
595, San Jose, CA, 1992. MIT Press.

[16] Levesgue Reiter Lesperance Lin and Scherl. Golog: a logic programming language
for dynamic domains. J. Logic Programming, 19, 1994.

[17] P.J. McBrien. Principles of implementing historical databases in RDBMS. In Pro-
ceedings of the 11th British National Conference on Databases. Springer LNCS, 1993.

[18] John McCarthy and Patrick J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. Machine Intelligence, 4:463–502, 1969.

[19] Barringer Fisher Gabbay Owens and Reynolds. The Imperative Future. Volume 1:
Principles. Draft. Wiley and Sons Inc, 1995.

[20] Raymond Reiter. The Frame Problem in the Situation Calculus, A Simple Solu-
tion (Sometimes) and a Completeness Result for Goal Regression, pages 359–380.
Academic Press, San Diego,CA, 1991.

[21] E. Sandewall. Features and Fluents. Volume 1: The representation of knowledge
about dynamical systems. Oxford University Press, 1994.

[22] Michael Thielscher. Ramification and causality. Artificial Intelligence, 89(1–2):317–
364, 1997.

24

