
Lookahead and Discretization in ILP

Hendrik Blockeel and Luc De Raedt

Katholieke Universiteit Leuven

Department of Computer Science

Celestijnenlaan 200A

3001 Heverlee

e-mail: fHendrik.Blockeel, Luc.DeRaedtg@cs.kuleuven.ac.be

Abstract. We present and evaluate two methods for improving the per-

formance of ILP systems. One of them is discretization of numerical at-

tributes, based on Fayyad and Irani's text [9], but adapted and extended

in such a way that it can cope with some aspects of discretization that

only occur in relational learning problems (when indeterminate literals

occur). The second technique is lookahead. It is a well-known problem in

ILP that a learner cannot always assess the quality of a re�nement with-

out knowing which re�nements will be enabled afterwards, i.e. without

looking ahead in the re�nement lattice. We present a simple method for

specifying when lookahead is to be used, and what kind of lookahead is

interesting. Both the discretization and lookahead techniques are evalu-

ated experimentally. The results show that both techniques improve the

quality of the induced theory, while computational costs are acceptable.

1 Introduction

Propositional learning has been studied much more extensively than inductive

logic programming (ILP), and at this moment the former �eld is better under-

stood than the latter. However, ILP shares many techniques, heuristics etc. with

propositional learning, and therefore it can often pro�t from results obtained for

propositional learners. Due to several aspects of ILP that do not occur in propo-

sitional learning, it is often necessary to adapt these techniques to the speci�c

ILP context.

In this paper, we discuss two such upgrades of propositional learning results

to the ILP context. The �rst is discretization of continuous attributes. Irani

and Fayyad [9] have presented a propositional method that divides a continuous

domain into several subsets which can then be used as discrete values. We will

brie
y discuss the method, show that ILP poses some problems with respect

to discretization that do not occur in propositional learning, and propose an

adaptation of the method.

The second topic we shall discuss, is the use of lookahead. It is a well-known

problem with relational learners that most heuristics (e.g. information gain) have

problems with assessing the quality of a re�nement of a rule, because a single

literal that is added by the re�nement step may not cause any gain, but may be

very important to make the addition of gainful literals possible later on (because

it introduces new variables). The advantage of adding a literal may only become

clear further down the re�nement tree. In general, heuristics that work well for

propositional learners do not always perform as well for relational learners.

We propose a lookahead technique to alleviate this problem. By allowing the

learner to look more than one level ahead in the re�nement lattice, it may be

able to assess the quality of a re�nement more accurately.

Both the discretization and lookahead methods have been implemented in a

novel ILP system called Tilde, and we present experimental results con�rming

the usefulness of both techniques.

This text is organized as follows. In Section 2, we brie
y discuss the ILP

setting that is used. In Section 3 we discuss discretization, in Section 4 lookahead.

Conclusions are presented in Section 5.

2 The Learning Setting

We essentially use the learning from interpretations paradigm for inductive logic

programming, introduced by [4], and related to other inductive logic program-

ming settings in [3].

In this paradigm, each example is a Prolog knowledge base (i.e. a set of

de�nite clauses), encoding the speci�c properties of the example. Furthermore,

each example is classi�ed into one of a �nite set of possible classes. One may

also specify background knowledge B in the form of a Prolog knowledge base.

More formally, the problem speci�cation is :

Given: a set of classes C, a set of classi�ed examples E, and a background

theory B,

Find: a hypothesis H (a set of de�nite clauses in Prolog), such that for all e 2 E

: H ^ e ^B j= c, and H ^ e ^ B 6j= c

0

where c is the class of the example e and

c

0

2 C � fcg.

Our experiments have been done with the ILP system Tilde[1], which repre-

sents the induced hypotheses as logical decision trees (these are a �rst order logic

upgrade of the classical decision trees used in propositional concept learning).

Example 1. Suppose a number of machines are under revision. Some have to be

sent back to the manufacturer, and others can be kept. The aim is to predict

whether a machine needs to be sent back.

Given the following set of examples (each example represents one machine):

Example 1

class(keep)

worn(gear)

worn(chain)

Example 2

class(sendback)

worn(engine)

worn(chain)

Example 3

class(sendback)

worn(control unit)

Example 4

class(keep)

worn(chain)

and the following background knowledge:

Background knowledge

replaceable(gear)

replaceable(chain)

not replaceable(engine)

not replaceable(control unit)

the following decision tree (in �rst order logic) represents a correct classi�-

cation procedure:

worn(X)

�

�

�

P

P

P

not replaceable(X) keep

�

�

H

H

sendback keep

We wish to stress that | although for our experiments we use only Tilde|

the techniques, problems and solutions discussed in this paper generally apply

to any ILP-learner.

3 Discretization

3.1 Principle

The motivation for discretizing numeric data is twofold and based on the �ndings

in attribute value learning. On the one hand, there is an e�ciency concern.

On the other hand, by discretizing the data, one may sometimes obtain higher

accuracy rates.

Most current ILP systems ([13, 12] generate numbers during the induction

process itself, which may cause a lot of overhead: at each re�nement step (a lot

of) constants need to be generated. Tilde, however, discretizes numeric domains

beforehand, which makes the induction process much more e�cient. It is known

that in a propositional learning context this does not necessarily decrease the

quality of the induced hypothesis (it may even increase; see e.g. [2]).

In our approach to discretization, the user can declaratively identify the

relevant queries and the variables for which the values are to be discretized.

For instance, to be discretized(atom(A,B,C,D), [D]) states that the fourth

argument of atom should be discretized.

The resulting numeric attributes are then discretized using a simple modi�-

cation of Fayyad and Irani's method. The details of this method can be found

in [9] and [7]. In short, the algorithm �nds a threshold that partitions a set of

examples into two subsets such that the average class entropy of the subsets is

as small as possible. This procedure is applied recursively on S

1

and S

2

until

some stopping criterion is reached.

With respect to Fayyad and Irani's algorithm, two adaptations were made.

Firstly, Fayyad and Irani propose a stopping criterion that is based on the mini-

mal description length principle, but for Tilde we found this method to generate

very few thresholds. Therefore Tilde's discretization procedure accepts a max-

imal number of thresholds as a parameter. This has the additional advantage

that one can experiment with di�erent numbers of thresholds.

A second adaptation made to Fayyad and Irani's method speci�cally con-

cerns non-determinacy. Due to the fact that one example may have multiple or

no values for a numeric attribute, we use sum of weights instead of number of

examples in the appropriate places of Fayyad and Irani's formulae (in the at-

tribute value case all values have weight 1 as each example has only one value

for one attribute). The sum of the weights of all values for one numeric attribute

or query in one example always equals one, or zero when no values are given.

Example 2. Consider an example E

1

= fp(1); p(2); p(3)g, and some threshold

T = 2:5. In a propositional context T would partition a set of examples S into

S

1

(examples that have a value < 2.5) and S

2

, the rest. In our context, E

1

has

weight 2=3 in S

1

, and 1=3 in S

2

.

Aside from the generation of subintervals, there is the topic of how these

intervals should be used. We see several possibilities:

{ Using inequalities to compare whether a value is less than a discretization

threshold; this corresponds to an inequality test in the discrete domain.

{ Checking whether a value lies in some interval bounded by two consecutive

thresholds. Such an interval test corresponds with an equality test in the

discretized domain.

{ Checking whether a value lies in an interval bounded by non-consecutive

thresholds. This corresponds to an interval test in the discrete domain.

The three approaches have been used and compared in our experiments.

3.2 Experimental Evaluation

We evaluate the e�ect of discretization on two datasets: the Musk dataset (avail-

able at the UCI repository [11]) and the Diterpene dataset, generously provided

to us by Ste�en Schulze-Kremer and Sa�so D�zeroski. Both datasets contain non-

determinate numerical data, which makes them �t to test our discretization

procedure on. We refer to [5] and [8] for precise descriptions of the datasets.

On the Musk dataset, we have compared the discretization approaches using

equality tests, and using inequality tests. On the Diterpene dataset, the interval

and inequality approaches were compared with using no discretization at all. In

Figure 1, theory accuracies are plotted against the maximalnumber of thresholds

that was given. Figure 2 shows running times on the Diterpene dataset.

Our conclusions are that the way in which discretization results are used

(discrete (in)equalities, intervals) signi�cantly in
uences the accuracy of the in-

duced theory, as well as the e�ciency of the induction process. A good choice of

the number of thresholds is also important. Accuracy often shows a clear trend

of reaching a maximum at some number of thresholds, then slowly decreases.

A good combination of thresholds and discretization method may increase both

accuracy and e�ciency.

0.78

0.8

0.82

0.84

0.86

0.88

1 2 3 4 5 6 7

ac
cu

ra
cy

number of thresholds

inequalities
equalities

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

0 5 10 15 20 25 30 35 40

pr
ed

ic
tio

n
ac

cu
ra

cy

number of thresholds

intervals
inequalities

no discretization

(a) (b)

Fig. 1. In
uence of number of thresholds on accuracy: (a) Musk dataset, comparing

equalities and inequalities; (b) Diterpene dataset, comparing intervals with inequalities

and no discretization at all

0

2000

4000

6000

8000

10000

12000

14000

0 5 10 15 20 25 30 35 40

ru
nn

in
g

tim
e

(c
pu

-s
ec

on
ds

)

number of thresholds

intervals
inequalities

no discretization

Fig. 2. Comparison of running times for the di�erent approaches (Diterpene dataset)

4 Lookahead

4.1 Principle

An important problem in ILP is that re�nement of a clause by adding a literal

may result in little immediate improvement, although the literal may introduce

new variables that are important for classi�cation. For greedy systems, this may

heavily in
uence the induction process. Although some systems have some pro-

visions to cope with the problem (e.g. FOIL [13] automatically adds determinate

literals), it is still an open question how it can best be solved.

A possible technique for coping with the problem, is to make the learner look

ahead in the re�nement lattice. When a literal is added, the quality of the re�ne-

ment can better be assessed by looking at the additional re�nements that will

become available after this one, and looking at how good these are. This tech-

nique is computationally expensive, but may lead to signi�cant improvements

to the induced theories.

There are several ways in which lookahead can be performed. One is to

look at further re�nements in order to have a better estimate for the current

re�nement. In that case, the heuristic value assigned to a re�nement c

0

of a

clause c is a function of c

0

and �(c

0

), where � is a classical re�nement operator

under �-subsumption. � itself does not change with this form of lookahead.

A second kind of lookahead is to rede�ne the re�nement operator itself so that

the two-step-re�nements are incorporated in it. That is, if the original re�nement

operator (without lookahead) is �

0

, then �(c) = �

0

(c) [f�

0

(c

0

)jc

0

2 �

0

(c)g. This

approach, as well as the former one, can be extended in the sense that the learner

could look more than one level ahead.

TheTilde system follows the second approach. It relies on the user to provide

some information about when lookahead is needed, because we believe that in

many cases the user has a better idea about this than what a learning system

can derive on the basis of e.g. determinacy. The user can provide templates of

the form lookahead(C

1

, C

2

), specifying that whenever a conjunction is added

matching C

1

, the conjunction C

2

may be added as well.

4.2 Experimental Evaluation

We have tested the e�ect of lookahead on two datasets: the Mutagenesis dataset

and the Mesh dataset. These two were chosen because they are widely used as

ILP benchmarks, and because they contain structural data where properties of

neighbouring substructures (atoms or edges) are important for classi�cation, but

the link to a neighbour itself (bonds, neighbour predicate) provides little or no

gain (therefore lookahead is important). We refer to [14] and [6] respectively for

more information on these datasets.

Both datasets repeatedly were partitioned into 10 subsets. Two tenfold cross-

validations were run based on each such partition; one without allowing looka-

head, and one with lookahead. In Figure 3, each dot represents one partition;

dots above the straight line are those partitions where accuracy with looka-

head was higher than without lookahead. For both the Mutagenesis and Mesh

datasets, improvements obtained by using lookahead are signi�cant at the 1%

level.

Tilde's performance is compared with FOIL's and Progol's on the Mutage-

nesis dataset in Table 1. It can be seen that, although lookahead is computa-

tionally expensive, it is still much cheeper than an exhaustive search (such as

Progol performs).

FOIL Progol Tilde, no lookahead Tilde, lookahead

accuracy 61 % 76 % 74.6 % 77.0 %

time 4950 s 117039 s 23 s 539 s

Table 1. Results on Mutagenesis dataset

We conclude that in both cases the ability to use lookahead improvesTilde's

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78

lo
ok

ah
ea

d

no lookahead

0.57
0.58
0.59

0.6
0.61
0.62
0.63
0.64
0.65
0.66
0.67
0.68

0.58 0.59 0.6 0.61 0.62 0.63 0.64 0.65

lo
ok

ah
ea

d

no lookahead

(a) (b)

Fig. 3. Comparison of Tilde's performance with and without lookahead, (a) on the

Mutagenesis data; (b) on the Mesh data

performance signi�cantly. Computational complexity also increases, but is still

acceptable.

5 Conclusions and Related Work

We have presented two methods for improving the performance of ILP-systems:

discretization, as an extended version of propositional discretization; and looka-

head, which in itself is an feature that can be added to any greedy search tech-

nique. We have evaluated these methods experimentally. Conclusions are that

both techniques can lead to higher accuracy. Discretization also increases e�-

ciency, but lookahead has a negative e�ect on this. An interesting observation is

that the way in which discretization results are used (inequality tests or interval

tests) can have a signi�cant impact on prediction accuracy.

Although our experiments only concern Tilde, the proposed techniques are

generally applicable; other ILP systems might pro�t from them as well.

Our work has of course heavily been in
uenced by several publications on

discretization ([9, 7]) and especially [15]. The idea of using lookahead in ILP has

been uttered several times before (e.g. [10]).

Acknowledgements

Hendrik Blockeel is supported by the Flemish Institute for the Promotion of

Scienti�c and Technological Research in Industry (IWT). Luc De Raedt is sup-

ported by the Fund for Scienti�c Research of Flanders. This work is also part of

the European Community Esprit project no. 20237, ILP2.

The authors thank Ste�en Schulze-Kremer, the Max-Planck Institute for

Molecular Genetics, Berlin, and Sa�so D�zeroski, for providing the Diterpene

dataset; and Wim Van Laer and Sa�so D�zeroski for previous research on dis-

cretization for ILP systems.

References

1. H. Blockeel and L. De Raedt. Experiments with top-down induction of logical

decision trees. Technical Report CW 247, Dept. of Computer Science, K.U.Leuven,

January 1997. Also in Periodic Progress Report ESPRIT Project ILP2, January

1997. http://www.cs.kuleuven.ac.be/publicaties/rapporten/CW1997.html.

2. J. Catlett. On changing continuous attributes into ordered discrete attributes.

In Yves Kodrato�, editor, Proceedings of the 5th European Working Session on

Learning, volume 482 of Lecture Notes in Arti�cial Intelligence, pages 164{178.

Springer-Verlag, 1991.

3. L. De Raedt. Induction in logic. In R.S. Michalski and Wnek J., editors, Proceed-

ings of the 3rd International Workshop on Multistrategy Learning, pages 29{38,

1996.

4. L. De Raedt and S. D�zeroski. First order jk-clausal theories are PAC-learnable.

Arti�cial Intelligence, 70:375{392, 1994.

5. T. G. Dietterich, R. H. Lathrop, and T. Lozano-P�erez. Solving the multiple-

instance problem with axis-parallel rectangles. Arti�cial Intelligence, 89(1-2):31{

71, 1997.

6. B. Dol�sak and S. Muggleton. The application of Inductive Logic Programming to

�nite element mesh design. In S. Muggleton, editor, Inductive logic programming,

pages 453{472. Academic Press, 1992.

7. J. Dougherty, R. Kohavi, and M. Sahami. Supervised and unsupervised discretiza-

tion of continuous features. In A. Prieditis and S. Russell, editors, Proc. Twelfth

International Conference on Machine Learning. Morgan Kaufmann, 1995.

8. S. D�zeroski, S. Schulze-Kremer, K. R. Heidtke, K. Siems, and D. Wettschereck.

Applying ILP to diterpene structure elucidation from 13C NMR spectra. In Pro-

ceedings of the 6th International Workshop on Inductive Logic Programming, pages

14{27, August 1996.

9. U.M. Fayyad and K.B. Irani. Multi-interval discretization of continuous-valued

attributes for classi�cation learning. In Proceedings of the 13th International Joint

Conference on Arti�cial Intelligence, pages 1022{1027, San Mateo, CA, 1993. Mor-

gan Kaufmann.

10. N. Lavra�c and S. D�zeroski. Inductive Logic Programming: Techniques and Appli-

cations. Ellis Horwood, 1994.

11. C.J. Merz and P.M. Murphy. UCI repository of machine learning databases

[http://www.ics.uci.edu/~mlearn/mlrepository.html] , 1996. Irvine, CA: Uni-

versity of California, Department of Information and Computer Science.

12. S. Muggleton. Inverse entailment and progol. New Generation Computing, 13,

1995.

13. J.R. Quinlan. FOIL: Amidterm report. In P. Brazdil, editor, Proceedings of the 6th

European Conference on Machine Learning, Lecture Notes in Arti�cial Intelligence.

Springer-Verlag, 1993.

14. A. Srinivasan, S.H. Muggleton, and R.D. King. Comparing the use of background

knowledge by inductive logic programming systems. In L. De Raedt, editor, Pro-

ceedings of the 5th International Workshop on Inductive Logic Programming, 1995.

15. W. Van Laer, S. D�zeroski, and L. De Raedt. Multi-class problems and discretiza-

tion in ICL (extended abstract). In Proceedings of the MLnet Familiarization

Workshop on Data Mining with Inductive Logic Programming (ILP for KDD),

1996.

This article was processed using the L

A

T

E

X macro package with LLNCS style

