
HAL Id: hal-00116475
https://hal.science/hal-00116475

Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Distance induction in first order logic
Michèle Sebag

To cite this version:
Michèle Sebag. Distance induction in first order logic. International Conference on Inductive Logic
Programming (ILP97), 1997, Prague, Czech Republic. pp.264-272, �10.1007/3540635149_55�. �hal-
00116475�

https://hal.science/hal-00116475
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Distance Induction in First Order Logic 

Michele Sebag 

LMS - CNRS ura 317 LRI - CNRS ura 410 

Ecole Polytechnique, 91128 Palaiseau Universite Paris-Sud, 91405 Orsay 
Michele.Sebag©polytechnique.fr 

Abstract. A distance on the problem domain allows one to tackle some 
typical goals of machine learning, e.g. classification or conceptual clus­
tering, via robust data analysis algorithms (e.g. k-nearest neighbors or 
k-means) . 
A method for building a distance on first-order logic domains is presented 
in this paper. The distance is constructed from examples expressed as 
definite or constrained clauses, via a two-step process: a set of d hypothe­
ses is :first learnt from the training examples. These hypotheses serve as 
new descriptors of the problem domain £,h: they induce a mapping 1f from 
£,h onto the space of integers JNd. The distance between any two exam­
ples E and Fis :finally defined as the Euclidean distance between 1r(E) 
and 1r(F). The granularity of this hypothesis-driven distance (HDD) is 
controlled via the user-supplied parameter d. 
The relevance of a HDD is evaluated from the predictive accuracy of the 
k-NN classifier based on this distance. Preliminary experiments demon­
strate the potentialities of distance induction, in terms of predictive ac­
curacy, computational cost, and tolerance to noise. 

1 Introduction 

The expert indeed knows to which extent any two examples or hypotheses on a 
problem domain, are similar: a relevant distance indeed represents a powerful, 
even if implicit, background knowledge. Distances can support many machine 
learning tasks: 
• A distance or similarity function is needed to duster the examples, which is
the core of unsupervised learning [9, 4]. Clustering also constitutes a main stage 
of knowledge discovery in databases (KDD) [8]: one must somehow divide the 
enormous amount of available data, in order for knowledge to be conquered. 
Inductive logic programming (ILP) (15] can benefit from clustering, too: e.g. 
KEG uses a similarity function specifically designed for first-order languages, 
and gradually constructs hypotheses by generalizing the most similar examples 
and/or hypotheses [2]. 
• A distance allows the retrieval of the examples or hypotheses most similar to
the instance at hand. In case-based reasoning (CBR), the retrieval stage com­
mands the success of the whole process; hence much attention has been paid 
in CBR to developing :flexible distances or similarity functions on structured 
domains [l]. Retrieving the nearest neighbors of the instance at hand also con­
stitutes the core of instance-based learning. The ILP system RIEL [7] consists 
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of a k-NN classifier relying on an extended version of the first-order distance of 
KBG. 
A fruitful combination of inductive learning and k-NN classifier in attribute­
value domains is described in [5]: RISE uses as default rule the majority vote of 
the k rules whose hypotheses are the closest to the instance at hand [5]. 
• In the field of analogy, one looks for "optimal" mappings from the source onto
the target context; the optimality criterion most often refers to a relational or 
structural distance [10, 3]. 

In this paper, we first compare the respective advantages and weaknesses of 
rules and distances in regard to supervised learning. We then discuss previous 
work devoted to constructing distances on first-order languages [2, 7]. Section 
3 presents an alternative to distances based on syntax and weights, namely 
hypothesis-driven distances (HDD). We show that a set of d hypotheses induces 
a mapping 7r from the problem domain £h onto the space of vectors of integers 
Nd. A distance on £,h then follows, by defining the distance between two any 
examples or further hypotheses E and F as the Euclidean distance between 7r(E) 
and ?r(F). The properties and biases of HDDs are studied. 
DISTILL (for Distance Induction with STILL) uses the ILP system STILL [18] 
to construct rather blindly d hypotheses, where dis supplied by the user. These 
hypotheses only serve here as system of coordinates: further examples or hy­
potheses are given a numerical description within this system. DISTILL finally 
computes the distance between any two examples with same polynomial com­
plexity as in STILL (section 4). 
This approach is validated on the mutagenesis problem: the 1-NN classifier based 
on the distance constructed by DISTILL, demonstrates to be quite competitive 
with respect to prominent ILP learners such as FOIL [16] and PROGOL [14] on 
this problem. DISTILL also improves on STILL [18]: it involves one less param­
eter and shows little sensitivity with respect to parameter d for d � 30. 
We last conclude with some perspectives for further research. 

2 State of the art 

This section first presents our motivation for constructing distances on first-order 
logic space, and briefly recalls some previous work devoted to this aim. 

2.1 Rules versus Distances 

The main advantages of instance-based (e.g. k-NN) classifiers versus standard 
rule learning are extensively discussed in (7]: simply put, k-NN classifiers accu­
rately deal with both symbolic and numerical data, on one hand, and with noisy 
data, on the other hand. Further, the predictive accuracy obtained by a k-NN 
classifier (in leave-one-out evaluation mode) gives hints into the quality of the 
data, and derives lower bounds on the optimal predictive accuracy (6]. 
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Practically, a k-NN classifier allows for a flexible modeling of the target con­
cept, more easily than rules or even oblique decision trees [11]. This can be 
exemplified as follows: in the bidimensional space 1R2, a set of n rules character­
izes the target concept as the union of n rectangles; an oblique decision tree with 
n leaves characterizes it as the union of n polygons. And a set of N examples, 
plus a distance, induces a fine grained partition of the problem domain into N 
cells (the Voronoi: cells); the target concept is characterized as the union of those 
cells that are centered on a positive example. 

Compared to rules, instance-based classifiers suffer from their low intelligi­
bility: the classification of an instance is justified by exhibiting the most similar 
example{s), rather than a high-level hypothesis. 

2.2 Related work 

Most distances on attribute-value languages are computed as the weighted sum 
of the elementary distances di defined on the attribute domains: 

given E = /\i[atti =Vi] and F = /\i[atti = Wi], d(E, F) = Li widi(Vi, Wi) 
The distance accuracy (evaluated as the predictive accuracy of the corresponding 
k-NN classifier) critically depends on weights Wi, usually adjusted by trial and 
error. These can also be determined by an optimization algorithm [12]. 

Weight-based distances have been first extended to first-order logic languages 
in [2] and later refined in {7]. In both cases, the distance between any two con­
junctive formulae is basically computed from that of their literals; the distance 
between two literals (built on the same symbol of predicate) is computed from the 
distance between their arguments, the weight of the predicate, and the weights 
of the predicate arguments. A global perspective on the examples, accounting for 
the semantics of the domain, is offered by computing the distance between two 
terms from the distance between the literals where they both appear. (Combina­
torial explosion is prevented via syntactic restrictions on the literals examined). 
In KEG [2], the distances between terms are computed via a fixed point method, 
whereas RIEL [7] uses an iterative resolution. 
The resulting similarity map critically depends on both the syntax and the 
weights. This limitation is partly addressed by RIEL, which iteratively refines 
the weights proposed by the expert. 

To sum up, these distances combine built-in knowledge (the elementary dis­
tances on the domains of attributes or predicate arguments), with weights, i.e. 
non-declarative biases either manually or automatically adjusted. 

3 Hypothesis-driven distances 

This section investigates how a set of hypotheses can be used to map a problem 
domain onto a metric space. The properties and limitations of the distance con­
structed from this mapping, or hypothesis-driven distance (HDD), are studied. 
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3.1 Principle 

Let Ch denote the language of hypotheses {including the language of instances via 
the single representation trick). Let 'H = {h1 , . . .  hd} denote a set of d hypotheses.
One notices [19] that 'H induces a mapping 7r from Ch onto the boolean space 
of dimension d, by associating to any example or hypothesis E the vector of 
booleans coding whether E is subsumed by hi, noted E-< hi : 

7r: Ch� {O, l}d 
E � 7r(E) = {7r1(E),. . . ,7rd(E)), where 7ri(E) = 1 iff E-< hi 

Note that this projection onto {O, l}d does not make any assumption on Ch: 
besides 7-£, it only invokes the covering test {checking whether E-< hi)· 

And {O, 1 }d is a metric space; a distance on Ch thus naturally follows, by 
setting: 

d 
v E, F E ch, dist(E, F) = L l7ri(E) - 11"i(F)I 

i=l 

By construction, dist is symmetrical and satisfies the triangular inequality: 

V E, F, G, dist(E, F) � dist(E, G) +dist(G, F) 
Still, it does not satisfy the identity relation1: (dist(E, F) = 0) ":/? (E = F). 

3.2 Local behavior of HDD 

Hypotheses-based distances locally depend upon the context. Consider examples 
E and F, together with the single hypothesis h (Table 1). As E is covered by h 
(7r(E) = 1), and F is not (7r(F) = 0), one has dist(E, F) = l. 

Table 1: Mapping based on hypothesis h = [Atom =carbon] /\ [Type> 20] 
Initial description Mapping 

Atom Size Type El. charge 7r 
E carbon small 22 3.45 1 
F carbon large 17 5.22 0 

Consider examples E' and F' constructed from E and F via replacing a common 
feature (Atom = carbon) by another feature (say Atom =oxygen). Any weight­
based distance distw would give distw(E, F) = distw(E', F'). More generally, 
weight-based distances are invariant by translation (consistently modifying a 
feature shared by any two examples does not modify their distance). 

This is not necessary the case for hypotheses-based distances, due to the fact 
that 7r(E) globally depends on E (since 7r(E') = 7r(F') = 0, dist(E ', F ') = 0). 
A modification of any given feature of E may, or not, have an effect on 7r(E) 
depending on the other features. 
A hypothesis-driven distance thereby encodes local discontinuities of the problem 
domain, corresponding to the frontiers of hypotheses hi. 

1 Properly speaking, dist is hence a semi-distance, rather than a distance. The dis­
tinction is omitted in what follows for the sake of simplicity. 

4



The property of non invariance by translation is desirable as it enables to em­
ulate the "versatile similarities" of experts. An expert may consider two devices 
manufactured by a given firm, as very similar; what s/he really means is that 
same failures are likely observed on these devices. But {rather unexpectedly for 
the naive knowledge engineer) the same devices manufactured by another firm, 
happen to be judged quite dissimilar ... 

3.3 Limitations of HDDs 

HDDs do not present any interest whenever they are based on a concise set of 
hypotheses '}{: e.g. dist gets rather coarse if any example is covered by a single 
hypothesis, such as happens if '}{ is a decision tree (either E and F are covered 
by the same hypothesis, and dist(E, F) = 0, or dist(E, F) 2). 

The granularity of a HDD increases with the redundancy of '}{ (i.e. the av­
erage number of hi covering any example) and more precisely with the number 
and diversity of hypotheses hi. Still, a HDD does not involve in any way the 
conclusions associated to hypotheses hi; this suggests that the relevance of a 
HDD is potentially independent from the relevance of'}{ (see section 4.3). 

Still, the structure of the boolean space does not reflect the structure of the 
problem domain. A hypothesis hi usually covers less than half the problem space: 
7ri(E) = 1 is thus less frequent than 7ri{E) = 0, whilst 1 and 0 play equivalent 
roles in the boolean space. 

3.4 Projection onto Nd 

We therefore consider more complex hypotheses. Let hi now be a disjunction of 
formulae in .Ch, with hi Si,1 V ... V si,ni, and let 7r i(E) (section 3.1) be now 
defined as the number of formulae Si,j covering E. This allows 7f to map the 
problem domain .Ch onto a richer metric space, that of integer vectors Nd. The 
corresponding HDD is naturally defined as: 

dist( E, F) = ../=L,......,i (�7ri...,....,,( E=- )---7f ,....,..,· ( F=:-)=)2 

The ordered structure of :JN" reflects a logical structure on the problem domain. 
Let hf" denote the M of - N hypothesis constructed from the disjunctive hi, 
defined as: E -< hf" iff E is covered by at least M formulae Bi,j. One easily shows 
that hfH 1 is covered by hf". The set of hypotheses {hf", for M = 1.. ni}, is a 
sequence of nested hypotheses which can be viewed as neighborhoods, or balls, 
of increasing specificity; 1fi thereby corresponds to a "  dimension" of the problem 
domain, and the coordinate 7ri(E) of E on this dimension precisely gives the 
rank of the most specific ball E belongs to. 

4 Distance Induction based on Disjunctive Version Space 

This section is devoted to learning a HDD from examples expressed as definite 
or constrained clauses. 
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4.1 Principle 

The presented mechanism relies on the disjunctive version space (DiVS) ap­
proach; more details on Di VS in attribute-value and first-order logic languages 
are respectively found in [17] and [18]. The elementary step in DiVS consists 
of characterizing the most general hypothesis D(E, F) covering example E and 
discriminating example F, where E and F satisfy distinct target concepts. 

In attribute-value languages, D(E, F) simply is the disjunction of the maxi­
mally general selectors2 covering E and rejecting F: 

Table 2: Hypothesis D(E, F) and corresponding mapping 
Initial description Mapping 

tom Size Type El. charge 7r 
carbon small 22 3.45 3 
carbon large 17 5.22 0 
oxygen small 18 7.11 2 

D{E,F) = {Size = small] V {Type > 17} V [El. charge < 5.22} 

Given the user-supplied number d of dimensions, 1-l is iteratively constructed by 
setting hi = D(Ei , Fi ) ,  where Ei and Fi are randomly selected in the training 
set such that they satisfy distinct target concepts. 

Construction of 1-l = {hi, ... , hd} 
For i = 1 to d, 

Randomly select Ei and Fi in the training set 
with Class(Ei) =f:. Class(Fi) 

Construct hi discriminating Ei from Fi. 

For any further example I ,  the coordinate 7ri (I) on dimension D(Ei , Fi )  is com­
puted as the number of selectors in D(Ei , Fi ) ,  satisfied by I. Ei and Fi respec­
tively get the highest and lowest coordinates on this dimension. 

4.2 DISTILL 

Di VS has been extended and adapted to first order logic via the STILL algorithm 
[18]. Due to space limitations, STILL will only be illustrated on a short example. 
Let E and F be definite clauses; let C be constructed from E by turning any 
occurence of a term ti in E into a distinct variable Xj, and let substitution e be 
defined as 0 = {Xj/ti}· 

E: tc(e) : -atom(e, a, oxy, 18), atom(e, b, carbon, 22), cc( a, b) 
F : -tc(f) : -atom(!, c, carbon, 24), atom(!, d, hydr, 3)
C: tc(X) : -atom(X1, Y, Z, T) , atom(X", U, V, W) , cc(R, S) 

2 We restrict ourselves to selectors [att = VJ, where V denote a discrete value or 
a numerical interval. Selector [att = (a, +oo)] is written [att > a] for the sake of 
convenience. 
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A constrained clause G'Y in the chosen language belongs to the set D(E, F), iff 
either G or 'Y discriminate F. G is discriminant iff it includes a discriminant 
predicate (e.g. cc). Otherwise, G subsumes F and the set of substitutions map­
ping G onto F is denoted E; then, 'Y is discriminant iff it is incompatible with 
all substitutions in E, or equivalently belongs to all D(O, a) within an equivalent 
attribute-value representation: 

Table 3: Attribute-value reformulation and (part of) a discriminant constraint 
XX'Y z TX" U v WT-W 

(J e e a oxy 18 e 

0'1 f f c carbon 24 f 
0'2 f f d hydr 3 f 
0'3 f f c carbon 24 f 
IT4 f f d hydr 3 f 

b carbon 22 
c carbon 24 
d hydr 
d hydr 

3 
3 

c carbon 24 

-4 
0 
0 
21 

-21 

D(0,1T1) = [Z =oxygen] V [T < 24] V [W < 24] V [T-W <OJ 

The disjunctive hypothesis D(E, F) discriminating E from F is therefore com­
pletely described by the set of discriminant predicates, and the disjunctive con­
straints D(B, a) for IT ranging in E. This characterization gets intractable on 
really relational domains (e.g. I El goes up to 4040 in the mutagenesis prob­
lem). STILL therefore constructs a polynomial approximation of D(E, F), noted 
D'fJ(E, F), by only considering rJ substitutions ITi, .. IT'fJ randomly sampled in E. 
The construction of D'fJ(E,F) is in O(rJ x V2), where V denotes the maximal 
number of arguments in an example. 

Deciding whether D'fJ(E, F) covers a further instance I is similarly intractable, 
as it requires to explore the set E' of substitutions mapping C onto I. A poly­
nomial approximation of the covering test is similarly provided by considering 
only K substitutions randomly selected in E'. 

The coordinate of I on dimension D'fJ(E, F) is the number of discriminant 
predicates involved in I, augmented with the maximal value of Cr* D'fJ(E, F), 
taken over K substitutions r randomly selected in IJ'. And Cr*D'fJ(E,F) is the 
minimum number of selectors in D( e, IT j) satisfied by r, for j 1 . . . rJ. Finally, 
the distance between any two examples has complexity O(d x K x rJ x V2). 

4.3 Experimentation 

This approach is evaluated on the well-studied mutagenesis problem (13, 21]. 
Table 4.(a) reports the best results obtained by FOIL, PROGOL and STILL 
(20, 18]. FOIL and PROGOL have been evaluated via 10-fold crossvalidation; 
STILL was evaluated in a similar way, only including 25 runs (with different 
random seeds) instead of 10, as recommended for evaluating stochastic processes. 
Run times (in seconds) are measured on HP-735 workstations. 

DISTILL is evaluated from the average predictive accuracy of the 1-NN clas­
sifier based on dist, via the same protocol as STILL. The experiments focus on 
the influence of the number d of constructed hypotheses, varied in 10 .. 100. The 
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two other parameters of DISTILL, inherited from STILL, are set to their default 
value ('TJ = 300 and K = 3). 

Another experimentation goal is to study what happens if the provided ex­
amples are not classified at all, by removing the test Class(E) # Class(F) 
in the construction of 1i (section 4.1). The corresponding algorithm is termed 
UNDISTILL, for Unsupervised Distance Induction. 

Tables 4.b and 4.c respectively give the results obtained by DISTILL and 
UNDISTILL (with run times in seconds on a HP-710). 

Table 4: Predictive accuracy on the 188-compound problem 
(a) Reference results (b) DISTILL (c) UNDISTILL 

D Accuracy Time D Accuracy Time 
System Accuracy Time 10 88.6 ± 4.8 7 10 86.7 ± 6.9 6 
FOIL 86 ± 3 .5 30 93.6 ± 5 19 30 94.2 ± 3.8 19 

PROGOL 88 ± 2 40 950 50 94.7 ± 3.7 31 50 93.3 ± 3.8 31 
STILL 93.6 ± 4 < 120 70 96.7 ± 4.3 43 70 93.3 ± 5.3 44 

90 95.3 ± 2.4 56 90 94.7 ± 2.6 56 

It was conjectured that the relevance of 1i was not a necessary condition to 
derive a relevant HDD (section 3.3); one is nevertheless surprised that DISTILL 
and UNDISTILL obtain comparable results. In retrospect, it appears that hy­
potheses are used to make distinctions on the problem domain: the soundness of 
these distinctions does not matter provided they allow for a sufficiently precise 
scattering of the problem domain. 

Practically, the good performances of UNDISTILL suggest that distance in­
duction does not depend on the noise of the data, and can be employed for 
supervised learning. 

5 Conclusion 

Rather than syntactically comparing two examples, we propose to compare the 
way these respectively behave with respect to a set of hypotheses. Hypothesis­
driven distances strongly depend on the selection of the hypotheses: HDDs typi­
cally bring no further information if these hypotheses are concise and intelligible 
(section 3.3). We therefore used a disjunctive version space approach: a set of d 
hypotheses is constructed as the maximally general hypotheses discriminating d 
pairs of examples (Ei, Fi)· Ei and Fi are randomly selected in UNDISTILL, and 
they are further required to satisfy distinct target concepts in DISTILL. 

Experimental validation shows that both DISTILL and UNDISTILL super­
sede other ILP learners on the mutagenesis dataset, for d 2'.: 30. Incidentally, this 
confirms that a stochastic bias (meant as the selection of Ei and Fi) can be a 
sound alternative to knowledge-demanding biases. 

Further work will consider how the set of hypotheses can be pruned or aug­
mented. Other perspectives are offered by coupling this distance with standard 
data analysis algorithms (e.g. k-means or factorial analysis) to achieve concep­
tual clustering or graphical representation of the data. 
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This approach will also be experimented on other and larger datasets, facing 
with the multiple challenges of knowledge discovery in data bases. 
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