To appear in The 8th International Symposium on Distributed Autonomous Robotic Systems (DARS),
Minneapolis, Minnesota, USA, July 2006.

1

A Distributed Biconnectivity Check
Mazda Ahmadi and Peter Stone

Department of Computer Sciences,

The University of Texas at Austin,
{mazda,pstone }@cs.utexas.edu
http://www.cs.utexas.edu/{mazda, pstone}

Summary. For many distributed autonomous robotic systems, it is important to maintain
communication connectivity among the robots. That is, each robot beuable to commu-
nicate with each other robot, perhaps through a series of other robdetslyl this property
should be robust to the removal of any single robot from the systethidrwork, we define

a property of a team’s communication graph that ensures this propatiyd biconnectiv-

ity. We present a distributed algorithm to check if a team of robots is bicéedeprove its
correctness, and analyze it theoretically.

1.1 Introduction

Many applications of distributed autonomous robotic systean benefit from, or
even may require, the team of robots staying within commatimo connectivity.
For example, consider the problem of multirobot survedkafi, 2], in which a team
of robots must collaboratively patrol a given area. If any twbots can directly
communicate at all times, the robots can coordinate forieffidehavior. This con-
dition holds trivially in environments that are smallerittae robots’ communication
range. However in larger environments, the robots mustelgtimaintain physical
locations such that any two robots can communicate — pgstilbbugh a series
of other robots. Otherwise, the robots may lose track of edichrs’ activities and
become miscoordinated. Furthermore, since robots artvedlaunreliable and/or
may need to change tasks (for example if a robot is suddetilgdchy a human
user to perform some other task), in a stable multirobotesliance system, if one
of the robots leaves or crashes, the rest should still betalfemmunicate. Some
examples of other tasks that could benefit from any pair odt®being able to com-
municate with each other, are space and underwater exploratarch and rescue,
and cleaning robots.

We say that roboR; is connectedo robot R, if there is a series of robots, each
within communication range of the previous, which can paswasage fronR; to
R». In order for the team to stay connected, it must be the cageetlery robot is
connected to each other robot either directly ortwiadistinct paths that don't share
any robots in common. We call this propelticonnectivity the removal of any one
robot from the system does not disconnect the remainingsdbam each other.

In previous work, we developed algorithms for multirobotvillance under the
assumption that each pair of robots could communicatettirgay. This communi-
cation assumption enabled the robots to negotiate to axhieefficient task division,

2 Mazda Ahmadi and Peter Stone

but it constrained us to small environments. This work isfite attempt to extend
these algorithms to larger environments.

To the best of our knowledge, the problem of enabling robotetain con-
nected in the face of robot failures has not been exploredréeflypical related
work in graph theory is on algorithms to find a biconnected ponent in a graph
with optimal time complexity (e.g. [3]), in dynamic graplesd. [4]), or in a restricted
subclass of all graphs (e.g. [5]). In all these cases, tharidthgns are either central-
ized, or if distributed, each node has full knowledge of thele graph. Some work
in distributed computing is closer in spirit to our work, hever a main difference be-
tween their problem statement and ours is that in distribatenputing (e.g. [6, 7]),
any node can send a message to any other node. That is, trearedwt restricted
to send messages only through existing edges of the graph.

We tackle this problem by dividing it into three main ste[d3:Checking whether
a team of robots isurrently biconnected, (2) Maintaining biconnectivity should a
robot be removed from (or added to) the team, and (3) Cortstgua biconnected
multi-robot structure from scratch. To be applicable fantes of autonomous robots,
all algorithms must be fully distributed.

In this paper we focus on fully achieving and analyzing Stetéps 2 and 3
remain as future work. Note that it is possible to achievpsteand 3, even if inel-
egantly, by having the robots move back to a base and disfreraghere whenever
they find that they are no longer biconnected.

For the purposes of this paper, we assume that robots hastaoband identical
communication ranges. This assumption applies in the clsernogeneous robot
teams (or at least teams with homogeneous transmitterB)teat the range is not
dependent on a robot’s battery level. This assumption allesvto assume the con-
nection graph among robots is undirected: if robot A can semessage to robot B,
then the reverse is also true. Extension of this work to ttse eghere robots have
heterogeneous communication capabilities is also a pauiofuture work plans.

After the introduction, in Section 1.2 graph theory backgm and assump-
tions about the investigated multirobot systems is preskrfection 1.3 presents
distributed algorithms to detect if the robots are biconegcFinally Section 1.4
concludes the paper.

1.2 Preliminaries

We first provide some graph definitions and theorems whichwelused later in
the paper. For basic graph definitions, such as vertex, edgghbor, path and loop
please see [8]. Later in the section, definitions and assangavhich are specific to
our multirobot system will be presented.

Definition 1. Internally vertex-disjoint paths. Two paths between, are v, are
internally vertex-disjoint if they have no vertices in coomexcepi; andwvs.
Definition 2. Biconnected graph.If in graph G, after removing any vertex, it is
possible to find a path from any vertex to any other one, thelya is said to be
biconnected.

Definition 3. Doubly connected verticesin graph G, we say vertex, and v, are
doubly-connected iff there are two or more internally vestisjoint paths between
v; andwvs.

1 A Distributed Biconnectivity Check 3

Lemma 1. Undirected graph=(V, E) is biconnected if and only if any two vertices
vy, v € V are doubly-connected.
Proof. It is a special case of Menger’s Theorem (See Theor8rh 8f [8]).

Note that in undirected graphs one vertex being doubly-eotad to all other
vertices is not a sufficient condition for the graph to be bivacted. For an example
see Figure 1.1 whereis doubly-connected

to all other vertices, but removing
v makes the graph disconnected. In \
the following theorem we show that
in an undirected graph if there are two
vertices that. are dOUbly_ConneCt.ed 'Fq:ig. 1.1.V is doubly-connected to all other ver-
all other vertices, then the graph is bl'tices, but the graph is not biconnected.
connected.

Theorem 1.Undirected graphG(V, E) is biconnected if and only if there exists two
distinct verticesv;, vo € V such that bothy; and v, are doubly-connected to any
other vertex inv.

Proof. If Graph G(V, E) is biconnected, then by Lemma 1 any two vertices are
doubly-connected to all other vertices.

It remains to prove that if there existg,vo € V (vl # v2) such that they are
doubly-connected to all other vertices i, thenG(V, E) is biconnected. Assume
v; € V is removed froml/. We must show that the graph remains connected. If
v; = v1, then since any other verticeg € V were doubly-connected i@, the
graph remains connected. Similarly foy = v,. Now assume; # vy, vs. Since
every other vertex; € V was doubly-connected tg, andv; is in at most one of
the two paths between and v, after removal ofv;, v; remains connected to; .
Thus the graph remains connected after removal of any véttexbiconnected.

We look at our multirobot system as a graph, such that itscesrtare robots and
edge(vyvs) exists in the graph iff the robot correspondingutocan communicate
directly to the robot corresponding tg (i.e. v; andwv, are in communication range
of each other). A formal definition of robot graph follows.

Definition 4. Robot graph RG(V, E) is a graph, where its verticed/() are the
robots and(vy,v9) € FE iff corresponding robots te; is a neighbor of correspond-
ing robot tovs. Size of (i.e. number of robots in the multirobot team) is calleth

this paper.

Assumption 1 Robots are aware of the maximum number of robots in the system
which can be considerably higher than the actual number bbte. The maximum
number is calledV throughout the paper.

Assumption 2 Robots have identical communication capabilities.

As a result of the above assumption, the neighbor propersynsmetric, and the
robot graph is undirected.

Definition 5. Connected.We say robof?; and robotR, are connected, when in the
corresponding robot graph, there is a path betwégnand Rs.

Assumption 3 Each robot has a unique and ordered ID. For robot X its ID isledl
X.id.

4 Mazda Ahmadi and Peter Stone

Next, the definition and assumption regarding the commtioicdetween robots
is provided.
Definition 6. Message, stamped messageor our purposes, anessagewhich is
used for robot communication, is a string in form@t, (S)), whereT indicates the
type of the message, aisdis a list of robotstamps Messagd T, (.5)) is said to be
stampedy robot R iffR.id € (S). RobotR stamps messadé’, (S)) by generating
new messaggr’, (S, R.id)).

Assumption 4 When called for by the protocol, robots relay messages toame
other. Robots start processing received messages, as sotirey get them. The
maximum period from the time that robft; receives messagg¢, until its neigh-
bor robot R, receives the processed (possibly stamped) version of geXsom
R; is ¢ seconds.

1.3 Algorithms to Check Biconnectivity

As mentioned in Section 1.1, checking for biconnectivitythie first step towards
the overall goal of achieving and maintaining a biconnectedtirobot structure.

It is an important step, because the robots must be able &xtdiétthey are not
biconnected, so that they can take remedial actions toregistoonnectivitybefore
they loseconnectivity The remedial actions could be as simple as all robots moving
back to a base and dispersing from there.

Note that the biconnected property is a global property efttultirobot system:
robots cannot determine whether or not it holds from puretal information. For
example see Figure 1.1, where the graph is not biconnectddhe robots associated
with the nodes on the right side of the graph need globalin&ion about the nodes
on the left side to know that the whole structure is not bicmed.

In our approach, each rob&, maintains two lists:

e (' Rp (connected robots}he list of robots that are connectedito
e DCRg (doubly-connected robotshe robots doubly-connected i

Each robotR first fills the C' R, list, then using that, th®&C R, list is computed.
Finally with the help of theDC Rp, list, it detects if the robot graph is biconnected.
In the rest of this section, we first provide an algoritrer{FiLL) for filing CRg
in Section 1.3.1, then another algorithmcR-FILL) is presented in Section 1.3.2

which fills the DC' Rp, lists with the help of the already computétRRy, lists. After-
wards in Section 1.3.3, an algorithm which checks the bieotivity with the help
of the computedDC Rp, lists is provided. All these algorithms are distributed and
each robot runs them independently. Finally an analysie@ptesented algorithms
is provided in Section 1.3.4.
1.3.1 CR-FILL
In this subsection, we provide an algorithm for filling the? ; list. That is for robot
R, it finds the robots that are connected to it.

The basic idea is for the robots to stamp and pass messadesspdtem. In this
way, if there is a path ofy — r; — ro — R, betweeny andR, robotR will receive
a message that is stampedsyr; andr,. Thus it will know that it is connected to
those robots, and will add them to th&R i list.

1 A Distributed Biconnectivity Check 5

Two helper algorithms must run continuously on all the retiothelp thecr-

FILL algorithm. The first helper algorithm dictates how messaipesild be passed
around. In the second, if robgthas not sent a message for a while and another robot
is running acR-FILL algorithm and needs a stamped message initiatedfrarwill

send a stamped message. Afterintroducing these two hd¢meithms, thecr-FILL
algorithm itself will be presented.

Using the first helper algorithm, all robots continuallyrsfaand pass bicon-
nected type messages that they receive. Any ropaithich receiveg “CR”, (5)),
checks the content of, and ifr.id ¢ S it stamps the message and send it out. That
is, it sends message¢CR”, (S,r.id)). If r.id € S, it does not send any message
because stamping and sending it would lead to a duplicate I3,iR.id). For an
overview of this algorithm see Algorithm 1.

Algorithm 1 Message passing algorithm which robots continually run

1: upon receiving a message of for(fC'R”, (S)) do
2: if R.id ¢ (S) thenrobot R broadcast messaff@'R”, (S, R.id)).
3: end upon

Any robot, upon receiving a message of fornja€' R”, S), if it has not sent
out a(“CR”, (R.id)) message in the las¥c seconds (Recall from Assumption 1,
that N is the maximum number of robots in the system), it sends owgsage
(“CR”, (R.id)) (see Algorithm 2).

Algorithm 2 The condition for initiating a’C'R” message.

1: upon receiving a message of for(fC'R”, (S)) do
2: if has not sentout @C'R”, (R.id)) message in the las{c secondshen

3: broadcast messadéC R”, (R.id))
4: endif
5: end upon

When calling the maicRr-FILL algorithm, robotR starts by initializing the” R
list to empty. Afterwards each time it receives messdgeR”, (S)), it adds all the
IDs in S to C Rg. While still adding IDs to the&” R, at time N ¢, robot R sends out
a stamped messageCR”, (R.id)). The pseudocode of this algorithm is available
in Algorithm 3.

Algorithm 3 Pseudocode for ther-FiLL algorithm for robotR
1: Time O (start of the algorithm): initialize thé Rr to empty.
2: Time Nc: broadcast messagéC R”, (R.id))
3: if message of forni“C'R”, (.S)) is receivedhen add IDs in(S) to CRrg.

Since the length of the longest path in the graph is less ffiathe maximum
time for a message to reach robetfrom r; is Nc seconds. We now show any robot
r that is connected t& will be added taC R within 3N ¢ seconds. Any robat that
is connected tar, receives the stamped message from rabatithin 2N ¢ seconds

6 Mazda Ahmadi and Peter Stone

(note that the first message is sent at tiivi@). If it has sent a message in the last
Nc seconds, robak has gotten that message. Otherwise, it will send out a messag
which will be heard byR in at most/N¢ seconds. Thus aft&N¢ seconds(C Ry
represents the correct list of robots that are connectéd This analysis is based on
the assumption that the robots do not change connectivitlyed3 NV ¢ seconds that
CR-FILL runs. Note that afte3 N ¢ seconds, no message is left in the system. Because
messagé“CR”, (S)) can only survive if it is received by robots such that theiisD
notin(.S), 2N ¢ seconds after sending the first message any remaining nedssag
system has been stamped by all robots, and it cannot sumytoager. Also note
thatc is ideally on the order of milliseconds, though in practicenay be difficult

to guarantee such small bounded transmission times. Incasgs, the algorithms
as is may become impractical for large teams of fast-movéogtiiat connectivity
changes quickly) robots.

1.3.2 DCR-FILL

In this subsectionpcR-FILL, an algorithm to fill theDCR lists is presented. It is
assumed the message passing algorithm (Algorithm 1) ismgraontinually by all
robots.

The basic idea for fillingDC Ry, for robot R is to find the robots that are in a
common loop withR. When the robot graph is undirected (Assumption 2), there is
a loop including bothR and R’ iff two internally vertex-disjoint paths (Definition 1)
exist betweer? andR’. In this caseR and R’ are doubly-connected (Definition 3).
According to Algorithm 1, robots pass stamped messagesdrdairhen robotR
receives a message that has been stamped by itselR]j.@.knows the robots that
have stamped the message after thetamps are in a common loop wifR, and
should be added tOCRg.

Robot) starts by broadcasting messd¢®C R”, (r.id)), which will be heard
by all of its neighbor robots. Upon receiving mess@ag®CR”, (S)), if this is the
first time to receive a “DCR” message, it resé&t€’'R,. to empty (initializing), after-
wards it checks the content @f). If its own ID is in the stamp part of the message
(S), it can representS) as (S1,r.id, S2). If Sy includes more than one verte, it
means that there is a loop and the robot adds all the ID% ito DCR,.. If S5 in-
cludes only one vertex, it means that the robot has got backssage from a robot
that it has just sent a message to, and should be ignoredrithigno4 presents the
pseudocode of this algorithm.

We now show that for robaR, the DCR-FILL algorithm sets the corre@C Ry
list within nc seconds.

Theorem 2. For any robotR, the DCR-FILL algorithm finds the full list of doubly-
connected robotsl}C R) within nc seconds.

Proof. Consider the robot grapRG(V, E) for the robots, and als@;, € V repre-
sents robotR. To prove this theorem, we need to show for any verex V, if v,

is doubly-connected to,, thenv, € DCR,,, and if 2 € DCR,,,) thenvy andv,
are doubly-connected. Also we need to slR-FILL is completed (i.e. there is no
message in the system) afterseconds.

We start with the first part, and assumgandwv, are doubly-connected, so there
are two internally vertex-disjoint paths (a loop) betwebarh. The starting message

1 A Distributed Biconnectivity Check 7

Algorithm 4 Pseudocode fapcR-FILL algorithm

1: TimeO: robot R broadcast$“DCR”, (R.id)).

2: upon receiving a message of for(fDCR”, (S)) do

3. if this is the first time to receive a “DCR” messaten
4 resetDC Rr to empty
5. endif

6: if R.id € (S) then
7

8

9

split (S) to (S1, R.id, S2)
if size(S2) > 1thenadd the IDs inS; to DCRg
end if
10: end upon

from vy will go through the loop, and vertex; will get back the message that it
stamped earlier, which is now also stampedbyThus v, will be added taDCR,,, .

Now we have to prove the other part, assumings DCR,,, . Based on the al-
gorithm, the only way that, is added toDCR,,, iS whenv; receives a message
(“DCR?”,(S;,v:1.id, Sj,v2.id, Si)). Notice that based on the condition in the al-
gorithm (size(S2) > 1 (Algorithm 4), if bothS; and .S are empty, the IDs will
not be added tdC Rg, also recall that there is no duplicate IDs in messages, be-
cause no robot stamps a message that it has previously sthfipe two internally
vertex-disjoint paths between andwv, arev; S;v, andv; Syve. Thusv; andv, are
doubly-connected.

Similar to the argument at the end of Section 1.3.1, afteseconds no message
remains in the system, and the algorithm terminates.

1.3.3 Biconnectivity Check

After runningCR-FILL andDCR-FILL consecutively, th€'R and DCR lists will be
accurate. Notice that both algorithms for filling te&? and DC'R lists finish within
a known time limit. Thus the robots should wailv ¢ seconds, and afterwardsR
and DCR lists will be accurate. For robetif CR, and DCR,. are equal, it means
thatr is doubly-connected to all the robots that it is connectedtoTheorem 1,
we know if there are two robots, andr, that are doubly-connected to all other
robots, then the robot graph is biconnected. Also, we knowesyma 1 that if there
is a robot that is not doubly-connected to all other robdts, robot graph is not
biconnected. Thus if the robot and one of its neighbors isoljeoonnected to all
other robots, the robot knows that the robot graph is bicotatke Also if the robot
or one of its neighbors is not doubly-connected to all otbéots, it will know that
the robot graph is not biconnected.

The overview of the biconnectivity check algorithm is shawalgorithm 5. The
initiator robot (which can be any robot who wants to check biconnegjigtarts by
sending a (CHECK-REQUEST,()) message to its neighbors to ask them to check
if they are doubly-connected to other robots or not. Uporeikéieg a (‘CHECK-
REQUEST,()) the other robots run biconnectivity check (unlessithee already run-
ning it) as non-initiators (skipping line 3 of Algorithm S)ote that multiple robots
can run the biconnectivity check algorithm in parallel.

8 Mazda Ahmadi and Peter Stone

If the robot is doubly-connected to all other robots, it setite message 't-
TRUE", () to all its neighbor robots, and aftc-FALSE",()) message otherwise. If
the robot is doubly-connected to all other robots and resea(‘DC-TRUE", ()) mes-
sage, it knows that the robot graph is biconnected. Other{#fig is not biconnected
to all other robots, or receives aD¢-FALSE”, ()) message) it knows that the robot
graph is not biconnected. Since the initiator and its nedgkishould run the bicon-
nectivity check, the total time needed for the biconnetsticheck to complete is
6Nc + 2c¢ seconds.

Algorithm 5 Pseudocode for biconnectivity check algorithm. It retume if the
robot graph is biconnected, afalseotherwise.

1: runCR-FILL andDCR-FILL in parallel, and waiB8 N ¢ seconds for them to be finished.
if (initiator) then send message¢HECK-REQUEST,())
if size(DCRR) = size(CRR) then
send messaget-TRUE",())
else
send messagerft-FALSE",())
return false;
end if
: if a message of form (‘c-FALSE”, () is receivedthen return false;
10: if a message of form ¢fc-TRUE”, ()) is receivedthen
11: if size(DCRR) = size(CRg) thenreturn true;
12: end if

CoNORr®N

1.3.4 Algorithms’ Analysis
In this section we analyze both the time and communicationptexity of thecr-
FILL andDCR-FILL algorithms.

CR-FILL, DCR-FILL and biconnectivity check algorithms ud& ¢, nc, andé N c+
2¢ seconds to complete respectively.

For the analysis of the number of messages, we assume thaindeeeded
for the message sent by a robot to reach its neighbor is adr{g}aThis assumption
does not change the total number of messages, but possibtyraage the maximum
number of messages at any point in time. The worst case forutmber of messages
in the multirobot system happens when the robot graph iy fidhnected, that is
every two robots are neighbors. For batkbR-FILL and CR-FILL algorithms, the
maximum number of messages in the systeml!jdecause when robdt receives
messagéT, (S)), whereS has size of, the message only survives if robBtsends
it to the robots that have not already stamped the messagje,-an — 1 such robots
exist. Thus from the messages that have started from m®bot — 1)! can exist in
the system, and since each of theobots starts one message of its own, at any point
in time, the maximum number of messages in the systerbd®-FILL or CR-FILL
algorithm isn!.

Note that the times provided above are the worst case, aediafip when there
are many robots, the robot graph is most likely not fully cected. An example of
a still densely connected robot graph wih robots is given in Figure 1.2, there
in each time period, on average each robot deals WitfY messages, which is a
manageable number. BUb37 messages is still a lot to process in each time step.

1 A Distributed Biconnectivity Check 9

Our analysis is based on the assumption ttRtFILL must generate special-
purpose messages. When messages are being sent for othesgajrihe stamps
required can simply be appended to those, thus eliminatiagnéed fomanyextra
messages. Though if each message does not normally gemératedcast responses,
someextra messages may be needed in order to keep the time catyiexsame.

In principle,DCR-FILL only needs to be started by 2 robots, thus reducing the number
of messages required by a factor,—f’hWhen those two robots have computed their
DC Rg, they can let the others know if the robot graph is biconrecle technical
details of how to determine which two robots send the stgtiressages is beyond
the scope of this paper. However in essence, it is similardimtaing team leaders,
which is a common practice in multirobot systems (e.qg. [9]).

If CR-FILL uses existing mes-
sages andCR-FILL is run by only . /
2 robots, the total number of mes- N \
sages is2(n — 1)! in the worse . L)
case, and for the graph of Fig- I
ure 1.2, on average each robotdeals —— ’ ‘ 2 o
with approximately69 messages, N » oY
whichis an easily manageable num- | e | & & | ey
ber in most realistic scenarios.

All the presented algorithms Fig. 1.2.An example of a common robot graph with
only storeC' R andDCR lists, which35 robots.
have a maximum size of. Thus all algorithms us@(n) memory space.

The time complexity discussed here is for each received agessThat is, we
assume the decisions are made when messages arrive. Batk-theL andDCR-
FILL algorithms have time complexity @ (n) because they only traverse a list of
IDs, which has size of at moat The time complexity of biconnectivity check, which
include bothcr-FILL andDCR-FILL is of O(2n).

1.4 Conclusion and Future Work

In this paper, we defined and argued the need for biconneaédabot structures.
A distributed algorithm for checking biconnectivity is gented, proven correct, and
analyzed theoretically.

In future work, we aim to provide optimality bounds for theopided checking
biconnected algorithms. The assumption that robots hasetichl communication
capabilities should be relaxed, which will result in the sblgraph being directed.
Also, our algorithms for maintaining biconnectivity andnstructing biconnected
structure from scratch remains as future work.

Acknowledgments
We would like to thank Kurt Dresner and Nick Jong for theiruathle comments on

an earlier version of this paper. This research was supporigart by NSF CAREER
award 11S-0237699 and ONR YIP award N00014-04-1-0545.

References

1. Parker, L.E.: Distributed algorithms for multi-robot observation aftijple moving targets.
Autonomous Robot§2 (2002) 231-255

10

Mazda Ahmadi and Peter Stone

. Ahmadi, M., Stone, P.: A multi-robot system for continuous areaepimg tasks. In:

Proceedings of International Conference on Robotics and Automad@éty), to appear.
(2006)

. Tarjan, R., Vishkin, U.: Finding biconnected componemts and ctingtree functions

in logarithmic parallel time. In: 25th Annual Symposium on Foundations ah@uter
Science, 1984. (1984) 12-20

. Westbrook, J., Tarjan, R.E.: Maintaining bridge-connected armhhicted components

on-line. Algorithmica (Historical Archivey (1992) 433-464

. Galil, Z., ltaliano, G.F.: Maintaining biconnected components of dyaaianar graphs.

In: Proceedings of the 18th International Colloquium on Automata, Lages and Pro-
gramming, London, UK, Springer-Verlag (1991) 339-350

. Swaminathan, B., Goldman, K.J.: An incremental distributed algoritliroomputing bi-

connected components (extended abstract). In: Proceedings dhtheee8national Work-
shop on Distributed Algorithms, London, UK (1994)

. Ahuja, M., Zhu, Y.: An efficient distributed algorithm for finding artiation points,

bridges, and biconnected components in asynchronous networkBroceedings of the
Ninth Conference on Foundations of Software Technology and Ttiemr€omputer Sci-
ence, London, UK, Springer-Verlag (1989) 99-108

. Diestel, R.: Graph Theory. Springer, New York (1997)
. R. Alur et al: A framework and architecture for multirobot coordination. In: Sé¢ken

International Symposium on Experimental Robotics. (2001)

