
UCLA
Department of Statistics Papers

Title
Data Mining Within a Regression Framework

Permalink
https://escholarship.org/uc/item/91n20775

Author
Berk, Richard

Publication Date
2004

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/91n20775
https://escholarship.org
http://www.cdlib.org/


Chapter 1

DATA MINING WITHIN A REGRESSION
FRAMEWORK

Richard A. Berk
Department of Statistics
UCLA
berk@stat.ucla.edu

1. Introduction
Regression analysis can imply a broader range of techniques that ordi-

narily appreciated. Statisticians commonly define regression so that the
goal is to understand “as far as possible with the available data how the
the conditional distribution of some response y varies across subpopula-
tions determined by the possible values of the predictor or predictors” (
Cook and Weisberg, 1999: 27). For example, if there is a single categori-
cal predictor such as male or female, a legitimate regression analysis has
been undertaken if one compares two income histograms, one for men
and one for women. Or, one might compare summary statistics from the
two income distributions: the mean incomes, the median incomes, the
two standard deviations of income, and so on. One might also compare
the shapes of the two distributions with a Q-Q plot.

There is no requirement in regression analysis for there to be a “model”
by which the data were supposed to be generated. There is no need to ad-
dress cause and effect. And there is no need to undertake statistical tests
or construct confidence intervals. The definition of a regression analysis
can be met by pure description alone. Construction of a “model,” of-
ten coupled with causal and statistical inference, are supplements to a
regression analysis, not a necessary component (Berk, 2003).

Given such a definition of regression analysis, a wide variety of tech-
niques and approaches can be applied. In this chapter I will consider a
range of procedures under the broad rubric of data mining.
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2. Some Definitions
There are almost as many definitions of data mining as there are

treatises on the subject (Sutton and Barto, 1999; Cristianini and Shawe-
Taylor, 2000; Witten and Frank, 2000; Hand et al., 2001; Hastie et
al., 2001; Breiman, 2001b; Dasu and Johnson, 2003), and associated
with data mining are a variety of names: statistical learning, machine
learning, reinforcement learning, algorithmic modeling and others. By
“data mining” I mean to emphasize the following.

The broad definition of regression analysis applies. Thus, the goal is to
examine y|x for a response y and a set of predictors x, with the values of
x treated as fixed. There is no need to commit to any particular feature
of y|x, but emphasis will, nevertheless, be placed on the conditional
mean, ȳ|x. This is the feature of y|x that has to date drawn the most
attention.1

Within the context of regression analysis, now consider a given a data
set with N observations, a single predictor x, and a single value of x,
x0. The fitted value for ŷ0 at x0 can be written as

ŷ0 =
N∑

j=1

S0jyj , (1.1)

where S is an N by N matrix of weights, and the subscript 0 represents
the row corresponding to the case whose value of y is to be constructed,
and the subscipt j represents the column in which the weight is found.
That is, the fitted value ŷ0 at x0 is linear combination of all N values of
y, with the weights determined by S0j . If beyond description, estimation
is the goal, one has a linear estimator of ȳ|x. In practice, the weights
decline with distance from x0, sometimes abruptly (as in a step function),
so that many of the values in S0j are often zero.2

S0j is constructed from a function f(x) that replaces x with transfor-
mations of x. Then, we require that

f(x) =
M∑

m=1

βmhm(x), (1.2)

where there are M transformation of x (which may include the x in its
original form and a column of 1’s for a constant), βm is the weight given
to the mth transformation, and hm(x) is the mth transformation of x.
Thus, one has a linear combination of transformed values of x. The right
hand side is sometime called a “linear basis expansion” in x. Common
transformations include polynomial terms, and indicator functions that
break x up into several regions. For example, a cubic transformation of
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x might include three terms: x, x2, x3. An indicator function might be
defined so that it equals 1 if x < c and 0 otherwise (where c is some
value of x). A key point is that this kind of formulation is both very
flexible and computationally tractable.

Equation 1.2 can be generalized as follows so that more than one
predictor may be included:

f(x) =
p∑

j=1

Mj∑
m=1

βjmhjm(x), (1.3)

where p is the number of predictors. Each predictor has its own set of
transformations, and all of the transformations for all predictors, each
with its own weight βjm, are combined in a linear fashion.

Why the additive formulation when there is more than one predic-
tor? As a practical matter, with each additional predictor the number
of observations needed increases enormously; the volume to be filled
with data goes up as a function of the power of the number of predictor
dimensions. In addition, there can be very taxing computational de-
mands. So, it is often necessary to restrict the class of functions of x
examined. Equation 1.3 implies that one can consider the role of a large
number of predictors within much the same additive framework used in
conventional multiple regression.

To summarize, data mining within a regression framework will rely
on regression analysis, broadly defined, so that there is no necessary
commitment a priori to any particular function of the predictors. The
relationships between the response and the predictors can be determined
empirically from the data. We will be working within the spirit of pro-
cedures such as stepwise regression, but beyond allowing the data to
determine which predictors are required, we allow the data to determine
what function of each predictor is most appropriate. In practice, this
will mean “subcontracting” a large part of one’s data analysis to one or
more computer algorithms. Attempting to proceed “by hand” typically
is not be feasible.

In the pages ahead several specific data mining procedures will be
briefly discussed. These are chosen because they are representative,
widely used, and illustrate well how data mining can be undertaken
within a regression framework. No claim is made that the review is
exhaustive.

3. Regression Splines
A relatively small beyond conventional parametric regression analysis

is taken when regression splines are used in the fitting process. Suppose



4

0 20 40 60 80 100

0
20

40
60

80
10

0

x

y

Figure 1.1. An Illustration of Linear Regression Splines with Two Knots

the goal is to fit the data with a broken line such that at each break
the left hand edge meets the right hand edge. That is, the fit is a set
of connected straight line segments. To illustrate, consider the three
connected line segments as shown in Figure 1.1.

Constructing such a fitting function for the conditional means is not
difficult. To begin, one must decide where the break points on x will be.
If there is a single predictor, as in this example, the break points might
be chosen after examining a scatter plot of y on x. If there is subject-
matter expertise to help determine the break points, all the better. For
example, x might be years with the break points determined by specific
historical events.

Suppose the break points are at x = a and x = b (with b > a). In
Figure 1.1, a = 20 and b = 60. Now define two indicator variables. The
first (Ia) is equal to 1 if x is greater than the first break point and 0
otherwise. The second (Ib) is equal to 1 if x is greater than the second
break point and 0 otherwise. We let xa be the value of x at the first
break point and xb be the value of x at the second break point.

The mean function is then3

ȳ|x = β0 + β1x + β2(x− xa)Ia + β3(x− xb)Ib. (1.4)
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Looking back at equation 1.2, one can see that the are four hm(x)’s,
with the first function of x a constant. Now, the mean function for x
less than a is,

ȳ|x = β0 + β1x. (1.5)

For values of x greater than a but less than b, the mean function is,

ȳ|x = (β0 − β2xa) + (β1 + β2)x. (1.6)

If β2 is positive, beyond x = a the line is more steep with a slope
of (β1 + β2), and lower intercept of (β0 − β2xa). If β2 is negative, the
reverse holds.

For values of x greater than b the mean function is,

ȳ|x = (β0 − β2xa − β3xb) + (β1 + β2 + β3)x. (1.7)

For values of x greater than b, the slope is altered by adding β3 to
the slope of the previous line segment, and the intercept is altered by
subtracting β2xb. The sign of β3 determines if the new line segment
is steeper or flatter than the previous line segment and where the new
intercept falls.

The process of fitting line segments to data is an example of “smooth-
ing” a scatter plot, or applying a “smoother.” Smoothers have the goal
of constructing fitted values that are less variable than if each of the
conditional means of y were connected by a series of broken lines. In
this case, one might simply apply ordinary least squares using equa-
tion 1.4 as the mean function to compute of the regression parameters.
These, in turn, would then be used to construct the fitted values. There
would typically be little interpretative interest in the regression coeffi-
cients. The point of the exercise is to superimpose the fitted values on
the a scatter plot of the data so that the relationship between y and x
can be visualized. The relevant output is the picture. The regression
coefficients are but a means to this end.

It is common to allow for somewhat more flexibility by fitting polyno-
mials in x for each segment. Cubic functions of x are a popular choice
because they balance well flexibility against complexity. These cubic
line segments are known as “piecewise-cubic splines” when used in a re-
gression format and are known as the “truncted power series basis” in
spline parlance.

Unfortunately, simply joining polynomial line segments end to end will
not produce an appealing fit where the polynomial segments meet. The
slopes will often appear to change abruptly even if there is no reason in
the data from them to do so. Visual continuity is achieved by requiring
that the first derivative and the second derivative on either side of the
break points are the same.4



6

Generalizing from the linear spline framework and keeping the con-
tinuity requirement, suppose there are a set of K interior break points,
usually called “interior knots,” at ξ1 < . . . < ξK with two boundary
knots at ξ0 and ξK+1. Then, one can use piecewise cubic splines in the
following regression formulation:

ȳ|x = β0 + β1x + β2x
2 + β3x

3 +
K∑

j=1

θj(x− ξj)3+, (1.8)

where the “+” indicates the positive values from the expression, and
there are K + 4 parameters to be estimated. This would lead to a con-
ventional regression formulation with a matrix of predictor terms having
K + 4 columns and N rows. Each row would have the corresponding
values of the piecewise-cubic spline function evaluated at the single value
of x for that case. There is still only a single predictor, but now there
are K + 4 transformations.

Fitted values near the boundaries of x for piecewise-cubic splines can
be unstable because they fall at the ends of polynomial line segments
where there are no continuity constraints. Sometimes, constraints for
behavior at the boundaries are added. One common constraint is that
fitted values beyond the boundaries are linear in x. While this introduces
a bit of bias, the added stability is often worth it. When these constraints
are added, one has “natural cubic splines.”

The option of including extra constraints to help stabilize the fit raises
the well-known dilemma known as the variance-bias tradeoff. At a de-
scriptive level, a smoother fit will usually be less responsive to the data,
but easier to interpret. If one treats y as a random variable, a smoother
fit implies more bias because the fitted values will typically be farther
from the conditional means of y, which are the values one wants to es-
timate. However, in repeated independent random samples (or random
realizations of the data), the fitted values will vary less. Conversely, a
rougher fit implies less bias but more variance over samples (or realiza-
tions), applying analogous reasoning.

For piecewise-cubic splines and natural cubic splines, the degree of
smoothness is determined by the number of interior knots. The smaller
the number of knots, the smoother the path of the fitted values. That
number can be fixed a priori or more likely, determined through a model
selection procedure that considers both goodness of fit and a penalty for
the number of knots. The Akaike information criterion (AIC) is one
popular measure, and the goal is to choose the number of knots that
minimizes the AIC. Some software such as as R has procedures that can
automate the model selection process.5
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4. Smoothing Splines
There is a way to circumvent the need to determine the number of

knots. Suppose that for a single predictor there is a fitting function f(x)
having two continuous derivatives. The goal is to minimize a “penalized”
residual sum of squares

RSS(f, λ) =
N∑

i=1

[yi − f(xi)]2 + λ

∫
[f ′′(t)]2dt, (1.9)

where λ is a fixed smoothing parameter. The first term captures (as
usual) how tight the fit is, while the second imposes a penalty for rough-
ness. The integral quantifies how rough the function is, while λ deter-
mines how important that roughness will be in the fitting procedure.
This is another instance of the variance-bias tradeoff. The larger the
value of λ, the greater the penalty for roughness and the smoother the
function. The value of λ is used in place of the number of knots to
“tune” the variance-bias tradeoff.

Hastie and his colleagues (Hastie et al., 2001: section 5.3) explain that
equation 1.9 has a unique minimizer based on a natural cubic spline with
N knots.6 While this might seem to imply that N degrees of freedom
are used up, the impact of the N knots is transformed through λ into
shrinkage of the fitted values toward a linear fit. In practice, far fewer
than N degrees of freedom are lost.

Like the number of knots, the value of λ can be determined a priori or
through model selection procedures such as those based the generalized
cross-validation (GCV). Thus, the value of λ can be chosen so that

GCV (f̂λ) =
1
N

N∑
i=1

(
yi − f̂i(xi)

1− trace(Sλ)/N

)
(1.10)

is at small as possible. Using the GVC to select λ is one automated way
to find a good compromise between the bias of the fit and its variance.

Figure 1.2 shows an application based on equations 1.9 and 1.10. The
data come from states in the U.S. from 1977 to 1999. The response vari-
able is the number of homicides in a state in a given year. The predictor
is the number of inmates executed 3 years earlier for capital crimes.
Data such as these have been used to consider whether executions deter
later homicides (e.g., Mocan and Gittings, 2003). Executions are on the
horizontal axis (with a rug plot), and homicides are on the vertical axis,
labeled as the smooth of executions using 8.98 as the effective degrees of
freedom.7 The solid line is for the fitted values, and the broken lines show
the point-by-point 95% confidence interval around the fitted values.
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Figure 1.2. An Illustration of Smoothing with Natural Cubic Splines

The rug plot at the bottom of Figure 1.2 suggests that most states in
most years have very few executions. A histogram would show that the
mode is 0. But there are a handful of states that for a given year have a
large number of executions (e.g., 18). These few observations are clear
outliers.

The fitted values reveal a highly non-linear relationship that generally
contradicts the deterrence hypotheses when the number of executions is
15 or less; with a larger number of executions, the number of homi-
cides increases three years later. Only when the number of executions
is greater than 15 do the fitted values seems consistent with deterrence.
Yet, this is just where there is almost no data. Note that the confidence
interval is much wider when the number of executions is between 18 and
28.8

The statistical message is that the relationship between the response
and the predictor was derived directly from the data. No functional form
was imposed a priori. And none of the usual regression parameters are
reported. The story is Figure 1.2. Sometimes this form of regression
analysis is called “nonparametric regression.”
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5. Locally Weighted Regression as a Smoother
Spline smoothers are popular, but there are other smoothers that are

widely used as well. Lowess is one example (Cleveland, 1979). Lowess
stands for “locally weighted linear regression smoother.”

Consider again the one predictor case. The basic idea is that for any
given value of the predictor x0, a linear regression is constructed from
observations with x-values near x0. These data are weighted so that
observations with x-values closer to x0 are given more weight. Then, ŷ0

is computed from the fitted regression line and used as the smoothed
value of the response at x0. This process is then repeated for all other
values of x.

The precise weight given to each observation depends on the weighting
function employed; the normal distribution is one option.9 The degree
of smoothing depends on the proportion of the total number of observa-
tions used when each local regression line is constructed. The larger the
“window” or “span,” the larger the proportion of observations included,
and the smoother the fit. Proportions between .25 and .75 are com-
mon because they seem to provide a good balance for the variance-bias
tradeoff.

More formally, each local regression derives from minimizing the weighted
sum of squares with respect to the intercept and slope for the M ≤ N
observations included in the window. That is,

RSS∗(β) = (y∗ −X∗β)TW∗(y∗ −X∗β), (1.11)

where the asterisk indicates that only the observations in the window
are included, and W∗ is an M ×M diagonal matrix with diagonal ele-
ments w∗

i , which are a function of distance from x0. The algorithm then
operates as follows.

1 Choose the smoothing parameter f , which a proportion between
0 and 1.

2 Choose a point x0 and from that the (f ×N = M) nearest points
on x.

3 For these “nearest neighbor” points, compute a weighted least
squares regression line for y on x.

4 Construct the fitted value ŷ0 for that single x0.

5 Repeat steps 2 through 4 for each value of x.10

6 Connect these ŷs with a line.
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Lowess is a very popular smoother when there is a single predictor.
With a judicious choice of the window size, Figure 1.2 could be effectively
reproduced.

6. Smoothers for Multiple Predictors
In principle, it is easy to add more predictors and then smooth a

multidimensional space. However, there are three major complications.
First, there is the “curse of dimensionality.” As the number of predictors
increases, the space that needs to be filled with data goes up as a power
function. So, the demand for data increases rapidly, and the risk is that
the data will be far too sparse to get a meaningful fit.

Second, there are some difficult computational issues. For example,
how is the neighborhood near x0 to be defined when predictors are corre-
lated? Also, if the one predictor has much more variability than another,
perhaps because of the units of measurement, that predictor can domi-
nate the definition of the neighborhood.

Third, there are interpretative difficulties. When there are more than
two predictors one can no longer graph the fitted surface. How then
does one make sense of a surface in more than three dimensions?

When there are only two predictors, there are some fairly straightfor-
ward extensions of conventional smoothers that can be instuctive. For
example, with smoother splines, the penalized sum of squares in equa-
tion 1.9 can be generalized. The solution is a set of “thin plate splines,”
and the results can be plotted. With more than two predictors, however,
one generally need another strategy. The generalized additive model is
one popular strategy and meshes well with the regression emphasis in
this chapter.

6.1 The Generalized Additive Model
The mean function for generalized additive model (GAM) with p pre-

dictors can is written as

ȳ|x = α +
p∑

j=1

fj(xj). (1.12)

Just as the generalized linear model (GLM), the generalized additive
model allows for a number of “link functions” and disturbance distribu-
tions. For example, with logistic regression the link function is the log
of the odds (the “logit”) of the response, and disturbance distribution is
logistic.

Each predictor is allowed to have its own functional relationship to
the response, with the usual linear form as a special case. If the former,
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the functional form can be estimated from the data or specified by the
researcher. If the latter, all of the usual regression options are available,
including indicator variables. Functions of predictors that are estimated
from the data rely on smoothers of the sort just discussed.11

With the additive form, one can use the same general conception of
what it means to “hold constant” that applies to conventional linear
regression. The fitting algorithm GAM removes linear dependence be-
tween predictors in a fashion that is analogous to the matrix operations
behind conventional least squares estimates.

6.1.1 A GAM Fitting Algorithm. Many software packages
use the backfitting algorithm to estimate the functions and constant in
equation 1.12 (Hastie and Tibshirani, 1990: section 4.4). The basic idea
is not difficult and proceeds in the following steps.

1 Initialize: α = ȳi, fj = f0
j , j = 1, . . . , p. Each predictor is given an

initial functional relationship to the response such as a linear one.
The intercept is given an initial value of the mean of y.

2 Cycle: j = 1, . . . , p, 1, . . . , p, . . .

fk = Sj(y − α−
∑
j 6=k

fj |xk) (1.13)

A single predictor is selected. Fitted values are constructed using
all of the other predictors. These fitted values are subtracted from
the response. A smoother Sj is applied to the resulting “residu-
als,” taken to be a function of the single excluded predictor. The
smoother updates the function for that predictor. Each of the
other predictors is, in turn, subjected to the same process.

3 Continue 2 until the individual functions do not change.

Figure 1.3 shows for the data described earlier, the relationship be-
tween number of homicides and the number executions three years ear-
lier, with state and year held constant. Indicator variables are included
for each state to adjust for average differences over time in the number of
homicides in each state. For example, states differ widely in population
size, which is clearly factor in the raw number of homicides. Indicator
variables for each state control for such differences. Indicator variables
for year are included to adjust for average differences across states in the
number of homicides each year. This controls for year to year trends for
the country as a whole in the number of homicides.

There is now no apparent relationship between executions and homi-
cides three years later except for the handful of states that in a very few
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Figure 1.3. GAM Homicide results for Executions with State and Year Held Constant

years had a large number of executions. Again, any story is to be found
in a few extreme outliers that are clearly atypical. The statistical point
is that one can accommodate with GAM both smoother functions and
conventional regression functions.

Figure 1.4 shows the relationship between number of homicides and
1) the number executions three years earlier and 2) the population of
each state for each year. The two predictors were included in an additive
fashion with their functions determined by smoothers.

The role of execution is about the same as in Figure 1.3, although at
first glance the new vertical scale makes it looks a bit different. In addi-
tion, one can see that homicides increase monotonically with population
size, as one would expect, but the rate of increase declines. The very
largest states are not all that different from middle sized states.

7. Recursive Partitioning
Recall again equation 1.3 reproduced below for convenience as equa-

tion 1.14:

f(x) =
p∑

j=1

Mj∑
m=1

βjmhjm(x), (1.14)
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Figure 1.4. GAM Homicide Results with Executions and Population as Predictors
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An important special case sequentially includes basis functions that
contribute to substantially to the fit. Commonly, this is done in much
the same spirit as forward selection methods in stepwise regression. But,
there are now two components to the fitting process. A function for
each predictor is constructed. Then, only some of these functions are
determined to be worthy and included in the final model. Classification
and Regression Trees (Breiman et al., 1984), commonly known as CART,
is probably the earliest and most well known example of this approach.

7.1 Classification and Regression Trees and
Extensions

CART can be applied to both categorical and quantitative response
variables. We will consider first categorical response variables because
they provide a better vehicle for explaining how CART functions.

CART uses a set of predictors to partition the data so that within
each partition the values of the response variable are as homogeneous
as possible. The data are partitioned one partition at a time. Once a
partition is defined, it is unaffected by later partitions. The partitioning
is accomplished with a series of straight-line boundaries, which define
a break point for each selected predictor. Thus, the transformation for
each predictor is an indicator variable.

Figure 1.5 illustrates a CART partitioning. There is a binary outcome
coded “A” or “B” and in this simple illustration, just two predictors, x
and z, are selected. The red vertical line defines the first partition. The
green horizontal line defines the second partition. The yellow horizontal
line defines the third partition.

The data are first segmented left from right and then for the two
resulting partitions, the data are further segmented separately into an
upper and lower part. The upper left partition and the lower right
partition are perfectly homogeneous. There remains considerable het-
erogeneity in the other two partitions and in principle, their partitioning
could continue. Nevertheless, cases that are high on z and low on x are
always “B.” Cases that are low on z and high on x are always “A.” In a
real analysis, the terms “high” and “low” would be precisely defined by
where the boundaries cross the x and z axes.

The process by which each partition is constructed depends on two
steps. First, each potential predictor individually is transformed into
the indicator variable best able to split the data into two homogenous
groups. All possible break points for each potential predictor are evalu-
ated. Second, the predictor with the most effective indicator variable is
selected for construction of the partition. For each partition, the process
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is repeated with all predictors, even ones used to construct earlier parti-
tions. As a result, a given predictor can be used to construct more than
one partition; some predictors will have more than one transformation
selected.

Usually, CART output is displayed as an inverted tree. Figure 1.6 is
a simple illustration. The full data set is contained in the root node.
The final partitions are subsets of the data placed in the terminal nodes.
The internal nodes contain subsets of data for intermediate steps.

To achieve as much homogeneity as possible within data partitions,
heterogeneity within data partitions is minimized. Two definitions of
heterogeneity that are especially common. Consider a response that is
a binary variable coded 1 or 0. Let the “impurity” i of node τ be a non-
negative function of the probability that y = 1. If τ is a node composed
of cases that are all 1’s or all 0’s, its impurity is 0. If half the cases are
1’s and half the cases are 0’s, τ is the most impure it can be. Then, let

i(τ) = φ[p(y = 1|τ)], (1.15)

where φ ≥ 0, φ(p) = φ(1 − p), and φ(0) = φ(1) < φ(p). Impurity is
non-negative, symmetrical, and is at a minimum when all of the cases
in τ are of one kind or another. The two most common options for the
function φ are the entropy function shown in equation 1.16 and the Gini
Index shown in equation 1.17:12

φ(p) = −p log(p)− (1− p) log(1− p); (1.16)

φ(p) = p (1− p). (1.17)

Both equations are concave with minimums at p = 0 and p = 1 and a
maximum at p = .5. CART results from the two are often quite similar,
but the Gini index seems to perform a bit better, especially when there
are more than two categories in the response variable.

While it may not be immediately apparent, entropy and the Gini
index are in much same spirit as the least squares criterion commonly
use in regression, and the goal remains to estimate a set of conditional
means. Because in classification problems the response can be coded as
a 1 or a 0, the mean is a proportion.

Figure 1.7 shows a classification tree for an analysis of misconduct
engaged in my inmates in prisons in California. The data are taken
from a recent study of the California inmate classification system (Berk
et al., 2003). The response variable is coded 1 for engaging in misconduct
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                                                                Root Node

                No                                          x > c1                                               Yes

     Terminal Node 1

                                                                                                     Internal Node

                                                        No                                        z > c2                                     Yes

                                   Terminal Node 2                                                      Terminal Node 3

Figure 1.6. CART Tree Structure
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and 0 otherwise. Of the eight potential predictors, three were selected
by CART: whether an inmate had a history of gang activity, the length
of his prison term, and his age when he arrived at the prison reception
center.

A node in the tree is classified as 1 if a majority of inmates in that node
engaged in misconduct and 0 if a majority did not. The pair of numbers
below each node classification show how the inmates are distributed with
respect to misconduct. The right hand number is the count of inmates
in the majority category. The left hand number is the count of inmates
in the minority category. For example, in the terminal node at the far
right side, there are 332 inmates. Because 183 of the 332 (55%) engaged
in misconduct, the node is classified as a 1. The terminal nodes in
Figure 1.7 are arranged so that the proportion of inmates engaging in
misconduct increases from left to right.

In this application, one of the goals was to classify inmates by pre-
dictors of their proclivity to cause problems in prison. For inmates in
the far right terminal node, if one claimed that all had engaged in mis-
conduct, that claim would be incorrect 44% of the time. This is much
better than one would do ignoring the predictors. In that case, if one
claimed that all inmates engaged in misconduct, that claim would be
wrong 79% of the time.

The first predictor selected was gang activity. The “a” indicates that
the inmates with a history of gang activity were placed in the right
node, and inmates with a history of no gang activity were placed in
the left node. The second predictor selected was only able meaningfully
to improve the fit for inmates with a history of gang activity. Inmates
with a sentence length (“Term”) of less than 2.5 years were assigned
to the left node, while inmates with a sentence length of 2.5 years or
more were assigned to the right node. The final variable selected was
only able meaningfully to improve the fit for the subset of inmates with
a history of gang activity who were serving longer prison terms. That
variable was the age of the inmate when he arrived at the prison reception
center. Inmates with ages greater than 25 (age categories b,c, and d)
were assigned to the left node, while inmates with ages less than 25 were
assigned to the right node. In the end, this sorting makes good subject-
matter sense. Prison officials often expect more trouble from younger
inmates, with a history of gang activity serving long terms.

When CART is applied with a quantitative response variable, the
procedure is known as “Regression Trees.” At each step, heterogeneity
is now measured by the within-node sum of squares of the response:

i(τ) =
∑

(yi − ȳ(τ))2, (1.18)
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where for node τ the summation is over all cases in that node, and ȳ(τ)
is the mean of those cases. The heterogeneity for each potential split
is the sum of the two sums of squares for the two nodes that would
result. The split is chosen that reduces most this within-nodes sum
of squares; the sum of squares of the parent node is compared to the
combined sums of squares from each potential split into two offspring
nodes. Generalization to Poisson regression (for count data) follows with
the deviance used in place of the sum of squares.

7.2 Overfitting and Ensemble Methods
CART, like most data mining procedures, is vulnerable to overfit-

ting. Because the fitting process is so flexible, the mean function tends
to “over-respond” to idiosyncratic features of the data. If the data on
hand are a random sample for a particular population, the mean func-
tion constructed from the sample can look very different from the mean
function in the population (were it known). One implication is that
a different random sample from the same population can lead to very
different characterizations of how the response is related to the predic-
tors. Conventional responses to overfitting (e.g., model selection based
on the AIC) are a step in the right direction. However, they are of-
ten not nearly strong enough and usually provide few clues how a more
appropriate model should be constructed.

It has been known for nearly a decade that one way to more effec-
tively counteract overfitting is to construct average results over a number
of random samples of the data (LeBlanc and Tibshirani, 1996; Mojir-
sheibani, 1999; Friedman et al., 2000). Cross-validaton can work on
this principle. When the samples are bootstrap samples from a given
data set, the procedures are sometimes called ensemble methods, with
“bagging” as an early and important special case (Breiman, 1996).13

The basic idea is that the various manifestations of overfitting cancel
out in the aggregate over a large number of independent random samples
from the same population. Bootstrap samples from the data on hand
provide a surrogate for independent random samples from a well-defined
population. However, the bootstrap sampling with replacement implies
that bootstrap samples will share some observations with one another
and that, therefore, the sets of fitted values across samples will not be
independent. A bit of dependency is built it.

For recursive partitioning, the amount of dependence can be decreased
substantially if in addition to random bootstrap samples, potential pre-
dictors are randomly sampled (with replacement) at each step. That is,
one begins with a bootstrap sample of the data having the same number
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of observations as in the original data set. Then, when each decision is
made about subdividing the data, only a random sample of predictors
is considered. The random sample of predictors at each split may be
relatively small (e.g., 5).

“Random forests” is one powerful approach exploiting these ideas. It
builds on CART, and will generally fit the data better than standard
regression models or CART itself (Breiman, 2001a). A large number of
classification or regression trees is built (e.g., 500). Each tree is based
on a bootstrap sample of the data on hand, and at each potential split,
a random sample of predictors is considered. Then, average results are
computed over the full set of trees. In the binary classification case, for
example, a “vote” is taken over all of the trees to determine if a given
case is assigned to one class or the other. So, if there are 500 trees and
in 251 or more of these trees that case is classified as a “1,” that case is
treated as a “1.”

One problem with random forests is that there is no longer a tree to
interpret.14 Partly in response to this defect, there are currently several
methods under development that attempt to represent the importance of
each predictor for the average fit. Many build on the following approach.
The random forests procedure is applied to the data. For each tree,
observations not included in the bootstrap sample are used as a “test”
data set.15 Some measure of the quality of the fit is computed with these
data. Then, the values of a given explanatory variable in the test data are
randomly shuffled, and a second measure of fit quality computed. Each
of the measures is then averaged across the set of constructed trees. Any
substantial decrease in the quality of the fit when the average of the first
is compared to the average of the second must result from eliminating
the impact of the shuffled variable.16 The same process is repeated for
each explanatory variable in turn.

There is no resolution to date of exactly what feature of the fit should
be used to judge the importance of a predictor. Two that are commonly
employed are the mean decline over trees in the overall measure of fit
(e.g. the Gini Indix) and for classification problems, the mean decline
over trees in how accurately cases are predicted. For example, suppose
that for the full set explanatory variables an average of 75% of the cases
are correctly predicted. If after the values of a given explanatory variable
are randomly shuffled that figure drops to 65%, there is a reduction
in predictive accuracy of 10%. Sometimes a standardized decline in
predictive accuracy is used, which may be loosely interpreted as a z-
score.

Figure 1.8 shows for the prison misconduct data how one can consider
predictor importance using random forests. The number of explanatory
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variables included in the figure is truncated at four for ease of exposi-
tion. Term length is the most important explanatory variable by both
the predictive accuracy and Gini measures. After that, the rankings
from the two measures vary. Disagreements such as these are common
because the Gini Index reflects the overall goodness of fit, while the
predictive accuracy depends on how well the model actually predicts.
The two are related, but they measure different things. Breiman argues
that the decrease in predictive accuracy is the more direct, stable and
meaningful indicator of variable importance (personal communication).
If the point is to accurately predict cases, why not measure importance
by that criterion? In that case, the ranking of variables by importance is
term length, gang activity, age at reception, and age when first arrested.

When the response variable is quantitative, importance is represented
by the average increase in the within node sums of squares for the ter-
minal nodes. The increase in this error sum of squares is related to how
much the “explained variance” decreases when the values of a given pre-
dictor are randomly shuffled. There is no useful analogy in regression
trees to correct or incorrect prediction.

8. Conclusions
A large number of data mining procedures can be considered within

a regression framework. A representative sample of the most popular
and powerful has been discussed in this paper.17 But the development
of new data mining methods is progressing very quickly, stimulated in
part by relatively inexpensive computing power and in part by the data
mining needs in a variety of disciplines. A revision of this chapter five
years from now might look very different. Nevertheless, a key distinction
between the more effective and the less effective data mining procedures
is how overfitting is handled. Finding new and improved ways to fit data
is often quite easy. Finding ways to avoid being seduced by the results
is not (Svetnik et al., 2003; Reunanen, 2003).

Notes
1. In much of what follows I use the notation and framework of Hastie et al., 2001.

2. It is the estimator that is linear. The function linking the response variable y to
the predictor x can be highly non-linear. The role of S0j has much in common the hat-

matrix from conventional linear regression analysis: H = X(XT X)−1XT . The hat-matrix
transforms yi in a linear fashion into ŷi. S0j does the same thing but can be constructed in
a more general manner.

3. To keep the equations consistent with the language of the text and to emphasize the
descriptive nature of the enterprise, the conditional mean of y will be represented by ȳ|x
rather than by E(y|x). The latter implies, unnecessarily in this case, that y is a random
variable.
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4. This is not a formal mathematical result. It stems from what seems to be the kind of
smoothness the human eye can appreciate.

5. In practice, the truncated power series basis is usally replaced by a B-spline basis.
That is, the transformations of x required are constructed from another basis, not explicit
cubic functions of x. In brief, all splines are linear combinations of B-splines; B-splines are
a basis for the space of splines. They are also a well-conditioned basis, because they are
fairly close to orthogonal, and they can be computed in a stable and efficient manner. Good
discussions of B-splines can be found in Gifi, 1990 and Hastie et al., 2001.

6. This assumes that there are N distinct values of x. There will be fewer knots if there
are less than N distinct values of x.

7. The effective degrees of freedom is the degrees of freedom required by the smoother,
and is calculated as the trace of S in equation 1.1. It is analogous to the degrees of freedom
“used up” in a conventional linear regression analysis when the intercept and regression
coefficients are computed. The smoother the fitted value, the greater the effective degrees of
freedom

8. Consider again equations 1.1 and 1.2. The natural cubic spline values for executions
are the hm(x) in equation 1.2 which, in turn is the source of S. From S and the number of
homicides y ones obtains the fitted values ŷ shown in Figure 1.2.

9. The tricube is another popular option. In practice, most of the common weighting
functions give about the same results.

10. As one approaches either tail of the distribution of x, the window will tend to become
asymmetrical. One implication is that the fitted values derived from x-values near the tails
of x are typically less stable. Additional constraints are then sometimes imposed much like
those imposed on cubic splines.

11. The functions constructed from the data are built so that they have a mean of zero.
Otherwise, each would require its own intercept, which significantly and unnecessarily com-
plicates matters. When all of the functions are estimated from the data, the generalized
additive model is sometimes called“nonparametric.” When some of the functions are esti-
mated from the data and some are determined by the researcher, the generalized additive
model is sometimes called “semiparametric.”

12. Both can be generalized for nominal response variables with more than two categories
(Hastie et al., 2001: 271).

13. “Bagging” stands for bootstrap aggregation.

14. More generally, ensemble methods can lead to difficult interpretative problems if the
links of inputs to outputs are important to describe.

15. These are sometimes called “out-of-bag” observations. “Predicting” the values of the
response for observations used to build the set of trees will lead to overly optimistic assess-
ments of how well the procedure performs. Consequently, out-of-bag (OOB) observations are
routinely used in random forests to determine how well random forests predicts.

16. Small decreases could result from random sampling error.

17. All of the procedures described in this chapter can be easily computed with procedures
found in the programming language R.
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