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Summary. Clustering aims at representing large datasets by a fewer number of prototypes
or clusters. It brings simplicity in modeling data and thus plays a central role in the pro-
cess of knowledge discovery and data mining. Data mining tasks, in these days, require fast
and accurate partitioning of huge datasets, which may come with a variety of attributes or
features. This, in turn, imposes severe computational requirements on the relevant cluster-
ing techniques. A family of bio-inspired algorithms, well-known as Swarm Intelligence (SI)
has recently emerged that meets these requirements and has successfully been applied to a
number of real world clustering problems. This chapter explores the role of SI in clustering
different kinds of datasets. It finally describes a new SI technique for partitioning a linearly
non-separable dataset into an optimal number of clusters in the kernel- induced feature space.
Computer simulations undertaken in this research have also been provided to demonstrate the
effectiveness of the proposed algorithm.

1 Introduction

Clustering means the act of partitioning an unlabeled dataset into groups of similar objects.
Each group, called a ‘cluster’, consists of objects that are similar between themselves and dis-
similar to objects of other groups. In the past few decades, cluster analysis has played a central
role in a variety of fields ranging from engineering (machine learning, artificial intelligence,
pattern recognition, mechanical engineering, electrical engineering), computer sciences (web
mining, spatial database analysis, textual document collection, image segmentation), life and
medical sciences (genetics, biology, microbiology, paleontology, psychiatry, pathology), to
earth sciences (geography. geology, remote sensing), social sciences (sociology, psychology,
archeology, education), and economics (marketing, business) (Evangelou et al., 2001, Lille-
sand and Keifer, 1994,Rao, 1971,Duda and Hart, 1973,Everitt, 1993,Xu and Wunsch, 2008).

Human beings possess the natural ability of clustering objects. Given a box full of marbles
of four different colors say red, green, blue, and yellow, even a child may separate these
marbles into four clusters based on their colors. However, making a computer solve this type
of problems is quite difficult and demands the attention of computer scientists and engineers all
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over the world till date. The major hurdle in this task is that the functioning of the brain is much
less understood. The mechanisms, with which it stores huge amounts of information, processes
them at lightning speeds and infers meaningful rules, and retrieves information as and when
necessary have till now eluded the scientists. A question that naturally comes up is: what is the
point in making a computer perform clustering when people can do this so easily? The answer
is far from trivial. The most important characteristic of this information age is the abundance
of data. Advances in computer technology, in particular the Internet, have led to what some
people call “data explosion”: the amount of data available to any person has increased so much
that it is more than he or she can handle. In reality the amount of data is vast and in addition,
each data item (an abstraction of a real-life object) may be characterized by a large number of
attributes (or features), which are based on certain measurements taken on the real-life objects
and may be numerical or non-numerical. Mathematically we may think of a mapping of each
data item into a point in the multi-dimensional feature space (each dimension corresponding
to one feature) that is beyond our perception when number of features exceed just 3. Thus
it is nearly impossible for human beings to partition tens of thousands of data items, each
coming with several features (usually much greater than 3), into meaningful clusters within
a short interval of time. Nonetheless, the task is of paramount importance for organizing and
summarizing huge piles of data and discovering useful knowledge from them. So, can we
devise some means to generalize to arbitrary dimensions of what humans perceive in two or
three dimensions, as densely connected “patches” or “clouds” within data space? The entire
research on cluster analysis may be considered as an effort to find satisfactory answers to this
fundamental question.

The task of computerized data clustering has been approached from diverse domains of
knowledge like graph theory, statistics (multivariate analysis), artificial neural networks, fuzzy
set theory, and so on (Forgy, 1965, Zahn, 1971, Mitchell, 1997, Mao and Jain, 1995, Pal et
al., 1993, Kohonen, 1995, Falkenauer, 1998, Paterlini and Minerva, 2003, Xu and Wunsch,
2005,Rokach and Maimon, 2005,Mitra et al.2002). One of the most popular approaches in this
direction has been the formulation of clustering as an optimization problem, where the best
partitioning of a given dataset is achieved by minimizing/maximizing one (single-objective
clustering) or more (multi-objective clustering) objective functions. The objective functions
are usually formed capturing certain statistical-mathematical relationship among the individ-
ual data items and the candidate set of representatives of each cluster (also known as cluster-
centroids). The clusters are either hard, that is each sample point is unequivocally assigned
to a cluster and is considered to bear no similarity to members of other clusters, or fuzzy, in
which case a membership function expresses the degree of belongingness of a data item to
each cluster.

Most of the classical optimization-based clustering algorithms (including the celebrated
hard c-means and fuzzy c-means algorithms) rely on local search techniques (like iterative
function optimization, Lagrange’s multiplier, Picard’s iterations etc.) for optimizing the clus-
tering criterion functions. The local search methods, however, suffer from two great disadvan-
tages. Firstly they are prone to getting trapped in some local optima of the multi-dimensional
and usually multi-modal landscape of the objective function. Secondly performances of these
methods are usually very sensitive to the initial values of the search variables.

Although many respected texts of pattern recognition describe clustering as an unsuper-
vised learning method, most of the traditional clustering algorithms require a prior specifica-
tion of the number of clusters in the data for guiding the partitioning process, thus making it
not completely unsupervised. On the other hand, in many practical situations, it is impossible
to provide even an estimation of the number of naturally occurring clusters in a previously
unhandled dataset. For example, while attempting to classify a large database of handwritten
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characters in an unknown language; it is not possible to determine the correct number of dis-
tinct letters beforehand. Again, while clustering a set of documents arising from the query to a
search engine, the number of classes can change for each set of documents that result from an
interaction with the search engine. Data mining tools that predict future trends and behaviors
for allowing businesses to make proactive and knowledge-driven decisions, demand fast and
fully automatic clustering of very large datasets with minimal or no user intervention. Thus
it is evident that the complexity of the data analysis tasks in recent times has posed severe
challenges before the classical clustering techniques.

Recently a family of nature inspired algorithms, known as Swarm Intelligence (SI), has
attracted several researchers from the field of pattern recognition and clustering. Clustering
techniques based on the SI tools have reportedly outperformed many classical methods of par-
titioning a complex real world dataset. Algorithms belonging to the domain, draw inspiration
from the collective intelligence emerging from the behavior of a group of social insects (like
bees, termites and wasps). When acting as a community, these insects even with very limited
individual capability can jointly (cooperatively) perform many complex tasks necessary for
their survival. Problems like finding and storing foods, selecting and picking up materials for
future usage require a detailed planning, and are solved by insect colonies without any kind
of supervisor or controller. An example of particularly successful research direction in swarm
intelligence is Ant Colony Optimization (ACO) (Dorigo et al., 1996,Dorigo and Gambardella,
1997), which focuses on discrete optimization problems, and has been applied successfully to
a large number of NP hard discrete optimization problems including the traveling salesman,
the quadratic assignment, scheduling, vehicle routing, etc., as well as to routing in telecommu-
nication networks. Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995) is an-
other very popular SI algorithm for global optimization over continuous search spaces. Since
its advent in 1995, PSO has attracted the attention of several researchers all over the world
resulting into a huge number of variants of the basic algorithm as well as many parameter
automation strategies.

In this Chapter, we explore the applicability of these bio-inspired approaches to the devel-
opment of self-organizing, evolving, adaptive and autonomous clustering techniques, which
will meet the requirements of next-generation data mining systems, such as diversity, scal-
ability, robustness, and resilience. The next section of the chapter provides an overview of
the SI paradigm with a special emphasis on two SI algorithms well-known as Particle Swarm
Optimization (PSO) and Ant Colony Systems (ACS). Section 3 outlines the data clustering
problem and briefly reviews the present state of the art in this field. Section 4 describes the
use of the SI algorithms in both crisp and fuzzy clustering of real world datasets. A new au-
tomatic clustering algorithm, based on PSO, is presented in Section 5. The algorithm requires
no previous knowledge of the dataset to be partitioned, and can determine the optimal num-
ber of classes dynamically in a linearly non-separable dataset using a kernel-induced distance
metric. The new method has been compared with two well-known, classical fuzzy clustering
algorithms. The Chapter is concluded in Section 6 with discussions on possible directions for
future research.

2 An Introduction to Swarm Intelligence

The behavior of a single ant, bee, termite and wasp often is too simple, but their collective
and social behavior is of paramount significance. A look at National Geographic TV Chan-
nel reveals that advanced mammals including lions also enjoy social lives, perhaps for their
self-existence at old age and in particular when they are wounded. The collective and social
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behavior of living creatures motivated researchers to undertake the study of today what is
known as Swarm Intelligence. Historically, the phrase Swarm Intelligence (SI) was coined by
Beny and Wang in late 1980s (Beni and Wang, 1989) in the context of cellular robotics. A
group of researchers in different parts of the world started working almost at the same time to
study the versatile behavior of different living creatures and especially the social insects. The
efforts to mimic such behaviors through computer simulation finally resulted into the fascinat-
ing field of SI. SI systems are typically made up of a population of simple agents (an entity
capable of performing/executing certain operations) interacting locally with one another and
with their environment. Although there is normally no centralized control structure dictating
how individual agents should behave, local interactions between such agents often lead to the
emergence of global behavior. Many biological creatures such as fish schools and bird flocks
clearly display structural order, with the behavior of the organisms so integrated that even
though they may change shape and direction, they appear to move as a single coherent en-
tity (Couzin et al., 2002). The main properties of the collective behavior can be pointed out as
follows and is summarized in Figure 1.

1. Homogeneity: every bird in flock has the same behavioral model. The flock moves with-
out a leader, even though temporary leaders seem to appear.

2. Locality: its nearest flock-mates only influence the motion of each bird. Vision is consid-
ered to be the most important senses for flock organization.

3. Collision Avoidance: avoid colliding with nearby flock mates.
4. Velocity Matching: attempt to match velocity with nearby flock mates.
5. Flock Centering: attempt to stay close to nearby flock mates

Individuals attempt to maintain a minimum distance between themselves and others at all
times. This rule is given the highest priority and corresponds to a frequently observed behavior
of animals in nature (Krause and Ruxton, 2002). If individuals are not performing an avoidance
maneuver they tend to be attracted towards other individuals (to avoid being isolated) and to
align themselves with neighbors (Partridge and Pitcher, 1980, Partridge, 1982).

Couzin et al. (2002) identified four collective dynamical behaviors as illustrated in Figure
2:

1. Swarm: an aggregate with cohesion, but a low level of polarization (parallel alignment)
among members

2. Torus: individuals perpetually rotate around an empty core (milling). The direction of
rotation is random.

3. Dynamic parallel group: the individuals are polarized and move as a coherent group,
but individuals can move throughout the group and density and group form can fluctuate
(Partridge and Pitcher, 1980, Major and Dill, 1978).

4. Highly parallel group: much more static in terms of exchange of spatial positions within
the group than the dynamic parallel group and the variation in density and form is mini-
mal.

As mentioned in (Grosan et al., 2006) at a high-level, a swarm can be viewed as a group
of agents cooperating to achieve some purposeful behavior and achieve some goal (Abraham
et al., 2006). This collective intelligence seems to emerge from what are often large groups:
According to Milonas (1994), five basic principles define the SI paradigm. First is the prox-
imity principle: the swarm should be able to carry out simple space and time computations.
Second is the quality principle: the swarm should be able to respond to quality factors in the
environment. Third is the principle of diverse response: the swarm should not commit its activ-
ities along excessively narrow channels. Fourth is the principle of stability: the swarm should



Pattern Clustering Using a Swarm Intelligence Approach 5

Collective 

Global 

Behavior 

Homogeneity 

Locality Flock 

Centering 

Velocity  

Matching

Collision 

Avoidance

Fig. 1. Main traits of collective behavior.

not change its mode of behavior every time the environment changes. Fifth is the principle of
adaptability: the swarm must be able to change behavior mote when it is worth the computa-
tional price. Note that principles four and five are the opposite sides of the same coin. Below
we discuss in details two algorithms from SI domain, which have gained wide popularity in a
relatively short span of time.

2.1 The Ant Colony Systems

The basic idea of a real ant system is illustrated in Figure 3. In the left picture, the ants move
in a straight line to the food. The middle picture illustrates the situation soon after an obstacle
is inserted between the nest and the food. To avoid the obstacle, initially each ant chooses
to turn left or right at random. Let us assume that ants move at the same speed depositing
pheromone in the trail uniformly. However, the ants that, by chance, choose to turn left will
reach the food sooner, whereas the ants that go around the obstacle turning right will follow a
longer path, and so will take longer time to circumvent the obstacle. As a result, pheromone
accumulates faster in the shorter path around the obstacle. Since ants prefer to follow trails
with larger amounts of pheromone, eventually all the ants converge to the shorter path around
the obstacle, as shown in Figure 3.

An artificial Ant Colony System (ACS) is an agent-based system, which simulates the
natural behavior of ants and develops mechanisms of cooperation and learning. ACS was pro-
posed by Dorigo et al. (1997) as a new heuristic to solve combinatorial optimization problems.
This new heuristic, called Ant Colony Optimization (ACO) has been found to be both robust
and versatile in handling a wide range of combinatorial optimization problems.

The main idea of ACO is to model a problem as the search for a minimum cost path in a
graph. Artificial ants as if walk on this graph, looking for cheaper paths. Each ant has a rather



6 Swagatam Das and and Ajith Abraham

  (a) Swarm                                                            (b) Torus 

                                                                       
                                                                    

                                 

  (c) Dynamic parallel group                               (d) Highly parallel group 

Fig. 2. Different models of collective behavior.

simple behavior capable of finding relatively costlier paths. Cheaper paths are found as the
emergent result of the global cooperation among ants in the colony. The behavior of artificial
ants is inspired from real ants: they lay pheromone trails (obviously in a mathematical form) on
the graph edges and choose their path with respect to probabilities that depend on pheromone
trails. These pheromone trails progressively decrease by evaporation. In addition, artificial
ants have some extra features not seen in their counterpart in real ants. In particular, they live
in a discrete world (a graph) and their moves consist of transitions from nodes to nodes.

Below we illustrate the use of ACO in finding the optimal tour in the classical Traveling
Salesman Problem (TSP). Given a set of n cities and a set of distances between them, the
problem is to determine a minimum traversal of the cities and return to the home-station at
the end. It is indeed important to note that the traversal should in no way include a city more
than once. Let r (Cx, Cy) be a measure of cost for traversal from city Cx to Cy. Naturally, the
total cost of traversing n cities indexed by i1, i2, i3,. . . , in in order is given by the following
expression:
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Fig. 3. Illustrating the behavior of real ant movements.
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∑
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The ACO algorithm is employed to find an optimal order of traversal of the cities. Let τ
be a mathematical entity modeling the pheromone and η ij = 1/r (i , j) is a local heuristic. Also
let allowedk(t) be the set of cities that are yet to be visited by ant q located in city i. Then
according to the classical ant system (Xu and Wunsch, 2008) the probability that ant q in city
i visits city j is given by
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In Equation 19 shorter edges with greater amount of pheromone are favored by multiply-
ing the pheromone on edge (i , j ) by the corresponding heuristic value η(i, j ). Parameters α
(> 0) and β (> 0) determine the relative importance of pheromone versus cost. Now in ant
system, pheromone trails are updated as follows. Let Dq be the length of the tour performed
by ant q, ∆τq(i, j) = 1

/
Dq if (i, j) ∈ tour done by ant q and ∆τq(i, j) = 0 otherwise and finally

let ρ ∈ [0,1] be a pheromone decay parameter which takes care of the occasional evaporation
of the pheromone from the visited edges. Then once all ants have built their tours, pheromone
is updated on all the ages as,

τ(i, j) = (1−ρ).τ(i, j)+
m

∑
p=1

τk(i, j) (3)

From equation 3, we can guess that pheromone updating attempts to accumulate greater
amount of pheromone to shorter tours (which corresponds to high value of the second term
in (3) so as to compensate for any loss of pheromone due to the first term). This conceptually
resembles a reinforcement-learning scheme, where better solutions receive a higher reinforce-
ment.
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The ACO differs from the classical ant system in the sense that here the pheromone trails
are updated in two ways. Firstly, when ants construct a tour they locally change the amount
of pheromone on the visited edges by a local updating rule. Now if we let γ to be a decay
parameter and ∆τ(i, j) = τ0 such that τ0 is the initial pheromone level, then the local rule may
be stated as:

τ(i, j) = (1− γ).τ(i, j)+ γ.∆τ(i, j) (4)

Secondly, after all the ants have built their individual tours, a global updating rule is ap-
plied to modify the pheromone level on the edges that belong to the best ant tour found so far.
If κ be the usual pheromone evaporation constant, Dgb be the length of the globally best tour
from the beginning of the trial and ∆τ ′/ (i , j) = 1/ Dgb only when the edge ( i, j ) belongs to
global-best-tour and zero otherwise, then we may express the global rule as follows:

τ(i, j) = (1−κ).τ(i, j)+κ.∆τ ′(i, j) (5)

The main steps of ACO algorithm are presented below.

     Procedure ACO 

     Begin 

      Initialize pheromone trails; 

      Repeat 

      Begin                           /* at this stage each loop is called an iteration */ 

              Each ant is positioned on a starting node;

              Repeat      

              Begin                  /* at this level each loop is called a step */ 

                       Each ant applies a state transition rule like rule (2) to 

incrementally build a solution and a local pheromone-updating 

rule like rule (4);

              Until all ants have built a complete solution; 

                A global pheromone-updating rule like rule (5) is applied. 

       Until terminating condition is reached; 

      End 

The concept of Particle Swarms, although initially introduced for simulating human social
behaviors, has become very popular these days as an efficient search and optimization tech-
nique. The Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995,Kennedy et al.,
2001), as it is called now, does not require any gradient information of the function to be opti-
mized, uses only primitive mathematical operators and is conceptually very simple. In PSO, a
population of conceptual ‘particles’ is initialized with random positions Xi and velocities Vi,
and a function, f, is evaluated, using the particle’s positional coordinates as input values. In an
D-dimensional search space, Xi = (xi1,xi2, ...,xiD)

T and Vi = (vi1,vi2, ...,viD)
T . In literature,

the basic equations for updating the d-th dimension of the velocity and position of the i-th
particle for PSO are presented most popularly in the following way:

vi,d(t) = ω.vi,d(t −1)+φ1.rand1i,d(0,1).(pl
i,d − xi,d(t −1))+

φ2.rand2i,d(0,1).(pg
d − xi,d(t −1))

(6)
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Fig. 4. Illustrating the velocity updating scheme of basic PSO.

xi,d(t) = xi,d(t −1)+ vi,d(t) (7)

Please note that in 6 and 10, φ1 and φ2 are two positive numbers known as the accel-
eration coefficients. The positive constant ωis known as inertia factor. rand1i,d(0,1) and
rand2i,d(0,1) are the two uniformly distributed random numbers in the range of [0, 1]. While
applying PSO, we define a maximum velocity Vmax = [vmax,1,vmax,2, ....,vmax,D]

T of the par-
ticles in order to control their convergence behavior near optima. If

∣∣vi,d
∣∣ exceeds a positive

constant value vmax,d specified by the user, then the velocity of that dimension is assigned to
sgn(vi,d).vmax,d where sgn stands for the signum function and is defined as:

   1)sgn( =x ,                  if 0>x

               0= ,                 if 0=x

              1−= ,                if 0<x  (8)

While updating the velocity of a particle, different dimensions will have different values for
rand1 and rand2. Some researchers, however, prefer to use the same values of these random
coefficients for all dimensions of a given particle. They use the following formula to update
the velocities of the particles:

vi,d(t) = ω .vi,d(t −1)+φ1.rand1i(0,1).(pl
i,d(t)− xi,d(t −1))+

φ2.rand2i(0,1).(pg
d(t)− xi,d(t −1))

(9)

Comparing the two variants in 6 and 12, the former can have a larger search space due to
independent updating of each dimension, while the second is dimension-dependent and has
a smaller search space due to the same random numbers being used for all dimensions The
velocity updating scheme has been illustrated in Figure 4 with a humanoid particle.

A pseudo code for the PSO algorithm may be put forward as:
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The PSO Algorithm 

Input: Randomly initialized position and velocity of the particles: )0(iX
r

and 

)0(
i

V
r

Output: Position of the approximate global optima *X
r

Begin 

    While terminating condition is not reached do 

       Begin 

         for i = 1 to number of particles 

               Evaluate the fitness: = ))(( tXf i

r
; 

              Update )(tP
r

and )(tg
r

; 

              Adapt velocity of the particle using equation (6); 

              Update the position of the particle; 

               increase i; 

     end while 

end 

3 Data Clustering – An Overview

In this Section, we first provide a brief and formal description of the clustering problem. We
then discuss a few major classical clustering techniques.

3.1 Problem Definition

A pattern is a physical or abstract structure of objects. It is distinguished from others by a
collective set of attributes called features, which together represent a pattern (Konar, 2005).
Let P = {P1, P2... Pn} be a set of n patterns or data points, each having d features. These
patterns can also be represented by a profile data matrix Xn×d having n d-dimensional row
vectors. The i-th row vectorXicharacterizes the i-th object from the set P and each element Xi,j
in Xicorresponds to the j-th real value feature (j = 1, 2, .....,d) of the i-th pattern ( i =1,2,....,
n). Given such an Xn×d , a partitional clustering algorithm tries to find a partition C = {C1,
C2,......, Ck}of k classes, such that the similarity of the patterns in the same cluster is maximum
and patterns from different clusters differ as far as possible. The partitions should maintain the
following properties:

• Each cluster should have at least one pattern assigned i. e. Ci ̸= Φ∀i ∈ {1,2, ...,k}.
• Two different clusters should have no pattern in common. i.e. Ci

∩
C j = Φ ,∀i ̸= j and

i, j ∈ {1,2, ...,k}. This property is required for crisp (hard) clustering. In Fuzzy clustering
this property doesn’t exist.

• Each pattern should definitely be attached to a cluster i.e.
∪k

i=1 Ci = P.

Since the given dataset can be partitioned in a number of ways maintaining all of the
above properties, a fitness function (some measure of the adequacy of the partitioning) must
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be defined. The problem then turns out to be one of finding a partition C* of optimal or near-
optimal adequacy as compared to all other feasible solutions C = { C1, C2,........, CN(n,k)}
where,

N(n,k) =
1
k!

k

∑
i=1

(−1)i
(

k
i

)i

(k− i)i (10)

is the number of feasible partitions. This is same as,

OptimizeC f (Xn×d,C) (11)

where C is a single partition from the set C and f is a statistical-mathematical function that
quantifies the goodness of a partition on the basis of the similarity measure of the patterns.
Defining an appropriate similarity measure plays fundamental role in clustering (Jain et al.,
1999). The most popular way to evaluate similarity between two patterns amounts to the use
of distance measure. The most widely used distance measure is the Euclidean distance, which
between any two d-dimensional patterns Xi and X j is given by,

d(Xi,X j) =

√√√√ d

∑
p=1

(Xi,p −X j,p)2 =
∥∥Xi −X j

∥∥ (12)

It has been shown in (Brucker, 1978) that the clustering problem is NP-hard when the number
of clusters exceeds 3.

3.2 The Classical Clustering Algorithms

Data clustering is broadly based on two approaches: hierarchical and partitional (Frigui and
Krishnapuram, 1999, Leung et al., 2000). Within each of the types, there exists a wealth of
subtypes and different algorithms for finding the clusters. In hierarchical clustering, the out-
put is a tree showing a sequence of clustering with each cluster being a partition of the data
set (Leung et al., 2000). Hierarchical algorithms can be agglomerative (bottom-up) or divi-
sive (top-down). Agglomerative algorithms begin with each element as a separate cluster and
merge them in successively larger clusters. Divisive algorithms begin with the whole set and
proceed to divide it into successively smaller clusters. Hierarchical algorithms have two basic
advantages (Frigui and Krishnapuram, 1999). Firstly, the number of classes need not be spec-
ified a priori and secondly, they are independent of the initial conditions. However, the main
drawback of hierarchical clustering techniques is they are static, i.e. data-points assigned to a
cluster can not move to another cluster. In addition to that, they may fail to separate overlap-
ping clusters due to lack of information about the global shape or size of the clusters (Jain et
al., 1999).

Partitional clustering algorithms, on the other hand, attempt to decompose the data set
directly into a set of disjoint clusters. They try to optimize certain criteria. The criterion func-
tion may emphasize the local structure of the data, as by assigning clusters to peaks in the
probability density function, or the global structure. Typically, the global criteria involve min-
imizing some measure of dissimilarity in the samples within each cluster, while maximizing
the dissimilarity of different clusters. The advantages of the hierarchical algorithms are the
disadvantages of the partitional algorithms and vice versa. An extensive survey of various
clustering techniques can be found in (Jain et al., 1999). The focus of this chapter is on the
partitional clustering algorithms.
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Clustering can also be performed in two different modes: crisp and fuzzy. In crisp clus-
tering, the clusters are disjoint and non-overlapping in nature. Any pattern may belong to one
and only one class in this case. In case of fuzzy clustering, a pattern may belong to all the
classes with a certain fuzzy membership grade (Jain et al., 1999).

The most widely used iterative k-means algorithm (MacQueen, 1967) for partitional clus-
tering aims at minimizing the ICS (Intra-Cluster Spread) which for k cluster centers can be
defined as

ICS(C1,C2, ...,Ck) =
k

∑
i=1

∑
Xi∈Ci

∥Xi −mi∥2 (13)

The k-means (or hard c-means) algorithm starts with k cluster-centroids (these centroids
are initially selected randomly or derived from some a priori information). Each pattern in the
data set is then assigned to the closest cluster-centre. Centroids are updated by using the mean
of the associated patterns. The process is repeated until some stopping criterion is met.

In the c-medoids algorithm (Kaufman and Rousseeuw, 1990), on the other hand, each
cluster is represented by one of the representative objects in the cluster located near the center.
Partitioning around medoids (PAM) (Kaufman and Rousseeuw, 1990) starts from an initial
set of medoids, and iteratively replaces one of the medoids by one of the non-medoids if it
improves the total distance of the resulting clustering. Although PAM works effectively for
small data, it does not scale well for large datasets. Clustering large applications based on
randomized search (CLARANS) (Ng and Han, 1994), using randomized sampling, is capable
of dealing with the associated scalability issue.

The fuzzy c-means (FCM) (Bezdek, 1981) seems to be the most popular algorithm in the
field of fuzzy clustering. In the classical FCM algorithm, a within cluster sum function Jm is
minimized to evolve the proper cluster centers:

Jm =
n

∑
j=1

c

∑
i=1

(ui j)
m∥∥X j −Vi

∥∥2 (14)

where Vi is the i-th cluster center, X j is the j-th d-dimensional data vector and ||. ||is an inner
product-induced norm in d dimensions. Given c classes, we can determine their cluster centers
Vi for i=1 to c by means of the following expression:

Vi =
∑n

j=1(ui j)
mX j

∑n
j=1(ui j)m Vi =

∑n
j=1(ui j)

mX j

∑n
j=1(ui j)m (15)

Here m (m>1) is any real number that influences the membership grade. Now differenti-
ating the performance criterion with respect to Vi (treating uij as constants) and with respect
to uij (treating Vi as constants) and setting them to zero the following relation can be obtained:

ui j =

 c

∑
k=1

(∥∥X j −Vi
∥∥2

∥X−Vi∥2

)1/
(m−1)


−1

(16)

Several modifications of the classical FCM algorithm can be found in (Hall et al.1999,
Gath and Geva, 1989, Bensaid et al., 1996, Clark et al., 1994, Ahmed et al., 2002, Wang X et
al., 2004).
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3.3 Relevance of SI Algorithms in Clustering

From the discussion of the previous Section, we see that the SI algorithms are mainly stochas-
tic search and optimization techniques, guided by the principles of collective behaviour and
self organization of insect swarms. They are efficient, adaptive and robust search methods
producing near optimal solutions and have a large amount of implicit parallelism. On the
other hand, data clustering may be well formulated as a difficult global optimization problem;
thereby making the application of SI tools more obvious and appropriate.

4 Clustering with the SI Algorithms

In this Section we first review the present state of the art clustering algorithms based on SI
tools, especially the ACO and PSO. We then outline a new algorithm which employs the PSO
model to automatically determine the number of clusters in a previously unhandled dataset.
Computer simulations undertaken for this study have also been included to demonstrate the
elegance of the new dynamic clustering technique.

4.1 The Ant Colony Based Clustering Algorithms

Ant colonies provide a means to formulate some powerful nature-inspired heuristics for solv-
ing the clustering problems. Among other social movements, researchers have simulated the
way, ants work collaboratively in the task of grouping dead bodies so, as to keep the nest
clean (Bonabeau et al., 1999). It can be observed that, with time the ants tend to cluster all
dead bodies in a specific region of the environment, thus forming piles of corpses.

Larval sorting and corpse cleaning by ant was first modeled by Deneubourg et al. (1991)
for accomplishing certain tasks in robotics. This inspired the Ant-based clustering algorithm
(Handl et al., 2003). Lumer and Faieta modified the algorithm using a dissimilarity-based
evaluation of the local density, in order to make it suitable for data clustering (Lumer and
Faieta, 1994). This introduced standard Ant Clustering Algorithm (ACA). It has subsequently
been used for numerical data analysis (Lumer and Faieta, 1994), data-mining (Lumer and Fai-
eta, 1995), graph-partitioning (Kuntz and Snyers, 1994, Kuntz and Snyers, 1999, Kuntz et al.,
1998) and text-mining (Handl and Meyer B, 2002,Hoe et al., 2002,Ramos and Merelo, 2002).
Many authors (Handl and Meyer B, 2002,Ramos et al., 2002) proposed a number of modifica-
tions to improve the convergence rate and to get optimal number of clusters. Monmarche et al.
(1999) hybridized the Ant-based clustering algorithm with k-means algorithm and compared
it to traditional k-means on various data sets, using the classification error for evaluation pur-
poses. However, the results obtained with this method are not applicable to ordinary ant-based
clustering since it differs significantly from the latter.

Like a standard ACO, ant-based clustering is a distributed process that employs positive
feedback. Ants are modeled by simple agents that randomly move in their environment. The
environment is considered to be a low dimensional space, more generally a two-dimensional
plane with square grid. Initially, each data object that represents a multi-dimensional pattern is
randomly distributed over the 2-D space. Data items that are scattered within this environment
can be picked up, transported and dropped by the agents in a probabilistic way. The picking
and dropping operation are influenced by the similarity and density of the data items within
the ant’s local neighborhood. Generally, the size of the neighborhood is 3×3. Probability of
picking up data items is more when the object are either isolated or surrounded by dissimilar
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items. They trend to drop them in the vicinity of similar ones. In this way, a clustering of the
elements on the grid is obtained.

The ants search for the feature space either through random walk or with jumping using
a short term memory. Each ant picks up or drops objects according to the following local
probability density measure:

f (Xi) = max{0,
1
s2 ∑

X j∈Ns×s(r)
[1−

d(Xi,X j)

α(1+ ν−1
νmax

)
(17)

In the above expression, Ns×s(r)denotes the local area of perception surrounding the site
of radius r, which the ant occupies in the two-dimensional grid. The threshold a scales the
dissimilarity within each pair of objects, and the moving speed v controls the step-size of the
ant searching in the space within one time unit. If an ant is not carrying an object and finds
an object Xi in its neighborhood, it picks up this object with a probability that is inversely
proportional to the number of similar objects in the neighborhood. It may be expressed as:

Ppick−up(Xi) = [
kp

kp + f (Xi)
]2 (18)

If however, the ant is carrying an object x and perceives a neighbor’s cell in which there
are other objects, then the ant drops off the object it is carrying with a probability that is
directly proportional to the object’s similarity with the perceived ones. This is given by:

    )(.2)( iidrop XfXP
rr

=   if  di kXf <)(

r

                       =   1              if di kXf ≥)(

r
  (19)

The parameters kp and kd are the picking and dropping constants [41] respectively. Func-
tion f (Xi) provides an estimate of the density and similarity of elements in the neighborhood
of object Xi. The standard ACA algorithm is summarized in the following pseudo-code.
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Procedure ACA  

Place every item 
iX

r
 on a random cell of the grid; 

Place every ant k on a random cell of the grid unoccupied by ants; 

iteration_count ← 1;
While iteration_count < maximum_iteration 

        do

for i = 1 to no_of_ants                                  // for every ant 

    do 

        if unladen ant AND cell occupied by item iX
r

,  

        then compute )( iXf
r

 and )( iuppick XP
r− ;  

                                     pick up item  iX
r

 with probability )( iuppick XP
r−

                                     else if ant carrying item xi AND cell empty,  

                                        then compute )( iXf
r

 and )( idrop XP
r

; 

                                        drop item iX
r

 with probability )( idrop XP
r

; 

                                     end if 

move to a randomly selected, neighboring and  

unoccupied cell ; 

end for

t ← t + 1

end while

print location of items; 

end procedure 

Kanade and Hall (2003) presented a hybridization of the ant systems with the classical
FCM algorithm to determine the number of clusters in a given dataset automatically. In their
fuzzy ant algorithm, at first the ant based clustering is used to create raw clusters and then
these clusters are refined using the FCM algorithm. Initially the ants move the individual data
objects to form heaps. The centroids of these heaps are taken as the initial cluster centers and
the FCM algorithm is used to refine these clusters. In the second stage the objects obtained
from the FCM algorithm are hardened according to the maximum membership criteria to
form new heaps. These new heaps are then sometimes moved and merged by the ants. The
final clusters formed are refined by using the FCM algorithm.

A number of modifications have been introduced to the basic ant based clustering scheme
that improve the quality of the clustering, the speed of convergence and, in particular, the
spatial separation between clusters on the grid, which is essential for the scheme of cluster
retrieval. A detailed description of the variants and results on the qualitative performance
gains afforded by these extensions are provided in (Tsang and Kwong, 2006).

4.2 The PSO-based Clustering Algorithms

Research efforts have made it possible to view data clustering as an optimization problem.
This view offers us a chance to apply PSO algorithm for evolving a set of candidate cluster
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centroids and thus determining a near optimal partitioning of the dataset at hand. An important
advantage of the PSO is its ability to cope with local optima by maintaining, recombining
and comparing several candidate solutions simultaneously. In contrast, local search heuristics,
such as the simulated annealing algorithm (Selim and Alsultan, 1991) only refine a single
candidate solution and are notoriously weak in coping with local optima. Deterministic local
search, which is used in algorithms like the k-means, always converges to the nearest local
optimum from the starting position of the search.

PSO-based clustering algorithm was first introduced by Omran et al. (2002). The results
of Omran et al. (2002, 2005) showed that PSO based method outperformed k-means, FCM
and a few other state-of-the-art clustering algorithms. In their method, Omran et al. used a
quantization error based fitness measure for judging the performance of a clustering algorithm.
The quantization error is defined as:

Je =
∑k

i=1 ∑∀X j∈Ci
d(X j,Vi)/ni

k
(20)

where Ci is the i-th cluster center and ni is the number of data points belonging to the i-th
cluster. Each particle in the PSO algorithm represents a possible set of k cluster centroids as:

= ∈∀ r
         

)(tZi

r
       = 

1,iV
r

2,iV
r

....... kiV
,

r
where Vi,p refers to the p-th cluster centroid vector of the i-th particle. The quality of each
particle is measured by the following fitness function:

f (Zi,Mi) = w1d̄max(Mi,Xi)+w2(Rmax −dmin(Zi))+w3Je (21)

In the above expression, Rmax is the maximum feature value in the dataset and Mi is
the matrix representing the assignment of the patterns to the clusters of the i-th particle. Each
element mi, k, p indicates whether the pattern Xp belongs to cluster Ck of i-th particle. The
user-defined constants w1, w2, and w3 are used to weigh the contributions from different sub-
objectives. In addition,

d̄max = max
j∈1,2,....,k

{ ∑
∀Xp∈Ci, j

d(Xp,Vi, j)/ni, j} (22)

and,

dmin(Zi) = min
∀p,q,p ̸=q

{d(Vi,p,Vi,q)} (23)

is the minimum Euclidean distance between any pair of clusters. In the above, ni,k is the
number of patterns that belong to cluster Ci,k of particle i. he fitness function is a multi-
objective optimization problem, which minimizes the intra-cluster distance, maximizes inter-
cluster separation, and reduces the quantization error. The PSO clustering algorithm is sum-
marized below.
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Step 1:  Initialize each particle with k random cluster centers. 

Step 2:  repeat for iteration_count = 1 to maximum_iterations 

(a) repeat for each particle i  

(i) repeat for each pattern pX
r

 in the dataset 

• calculate Euclidean distance of pX
r

 with all 

cluster centroids. 

• assign pX
r

to the cluster that have nearest 

centroid to pX
r

  

(ii) calculate the fitness function ),( ii MZf
r

(b) find the personal best and global best position of each particle. 

(c) Update the cluster centroids according to velocity updating and 

coordinate updating formula of PSO. 

Van der Merwe and Engelbrecht hybridized this approach with the k-means algorithm for
clustering general dataets (van der Merwe and Engelbrecht, 2003). A single particle of the
swarm is initialized with the result of the k-means algorithm. The rest of the swarm is ini-
tialized randomly. In 2003, Xiao et al used a new approach based on the synergism of the
PSO and the Self Organizing Maps (SOM) (Xiao et al., 2003) for clustering gene expression
data. They got promising results by applying the hybrid SOM-PSO algorithm over the gene
expression data of Yeast and Rat Hepatocytes. Paterlini and Krink (2006) have compared the
performance of k-means, GA (Holland, 1975, Goldberg, 1975), PSO and Differential Evolu-
tion (DE) (Storn and Price, 1997) for a representative point evaluation approach to partitional
clustering. The results show that PSO and DE outperformed the k-means algorithm.

Cui et al. (2005) proposed a PSO based hybrid algorithm for classifying the text docu-
ments. They applied the PSO, k-means and a hybrid PSO clustering algorithm on four differ-
ent text document datasets. The results illustrate that the hybrid PSO algorithm can generate
more compact clustering results over a short span of time than the k-means algorithm.

5 Automatic Kernel-based Clustering with PSO

The Euclidean distance metric, employed by most of the exisiting partitional clustering algo-
rithms, work well with datasets in which the natural clusters are nearly hyper-spherical and
linearly seperable (like the artificial dataset 1 used in this paper). But it causes severe misclas-
sifications when the dataset is complex, with linearly non-separable patterns (like the synthetic
datasets 2, 3, and 4 described in Section 5.8.1 of the chapter). We would like to mention here
that, most evolutionary algorithms could potentially work with an arbitrary distance function
and are not limited to the Euclidean distance.

Moreover, very few works (Bandyopadhyay and Maulik, 2000, Rosenberger and Chehdi,
2000, Omran et al., 2005, Sarkar et al., 1997) have been undertaken to make an algorithm
learn the correct number of clusters ‘k’ in a dataset, instead of accepting the same as a user
input. Although, the problem of finding an optimal k is quite important from a practical point
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of view, the research outcome is still unsatisfactory even for some of the benchmark datasets
(Rosenberger and Chehdi, 2000).

In this Section, we describe a new approach towards the problem of automatic clustering
(without having any prior knowledge of k initially) in kernel space using a modified version
of the PSO algorithm (Das et al., 2008). Our procedure employs a kernel induced similarity
measure instead of the conventional Euclidean distance metric. A kernel function measures the
distance between two data points by implicitly mapping them into a high dimensional feature
space where the data is linearly separable. Not only does it preserve the inherent structure of
groups in the input space, but also simplifies the associated structure of the data patterns (Giro-
lami, 2002). Several kernel-based learning methods, including the Support Vector Machine
(SVM), have recently been shown to perform remarkably in supervised learning (Scholkopf
and Smola, 2002, Vapnik, 1998, Zhang and Chen, 2003, Zhang and Rudnicky, 2002). The ker-
nelized versions of the k-means and the fuzzy c-means (FCM) algorithms reported in (Zhang
and Rudnicky, 2002) and (Zhang and Chen, 2003) respectively, have reportedly outperformed
their original counterparts over several test cases.

Now, we may summarize the new contributions presented here in the following way:

1. Firstly, we develop an alternative framework for learning the number of partitions in a
dataset besides the simultaneous refining of the clusters, through one shot of optimization.

2. We propose a new version of the PSO algorithm based on the multi-elitist strategy, well-
known in the field of evolutionary algorithms. Our experiments indicate that the proposed
MEPSO algorithm yields more accurate results at a faster pace than the classical PSO in
context to the present problem.

3. We reformulate a recently proposed cluster validity index (known as the CS measure
(Chou et al., 2004)) using the kernelized distance metric. This reformulation eliminates
the need to compute the cluster-centroids repeatedly for evaluating CS value, due to the
implicit mapping via the kernel function. The new CS measure forms the objective func-
tion to be minimized for optimal clustering.

5.1 The Kernel Based Similarity Measure

Given a dataset X in the d-dimensional real space ℜd , let us consider a non-linear mapping
function from the input space to a high dimensional feature space H:

φ : ℜd → H,xi → φ(xi) (24)

where xi = [xi,1,xi,2, .....,xi,d ]
T and

φ(xi) = [φ1(xi),φ2(xi), .....,φH(xi)]
T

By applying the mapping, a dot product xT
i .x jis transformed into φT (xi).φ(x j). Now, the

central idea in kernel-based learning is that the mapping function φneed not be explicitly
specified. The dot product φT (xi).φ(x j)in the transformed space can be calculated through
the kernel function K(xi,x j) in the input space ℜd . Consider the following simple example:
Example 1: let d = 2 and H = 3 and consider the following mapping:
φ : ℜ2 → H = ℜ3, and [xi,1,xi,2]

T → [x2
i,1,

√
2.xi,1xi,2,x2

i,2]
T

Now the dot product in feature space H:

φT (xi).φ(x j) = [x2
i,1,

√
2.xi,1xi,2,x2

i,2].[x
2
j,1,

√
2.x j,1.x j,2,x2

j,2]
T .
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= [xi,1.x j,1 + xi,2.x j,2]
2

= [xT
i .x j]

2 = K(xi,x j)

Clearly the simple kernel function K is the square of the dot product of vectors xi and x jin
ℜd . Hence, the kernelized distance measure between two patterns xi and x jis given by:∥∥φ(xi)−φ(x j)

∥∥2
= (φ(xi)−φ(x j))

T (φ(xi)−φ(x j))

= φT (xi).φ(xi)−2.φT (xi).φ(x j)+φT (x j).φ(x j)

= K(xi,xi)−2.K(xi,x j)+K(x j,x j) (25)

Among the various kernel functions used in literature, in the present context, we have
chosen the well-known Gaussian kernel (also referred to as the Radial Basis Function ) owing
to its better classification accuracy over the linear and polynomial kernels on many test prob-
lems (Pirooznia and Deng, 2006,Hertz et al., 2006). The Gaussian Kernel may be represented
as:

K(xi,x j) = exp

(
−
∥∥xi −x j

∥∥2

2σ2

)
(26)

where σ > 0. Clearly, for Gaussian kernel, K(xi,xi)= 1 and thus relation 25 reduces to:∥∥φ(xi)−φ(x j)
∥∥2

= 2.(1−K(xi,x j)) (27)

5.2 Reformulation of CS Measure

Cluster validity indices correspond to the statistical-mathematical functions used to evaluate
the results of a clustering algorithm on a quantitative basis. For crisp clustering, some of
the well-known indices available in the literature are the Dunn’s index (DI) (Dunn, 1974),
Calinski-Harabasz index (Calinski and Harabasz, 1975), Davis-Bouldin (DB) index (Davies
and Bouldin, 1979), PBM index (Pakhira et al., 2004), and the CS measure (Chou et al.,
2004). In this work, we have based our fitness function on the CS measure as according to the
authors, CS measure is more efficient in tackling clusters of different densities and/or sizes
than the other popular validity measures, the price being paid in terms of high computational
load with increasing k and n (Chou et al., 2004). Before applying the CS measure, centroid of
a cluster is computed by averaging the data vectors belonging to that cluster using the formula,

mi =
1
Ni

∑
x j∈Ci

x j (28)

A distance metric between any two data points xi and x j is denoted by d(xi,x j). Then the
CS measure can be defined as,

CS(k) =

1
k ∑k

i=1[
1
Ni

∑Xi∈Ci
max
Xq∈Ci

{d(xi,xq)}]

1
k ∑k

i=1[ min
j∈K, j ̸=i

{d(mi,m j)}]
=

∑k
i=1[

1
Ni

∑Xi∈Ci
max
Xq∈Ci

{d(xi,xq)}]

∑k
i=1[ min

j∈K, j ̸=i
{d(mi,m j)}]

(29)
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Now, using a Gaussian kernelized distance measure and transforming to the high dimen-
sional feature space, the CS measure reduces to (using relation (23)):

CSkernel(k) =
∑k

i=1[
1
Ni

∑Xi∈Ci
max
Xq∈Ci

{||φ(xi)−φ(xq)||2}]

∑k
i=1[ min

j∈K, j ̸=i
{||φ(mi)−φ(m j)||}]

=

∑k
i=1[

1
Ni

∑Xi∈Ci
max
Xq∈Ci

{2(1−K(xi,xq))}]

∑k
i=1[ min

j∈K, j ̸=i
{2(1−K(mi,m j))}]

The minimum value of this CS measure indicates an optimal partition of the dataset. The
value of ‘k’ which minimizes CSkernel(k) therefore gives the appropriate number of clusters
in the dataset.

5.3 The Multi-Elitist PSO (MEPSO) Algorithm

The canonical PSO has been subjected to empirical and theoretical investigations by several
researchers (Eberhart and Shi, 2001, Clerc and Kennedy, 2002). In many occasions, the con-
vergence is premature, especially if the swarm uses a small inertia weight ω or constriction
coefficient (Eberhart and Shi, 2001). As the global best found early in the searching process
may be a poor local minima, we propose a multi-elitist strategy for searching the global best
of the PSO. We call the new variant of PSO the MEPSO. The idea draws inspiration from the
works reported in (Deb et al., 2002). We define a growth rate β for each particle. When the
fitness value of a particle at the t-th iteration is higher than that of a particle at the (t-1)-th
iteration, the β will be increased. After the local best of all particles are decided in each gen-
eration, we move the local best, which has higher fitness value than the global best into the
candidate area. Then the global best will be replaced by the local best with the highest growth
rate β . The elitist concept can prevent the swarm from tending to the global best too early
in the searching process. The MEPSO follows the g best PSO topology in which the entire
swarm is treated as a single neighborhood. The pseudo code about MEPSO is as follows:



Pattern Clustering Using a Swarm Intelligence Approach 21

Procedure MEPSO 

For t =1 to tmax

   For j =1 to N                           // swarm size is N 

      If (the fitness value of particlej in t-th time-step>     that of particlej in (t-1)-

th time-step) 

                               βj(t) = βj (t-1) +1; 

      End  
       Update Local bestj . 

      If (the fitness of Local bestj > that of Global best now) 

          Choose Local bestj put into candidate area. 

      End 

    End 
    Calculate β of every candidate, and record the candidate of βmax . 

    Update the Global best to become the candidate of  

     β max . 

    Else 

       Update the Global best to become the particle of highest fitness value. 

  End 

End 

5.4 Particle Representation

In the proposed method, for n data points, each p-dimensional, and for a user-specified max-
imum number of clusters kmax, a particle is a vector of real numbers of dimension kmax +
kmax × p. The first kmax entries are positive floating-point numbers in (0, 1), each of which
determines whether the corresponding cluster is to be activated (i.e. to be really used for clas-
sifying the data) or not. The remaining entries are reserved for kmax cluster centers, each
p-dimensional.

A single particle is illustrated as:

        =)(tZ i

r
                      Activation Threshhold                         Cluster Centroids                    

Ti,1 Ti,2 ..... Ti,kmax
1,im

r
2,im

r
....... max,kim

r
The j-th cluster center in the i-th particle is active or selected for partitioning the associated

dataset if Ti,j > 0.5. On the other hand, if Ti,j < 0.5, the particular j-th cluster is inactive in
the i-th particle. Thus the Ti,j s behave like control genes (we call them activation thresholds)
in the particle governing the selection of the active cluster centers. The rule for selecting the
actual number of clusters specified by one chromosome is:

IF  Ti,j  > 0.5 THEN the j-th cluster center jim
,

r
is ACTIVE

ELSE jim
,

r
is INACTIVE                                                      (30)
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Consider the following example:
Example 2: Positional coordinates of one particular particle is illustrated below. There are
at most five 3-dimensional cluster centers among which, according to the rule presented in
Equation 30 the second (6, 4.4, 7), third (5.3, 4.2, 5) and fifth one (8, 4, 4) have been activated
for partitioning the dataset and marked in bold. The quality of the partition yielded by such a
particle can be judged by an appropriate cluster validity index.

0.3 0.6 0.8 0.1 0.9   6.1 3.2 2.1 6 4.4 7 9.6 5.3 4.2 5 8 4.6 8 4 4 

During the PSO iterations, if some threshold T in a particle exceeds 1 or becomes negative,
it is fixed to 1 or zero, respectively. However, if it is found that no flag could be set to one in
a particle (all activation threshholds are smaller than 0.5), we randomly select 2 thresholds
and re-initialize them to a random value between 0.5 and 1.0. Thus the minimum number of
possible clusters is 2.

5.5 The Fitness Function

One advantage of the proposed algorithm is that it can use any suitable validity index as its
fitness function. We have used the kernelized CS measure as the basis of our fitness function,
which for i-th particle can be described as:

fi =
1

CSkerneli(k)+ eps
(31)

where eps is a very small constant (we used 0.0002). Maximization of fi implies a minimiza-
tion of the kernelized CS measure leading to the optimal partitioning of the dataset.

5.6 Avoiding Erroneous particles with Empty Clusters or Unreasonable
Fitness Evaluation

There is a possibility that in our scheme, during computation of the kernelized CS index, a
division by zero may be encountered. For example, the positive infinity (such as 4.0/0.0) or
the not-a-number (such as 0.0/0.0) condition always occurs when one of the selected cluster
centers is outside the boundary of distributions of data set as far as possible. To avoid this
problem we first check to see if in any particle, any cluster has fewer than 2 data points in
it. If so, the cluster center positions of this special particle are re-initialized by an average
computation. If k clusters (2 ≤ k ≤ kmax) are selected for this particle, we put n/k data points
for every individual activated cluster center, such that a data point goes with a center that is
nearest to it.
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5.7 Putting It All Together

{ }),(min),(
,},....,2,1{, bipkbjip mXdmXd

rrrr ∈∀=

≤≤
Step 1: Initialize each particle to contain k number of randomly selected   cluster 

centers and k (randomly chosen) activation thresholds in [0, 1]. 

Step 2:  Find out the active cluster centers in each particle with the help of the 

rule described in (10). 

Step 3: For t =1to tmax do 

i) For each data vector pX
r

, calculate its distance metric ),(
, jip mXd

rr
from   all   

active cluster centers of the i-th particle
iV
r

. 

 ii) Assign pX
r

 to that particular cluster center jim
,

r
where                                     

iii)  Check if the number of data points belonging to any cluster center jim
,

r
 is 

less than 2. If so, update the cluster centers of the particle using the concept of 

average described earlier.   

         

iv)  Change the population members according to the MEPSO algorithm. Use 

the fitness of the particles to guide the dynamics of the swarm. 

Step 4:  Report as the final solution the cluster centers and the partition obtained   

by the globally best particle (one yielding the highest value of the 

fitness function) at time t = tmax. 

5.8 Experimental Results

Comparison with Other Clustering Algorithms

To test the effectiveness of the proposed method, we compare its performance with six other
clustering algorithms using a test-bed of five artificial and three real world datasets. Among the
competitors, there are two recently developed automatic clustering algorithms well- known as
the GCUK (Genetic Clustering with an Unknown number of clusters k) (Bandyopadhyay and
Maulik, 2000) and the DCPSO (Dynamic Clustering PSO) (Omran et al., 2005). Moreover, in
order to investigate the effects of the changes made in the classical g best PSO algorithm, we
have compared MEPSO with an ordinary PSO based kernel-clustering method that uses the
same particle representation scheme and fitness function as the MEPSO. Both the algorithms
were let run on the same initial populations. The rest of the competitors are the kernel k-
means algorithm (Zhang and Rudnicky, 2002) and a kernelized version of the subtractive
clustering (Kim et al., 2005). Both the algorithms were provided with the correct number of
clusters as they are non-automatic.

We used datasets with a wide variety in the number and shape of clusters, number of
datapoints and the count of features of each datapoint. The real life datasets used here are
the Glass, the placeWisconsin breast cancer, the image segmentation, the Japanese Vowel and
the automobile (Handl et al., 2003). The synthetic datasets included here, comes with linearly
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non-separable clusters of different shapes (like elliptical, concentric circular dish and shell,
rectangular etc). Brief details of the datasets have been provided in Table 1. Scatterplot of the
synthetic datasets have also been shown in Figure 5.The clustering results were judged using
Huang’s accuracy measure (Huang and Ng, 1999):

r =
∑k

i=1 ni

n
, (32)

where ni is the number of data occurring in both the i-th cluster and its corresponding true
cluster, and n is the total number of data points in the data set. According to this measure, a
higher value of r indicates a better clustering result, with perfect clustering yielding a value of
r = 1.

We used σ = 1.1 for all the artificial datasets, σ = 0.9 for breast cancer dataset and σ
= 2.0 for the rest of the real life datasets for the RBF kernel following (Lumer and Faieta,
1995).In these experiments, the kernel k-means was run 100 times with the initial centroids
randomly selected from the data set. A termination criterion of ε = 0.001. The parameters
of the kernel-based subtractive methods were set to α = 5.4 and β = 1.5 as suggested by
Pal and Chakraborty (Kuntz and Snyers, 1994). For all the competitive algorithms, we have
selected their best parameter settings as reported in the corresponding literatures. The control
parameters for MEPSO where chosen after experimenting with several possible values. Some
of the experiments focussing on the effects of parameter-tuning in MEPSO has been reported
in the next subsection. The same set of parameters were used for all the test problems for all
the algorithms. These parameter settings have been reported in Table 2.

Table 3 compares the algorithms on the quality of the optimum solution as judged by the
Huang’s measure. The mean and the standard deviation (within parentheses) for 40 indepen-
dent runs (with different seeds for the random number generator) of each of the six algorithms
are presented in Table 3. Missing values of standard deviation in this table indicate a zero stan-
dard deviation. The best solution in each case has been shown in bold. Table 4 and 5 present
the mean and standard deviation of the number of classes found by the three automatic clus-
tering algorithms. In Figure 2 we present the clustering results on the synthetic datasets by the
new MEPSO algorithm (to save space we do not provide results for all the six algorithms).

For comparing the speed of the stochastic algorithms like GA, PSO etc. we choose num-
ber of fitness function evaluations (placeFEs) as a measure of computation time instead of
generations or iterations. From the data provided in Table 3, we choose a threshold value of
the classification accuracy for each dataset. This threshold value is somewhat larger than the
minimum accuracy attained by each automatic clustering algorithm. Now we run an algo-
rithm on each dataset and stop as soon as it achieves the proper number of clusters as well
as the threshold accuracy. We then note down the number of fitness function evaluations the
algorithm takes. A lower number of placeFEs corresponds to a faster algorithm. The speed
comparison results are provided in Table 6. The kernel k-means and the subtractive clustering
method are not included in this table, as they are non-automatic and do not employ evolution-
ary operators as in GCUK and PSO based methods.
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Table 1: Description of the Datasets 

Table 2: Parameter Settings for different algorithms 

Dateset Number of 

Datapoints  

Number of 

clusters  

Data-

dimension 

Synthetic_1 500 2 2 

Synthetic_2 52 2 2 

Synthetic_3 400 4 3 

Synthetic_4 250 5 2 

Synthetic_5 600 2 2 

Glass 214 6 9 

Wine 178 3 13 

Breast Cancer 683 2 9 

Image Segmentation 2310 7 19 

Japanese Vowel 640 9 12 

GCUK DCPSO PSO MEPSO 

Pop_size 70 Pop_size 100 Pop_ 

size 

40 Pop_ 

size 

40 

Cross-over 

Probability µc

0.85 Inertia 

Weight 

0.72 Inertia 

Weight 

0.75 Inertia 

Weight 

0.794 

Mutation 

probability µm

0.005 C1, C2
1.494 C1, C2

2.00 C1, C2
0.35→2.4 

2.4→0.35 

Pini 0.75 

Kmax

Kmin

20 

2 

Kmax

Kmin

20 

2 

Kmax

Kmin

20 

2 

Kmax

Kmin

20 

2 

A review of Tables 3, 4 and 5 reveals that the kernel based MEPSO algorithm performed
markedly better as compared to the other considered clustering algorithms, in terms of both
accuracy and convergence speed. We note that in general, the kernel based clustering methods
outperform the GCUK or DCPSO algorithms (which do not use the kernelized fitness func-
tion) especially on linearly non-separable artificial datasets like synthetic 1, synthetic 2 and
synthetic 5. Although the proposed method provided a better clustering result than the other
methods for Synthetic 5 dataset, its accuracy for this data was lower than the seven other data
sets considered. This indicates that the proposed approach is limited in its ability to classify
non-spherical clusters.

The PSO based methods (especially MEPSO) on average took lesser computational time
than the GCUK algorithm over most of the datasets. One possible reason of this may be the use
of less complicated variation operators (like mutation) in PSO as compared to the operators
used for GA. We also note that the MEPSO performs much better than the classical PSO based
kernel-clustering scheme. Since both the algorithms use same particle representation and starts
with the same initial population, difference in their performance must be due to the difference
in their internal operators and parameter values. This demonstrates the effectiveness of the
multi-elitist strategy incorporated in the MEPSO algorithm
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Table 3: Mean and standard deviation of the clustering accuracy (%) achieved by each 

 clustering algorithm over 40 independent runs (Each run continued up to 50, 000 FEs for 

GCUK, DCPSO, Kernel_ PSO and Kernel_MEPSO)   

Table 4: Mean and standard deviation (in parenthesis) of the number of clusters found  

over the synthetic datasets for four automatic clustering algorithms over 40 independent 

runs. 

Datasets 

Algorithms 

Kernel k-

means 

Kernel 

Sub_clust 

GCUK DC-PSO Kernel_ 

PSO 

Kernel_ 

MEPSO 

Synthetic_1 83.45 

(0.032) 

87.28 54.98 

(0.88) 

57.84 

(0.065) 

90.56 

(0.581) 

99.45 

(0.005) 

Synthetic_2 71.32 

(0.096) 

75.73 65.82 

(0.146) 

59.91 

(0.042) 

61.41 

(0.042) 

80.92 

(0.0051) 

Synthetic_3 89.93 

(0.88) 

94.03 97.75 

(0.632) 

97.94 

(0.093) 

92.94 

(0.193) 

99.31 

(0.001) 

Synthetic_4 67.65 

(0.104) 

80.25 74.30 

(0.239) 

75.83 

(0.033) 

78.85 

(0.638) 

87.84 

(0.362) 

Synthetic_5 81.23 

(0.127) 

84.33 54.45 

(0.348) 

52.55 

(0.209) 

89.46 

(0.472) 

99.75 

(0.001) 

Glass 68.92 

(0.032) 

73.92 76.27 

(0.327) 

79.45 

(0.221) 

70.71 

(0.832) 

92.01 

(0.623) 

Wine 73.43 

(0.234) 

59.36 80.64 

(0.621) 

85.81 

(0.362) 

87.65 

(0.903) 

93.17 

(0.002) 

Breast 

Cancer 

66.84 

(0.321) 

70.54 73.22 

(0.437) 

78.19 

(0.336) 

80.49 

(0.342) 

86.35 

(0.211) 

Image 

Segmentation 

56.83 

(0.641) 

70.93 78.84 

(0.336) 

81.93 

(1.933) 

84.32 

(0.483) 

87.72 

(0.982) 

Japanese 

Vowel 

44.89 

(0.772) 

61.83 70.23 

(1.882) 

82.57 

(0.993) 

79.32 

(2.303) 

84.93 

(2.292) 

Average 72.28 75.16 74.48 76.49 77.58 91.65 

Algorithms Synthetic 

_1 

Synthetic 

_2 

Synthetic 

_3 

Synthetic 

_4 

Synthetic 

_5 

GCUK 2.50 

(0.021) 

3.05 

(0.118) 

4.15 

(0.039) 

9.85 

(0.241) 

4.25 

(0.921) 

DCPSO 2.45 

(0.121) 

2.80 

(0.036) 

4.25 

(0.051) 

9.05 

(0.726) 

6.05 

(0.223) 

Ordinary PSO 2.50 

(0.026) 

2.65 

(0.126) 

4.10 

(0.062) 

9.35 

(0.335) 

2.25 

(0.361) 

Kernel_MEPSO 2.10 

(0.033) 

2.15 

(0.102) 

4.00 

(0.00) 

10.05 

(0.021) 

2.05 

(0.001) 
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Table 5: Mean and standard deviation (in parenthesis) of the number of clusters found  

over the synthetic datasets for four automatic clustering algorithms over 40 independent 

runs. 

Table 6: Mean and standard deviations of the number of fitness function evaluations 

(over 40 successful runs)  required by each algorithm to reach a predefined cut-off value 

of the classification accuracy

Algorithms Glass Wine Breast  

Cancer 

Image 

Segmentation 

Japanese 

Vowel 

GCUK 5.85 

(0.035)

4.05 

(0.021)

2.25 

(0.063)

7.05 

(0.008)

9.50 

(0.218)

DCPSO 5.60 

(0.009) 

3.75 

(0.827) 

2.25 

(0.026) 

7.50 

(0.057) 

10.25 

(1.002) 

Ordinary PSO 5.75 

(0.075) 

3.00 

(0.00) 

2.00 

(0.00) 

7.20 

(0.025) 

9.25 

(0.822) 

Kernel_MEPSO 6.05 

(0.015) 

3.00 

(0.00) 

2.00 

(0.00) 

7.00 

(0.00) 

9.05 

(0.021) 

Dateset 

Threshold 

accuracy 

(in %) 

GCUK DCPSO Ordinary 

PSO 

Kernel_ 

MEPSO 

Synthetic_1 50.00 48000.05 

(21.43) 

42451.15 

(11.57) 

43812.30 

(2.60) 

37029.65 

(17.48) 

Synthetic_2 55.00 41932.10 

(12.66) 

45460.25 

(20.97) 

40438.05 

(18.52) 

36271.05 

(10.41) 

Synthetic_3 85.00 40000.35 

(4.52) 

35621.05 

(12.82) 

37281.05 

(7.91) 

32035.55 

(4.87) 

Synthetic_4 65.00 46473.25 

(7.38)

43827.65 

(2.75)

42222.50 

(2.33)

36029.05 

(6.38)

Synthetic_5 50.00 43083.35 

(5.30) 

39392.05 

(7.20) 

42322.05 

(2.33) 

35267.45 

(9.11) 

Glass 65.00 47625.35 

(6.75) 

40382.15 

(7.27) 

38292.25 

(10.32) 

37627.05 

(12.36) 

Wine 55.00 44543.70 

(44.89) 

43425.00 

(18.93) 

   3999.65 

(45.90) 

35221.15 

(67.92) 

Breast 

Cancer 

65.00 40390.00 

(11.45) 

37262.65 

(13.64) 

35872.05 

(8.32) 

32837.65 

(4.26) 

Image 

Segmentation 

55.00 39029.05 

(62.09) 

40023.25 

(43.92) 

35024.35 

(101.26) 

34923.22 

(24.28) 

Japanese 

Vowel

40.00 40293.75 

(23.33) 

28291.60 

(121.72) 

29014.85 

(21.67) 

24023.95 

(20.62) 

Choice of Parameters for MEPSO

The MEPSO has a number of control parameters that affect its performance on different clus-
tering problems. In this Section we discuss the influence of parameters like swarm size, the
inertia factor ω and the acceleration factors C1 and C2 on the Kernel MEPSO algorithm.

1. Swarm Size: To investigate the effect of the swarm size, the MEPSO was executed sep-
arately with 10 to 80 particles (keeping all other parameter settings same as reported in
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Table 2) on all the datasets. In Figure 6 we plot the convergence behavior of the algo-
rithm (average of 40 runs) on the image segmentation dataset (with 2310 data points and
19 features, it is the most complicated synthetic dataset considered here) for different
population sizes. We omit the other results here to save space. The results reveal that
the number of particles more than 40 gives more or less identical accuracy of the final
clustering results for MEPSO. This observation is in accordance with Van den Bergh and
Engelbrecht, who in (van den Bergh and Engelbrecht, 2001) showed that though there is
a slight improvement in the solution quality with increasing swarm sizes, a larger swarm
increases the number of function evaluations to converge to an error limit. For most of
the problems, it was found that keeping the swarm size 40 provides a reasonable trade-off
between the quality of the final results and the convergence speed.

2. The inertia factor ω: Provided all other parameters are fixed at the values shown in
Table 2, the MEPSO was run with several possible choices of the inertia factor ω . Specif-
ically we used a time-varying ω (linearly decreasing from 0.9 to 0.4 following (Shi and
Eberhart, 1999)), random ω (Eberhart and Shi, 2001),ω = 0.1, ω =0.5 and finally ω =
0.794 (Kennedy et al., 2001). In Figure 7, we show how the fitness of the globally best
particle (averaged over 40 runs) varies with no. of placeFEs for the image segmentation
dataset over different values of ω . It was observed that for all the problems belonging to
the current test suit, best convergence behavior of MEPSO is observed for ω = 0.794.

3. The acceleration coefficients C1 and C2: Provided all other parameters are fixed at the
values given in Table 2, we let MEPSO run for different settings of the acceleration co-
efficients C1 and C2 as reported in various literatures on PSO. We used C1 = 0.7 and
C2 = 1.4, C1 = 1.4 and C2 = 0.7 (Shi and Eberhart, 1999), C1 = C2 = 1.494 (Kennedy
et al., 2001), C1=C2=2.00 (Kennedy et al., 2001) and finally a time varying acceleration
coefficients where C1 linearly increases from 0.35 to 2.4 and C2 linearly decreases from
2.4 to 0.35 (Ratnaweera and Halgamuge, 2004). We noted that the linearly varying accel-
eration coefficients gave the best clustering results over all the problems considered. This
is perhaps due to the fact that an increasing C1 and gradually decreasing C2 boost the
global search over the entire search space during the early part of the optimization and
encourage the particles to converge to global optima at the end of the search. Figure 8 il-
lustrates the convergence characteristics of MEPSO over the image segmentation dataset
for different settings of C1 and C2.

6 Conclusion and Future Directions

In this Chapter, we introduced some of the preliminary concepts of Swarm Intelligence (SI)
with an emphasis on particle swarm optimization and ant colony optimization algorithms.
We then described the basic data clustering terminologies and also illustrated some of the
past and ongoing works, which apply different SI tools to pattern clustering problems. We
proposed a novel kernel-based clustering algorithm, which uses a deviant variety of the PSO.
The proposed algorithm can automatically compute the optimal number of clusters in any
dataset and thus requires minimal user intervention. Comparison with a state of the art GA
based clustering strategy, reveals the superiority of the MEPSO-clustering algorithm both in
terms of accuracy and speed.

Despite being an age old problem, clustering remains an active field of interdisciplinary
research till date. No single algorithm is known, which can group all real world datasets ef-
ficiently and without error. To judge the quality of a clustering, we need some specially de-
signed statistical-mathematical function called the clustering validity index. But a literature
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survey reveals that, most of these validity indices are designed empirically and there is no uni-
versally good index that can work equally well over any dataset. Since, majority of the PSO or
ACO based clustering schemes rely on a validity index to judge the fitness of several possible
partitioning of the data, research effort should be spent for defining a reasonably good index
function and validating the same mathematically.

Feature extraction is an important preprocessing step for data clustering. Often we have
a great number of features (especially for a high dimensional dataset like a collection of text
documents) which are not all relevant for a given operation. Hence, future research may focus
on integrating the automatic feature-subset selection scheme with the SI based clustering algo-
rithm. The two-step process is expected to automatically project the data to a low dimensional
feature subspace, determine the number of clusters and find out the appropriate cluster centers
with the most relevant features at a faster pace.

Gene expression refers to a process through which the coded information of a gene is
converted into structures operating in the cell. It provides the physical evidence that a gene has
been ”turned on” or activated for protein synthesis (Lewin, 1995). Proper selection, analysis
and interpretation of the gene expression data can lead us to the answers of many important
problems in experimental biology. Promising results have been reported in (Xiao et al., 2003)
regarding the application of PSO for clustering the expression levels of gene subsets. The
research effort to integrate SI tools in the mechanism of gene expression clustering may in
near future open up a new horizon in the field of bioinformatic data mining.

Hierarchical clustering plays an important role in fields like information retrieval and
web mining. The self-assembly behavior of the real ants may be exploited to build up new
hierarchical tree-structured partitioning of a data set according to the similarities between
those data items. A description of the little but promising work already been undertaken in this
direction can be found in (Azzag et al., 2006). But a more extensive and systematic research
effort is necessary to make the ant based hierarchical models superior to existing algorithms
like Birch (Zhang et al., 1997).
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(a) Unlabeled Synthetic_1                               Synthetic_1 Clustered with Kernel_MEPSO 

                                                                      

(b) Unlabeled Synthetic_2                               Synthetic_2 Clustered with Kernel_MEPSO 

                                                                                                                        

(c) Unlabeled Synthetic_3                               Synthetic_3 Clustered with Kernel_MEPSO                                                   

(d) Unlabeled Synthetic_4                         Synthetic_4 Clustered with Kernel_MEPSO 

            

(e) Unlabeled Synthetic_5                          Synthetic_5 Clustered with Kernel_MEPSO           

Fig. 5. Two- and three-dimensional synthetic datasets clustered with MEPSO.
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Fig. 6. The convergence characteristics of the MEPSO over the Image segmentation dataset
for different population sizes.

 The convergence characteristics of the MEPSO over the Image segmentation 

Fig. 7. The convergence characteristics of the MEPSO over the Image segmentation dataset
for different inertia factors.

Fig. 8. The convergence characteristics of the MEPSO over the Image segmentation dataset
for different acceleration coefficients.
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